Delineating Pro-Angiogenic Myeloid Cells in Cancer Therapy
Abstract
1. Introduction
- Depletion of nutrients required by lymphocytes
- Generation of oxidative stress
- Interference of lymphocyte trafficking and viability
- Activation and expansion of Treg cell populations
2. Pro-Angiogenic Myeloid Cells
2.1. Heterogeneity of Pro-Angiogenic Myeloid Cells
2.2. Pro-Angiogenic Mechanisms of Myeloid Cells
2.2.1. VEGF-A/VEGFR2
2.2.2. VE-Cadherin & CD31
2.2.3. TIE2
2.2.4. Secreted Factors
3. Pro-Angiogenic Myeloid Cells and Cancer Therapy Resistance
3.1. Chemotherapy
3.2. Radiotherapy
3.3. Antiangiogenic Therapy
3.4. Immunotherapy
4. Summary
5. Future Perspectives and Directions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
| TME | Tumor microenvironment |
| TAMC | Tumor-associated myeloid cell |
| M/PMN/eMDSC | Monocytic/polymorphonuclear/early-stage–myeloid-derived suppressor cell |
| UPR | Unfolded protein response |
| CHOP | C/EBP homologous protein |
| XBP1 | X-box binding protein 1 |
| IRE1α | Inositol-requiring enzyme |
| MMP | Matrix metalloproteinase |
| VEGFR2 | Vascular endothelial growth factor receptor2 |
| CD31 | Platelet endothelial cell adhesion molecule1 |
| TIE2 | Tyrosine kinase with immunoglobulin and EGF-like domains |
| VEGF | Vascular endothelial growth factor |
| FGF | Fibroblast growth factor |
| ANG2 | Angiopoietin 2 |
| CXCL12 | C-X-C motif chemokine 12 |
| SDF-1α | Stromal derived factor-1α |
| EC | Endothelial cell |
| TEM | TIE2-expressing macrophage |
| EPC | Endothelial progenitor cell |
| AAT | Antiangiogenic therapy |
References
- Gabrilovich, D.I.; Ostrand-Rosenberg, S.; Bronte, V. Coordinated regulation of myeloid cells by tumors. Nat. Rev. Immunol. 2012, 12, 253–268. [Google Scholar] [CrossRef] [PubMed]
- Gabrilovich, D.I. Myeloid-derived suppressor cells. Cancer Immunol Res. 2017, 5, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Bronte, V.; Brandau, S.; Chen, S.-H.; Colombo, M.P.; Frey, A.B.; Greten, T.F.; Mandruzzato, S.; Murray, P.J.; Ochoa, A.; Ostrand-Rosenberg, S.; et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat. Commun. 2016. [Google Scholar] [CrossRef] [PubMed]
- Kiss, M.; van Gassen, S.; Movahedi, K.; Saeys, Y.; Damya, L. Myeloid Cell Heterogeneity in Cancer: Not a single cell alike. Cell. Immunol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Bailly-Maitre, B.; Reed, J.C. Endoplasmic reticulum stress: Cell life and death decisions. J. Clin. Investig. 2005, 115, 2656–2664. [Google Scholar] [CrossRef] [PubMed]
- Cubillos-Ruix, J.R.; Bettigole, S.E.; Glimcher, L.H. Tumorigenic and immunosuppressive effects of endoplasmic reticulum stress in cancer. Cell 2017, 168, 692–702. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; DeBusk, L.M.; Fukuda, K.; Fingleton, B.; Green-Jarvis, B.; Shyr, Y.; Matrisian, L.M.; Carbone, D.P.; Lin, P.C. Expansion of myeloid immune suppressor Gr+ CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 2004, 6, 409–421. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2013, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- De Palma, M.; Biziato, D.; Petrova, T.V. Microenvironmental regulation of tumor angiogenesis. Nat. Rev. Cancer 2017, 17, 457–474. [Google Scholar] [CrossRef] [PubMed]
- Achyut, B.R. (Winship Cancer Center of Emory University, Atlanta, GA, USA). Recommended markers for angiogenic MDSCs. Personal Communication, 2018. [Google Scholar]
- Rivera, L.B.; Bergers, G. Myeloid cell-driven angiogenesis and immune regulation in tumors. Trends Immunol. 2015, 36, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Bergers, G.; Benjamin, L.E. Tumorigenesis and the angiogenic switch. Nat. Rev. Cancer 2003, 3, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Bergers, G.; Brekken, R.; McMahon, G.; Vu, T.H.; Itoh, T.; Tamaki, K.; Tanzawa, K.; Thorpe, P.; Itohara, S.; Werb, Z.; et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat. Cell Biol. 2000, 2, 737–744. [Google Scholar] [CrossRef] [PubMed]
- Shibuya, M. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: A crucial target for anti-and pro-angiogenic therapies. Genes Cancer 2011, 2, 1097–1105. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Rajappa, P.; Hu, W.; Hoffman, C.; Cisse, B.; Kim, J.H.; Gorge, E.; Yanowitch, R.; Cope, W.; Vartanian, E.; et al. A proangiogenic signaling axis in myeloid cells promotes malignant progression of glioma. J. Clin. Investig. 2017, 127, 1826–1838. [Google Scholar] [CrossRef] [PubMed]
- Schmid, M.; Varner, J.A. Myeloid cell trafficking and tumor angiogenesis. Cancer Lett. 2007, 250, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Purhonen, S.; Palm, J.; Rossi, D.; Kaskenpää, N.; Rajantie, I.; Ylä-Herttuala, S.; Alitalo, K.; Weissman, I.L.; Salven, P. Bone marrow-derived circulating endothelial cell precursors do not contribute to vascular endothelium and are not needed for tumor growth. Proc. Natl. Acad. Sci. USA 2008, 105, 6620–6625. [Google Scholar] [CrossRef] [PubMed]
- Fukuhara, S.; Sako, K.; Kazoumi, N.; Nagao, K.; Miura, K.; Mochizuki, N. Tie2 is tied at the cell–cell contacts and to extracellular matrix by Angiopoietin-1. Exp. Mol. Med. 2009, 41, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Mazzieri, R.; Pucci, F.; Moi, D.; Zonari, E.; Ranghetti, A. Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell 2011, 19, 512–526. [Google Scholar] [CrossRef] [PubMed]
- Engblom, C.; Pfirschke, C.; Pittet, M.J. The role of myeloid cells in cancer therapies. Nat. Rev. Cancer 2016, 16, 447–462. [Google Scholar] [CrossRef] [PubMed]
- Achyut, B.R.; Arbab, A.S. Myeloid cell signatures in tumor microenvironment predicts therapeutic response in cancer. Onco Targets Ther. 2016, 9, 1047–1055. [Google Scholar] [CrossRef] [PubMed]
- Shree, T.; Olson, O.C.; Elie, B.T.; Kester, J.C.; Garfall, A.L.; Simpson, K.; Bell-McGuinn, K.M.; Zabor, E.C.; Brogi, E.; Joyce, J.A. Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer. Genes Dev. 2011, 25, 265–2479. [Google Scholar] [CrossRef] [PubMed]
- Klose, R.; Krzywinska, E.; Castells, M.; Gotthardt, D.; Putz, E.M.; Kantari-Mimoun, C.; Chikdene, N.; Meinecke, A.-K.; Schrödter, K.; Helfrich, I.; et al. Targeting VEGF-A in myeloid cells enhances natural killer cell responses to chemotherapy and ameliorates chachexia. Nat. Commun. 2016, 7, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Hughes, R.; Qian, B.; Rowan, C.; Muthana, M.; keklikoglou, I.; Olson, O.C.; Tazzyman, S.; Danson, S.; Addison, C.; Clemons, M.; et al. Perivascular M2 macrophages stimulate tumor relapse after chemotherapy. Cancer Res. 2015, 75, 3479–3491. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Li, J.; Wang, F.; Dai, C.; Wu, F.; Liu, X.; Li, T.; Glauben, R.; Zhang, Y.; Nie, G.; et al. Tie2 expression on macrophages is required for blood vessel reconstruction and tumor relapse after chemotherapy. Cancer Res. 2016. [Google Scholar] [CrossRef] [PubMed]
- Cummings, B.; Keane, T.; Pintilie, M.; Warde, P.; Waldron, J.; Payne, D.; Liu, F.-F.; Bissett, R.; McLean, M.; Gullane, P.; et al. Five year results of a randomized trial comparing hyperfractionated to conventional radiotherapy over four weeks in locally advanced head and neck cancer. Radiot. Oncol. 2007, 85, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Kozin, S.V.; Kamoun, W.S.; Huang, Y.; Dawson, M.R.; Jain, R.K.; Duda, D.G. Recruitment of myeloid but not endothelial precursor cells facilitates tumor regrowth after local irradiation. Cancer Res. 2010, 70, 5679–5685. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.M. Vasculogenesis: A crucial player in the resistance of solid tumours to radiotherapy. Br. J. Radiol. 2014, 87, 87. [Google Scholar] [CrossRef] [PubMed]
- Ahn, G.; Tseng, D.; Liao, C.; Dorie, M.J.; Czechowicz, A.; Brown, J.M. Inhibition of Mac-1 (CD11b/CD18) enhances tumor response to radiation by reducing myeloid cell recruitment. Proc. Natl. Acad. Sci. USA 2010, 107, 8363–8368. [Google Scholar] [CrossRef] [PubMed]
- Shojaei, F.; Zhong, C.; Wu, X.; Yu, L.; Ferrara, N. Role of myeloid cells in tumor angiogenesis and growth. Trends Cell Biol. 2008, 18, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Schaaf, M.B.; Garg, A.D.; Agostinis, P. Defining the role of the tumor vasculature in antitumor immunity and immunotherapy. Cell Death Dis. 2018, 9, 115. [Google Scholar] [CrossRef] [PubMed]
| Sequestration Proteins | Matrix Degrading Enzymes | Pro-Angiogenic Factors |
|---|---|---|
| VE-cadherin (cell surface) | MMP-2,7,9 and 14 (secreted) | VEGFA (secreted) |
| CD31 (cell surface) | Cathepsin B (secreted) | FGF2 (secreted) |
| TIE2 (cell surface) | TNFα (secreted) | |
| TGFβ (secreted) | ||
| PDGF (secreted) | ||
| Neuropilin-1 (secreted) | ||
| CXCL-8,12 (secreted) | ||
| Semaphorin-4D (secreted) |
| Chemotherapy | Radiotherapy | Antiangiogenic Therapy | Immunotherapy |
|---|---|---|---|
| Facilitate angiogenic-revascularization Formation of abnormal tumor vasculature-impede drug delivery, accentuate hypoxic environment | Facilitate vasculogenic-revascularization | Facilitate VEGFA-independent angiogenic-revascularization | Secretion of VEGFA Formation of abnormal tumor vasculature-impede drug delivery, accentuate hypoxic environment |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnson, B.W.; Achyut, B.R.; Fulzele, S.; Mondal, A.K.; Kolhe, R.; Arbab, A.S. Delineating Pro-Angiogenic Myeloid Cells in Cancer Therapy. Int. J. Mol. Sci. 2018, 19, 2565. https://doi.org/10.3390/ijms19092565
Johnson BW, Achyut BR, Fulzele S, Mondal AK, Kolhe R, Arbab AS. Delineating Pro-Angiogenic Myeloid Cells in Cancer Therapy. International Journal of Molecular Sciences. 2018; 19(9):2565. https://doi.org/10.3390/ijms19092565
Chicago/Turabian StyleJohnson, Benjamin W., Bhagelu R. Achyut, Sadanand Fulzele, Ashis K. Mondal, Ravindra Kolhe, and Ali S. Arbab. 2018. "Delineating Pro-Angiogenic Myeloid Cells in Cancer Therapy" International Journal of Molecular Sciences 19, no. 9: 2565. https://doi.org/10.3390/ijms19092565
APA StyleJohnson, B. W., Achyut, B. R., Fulzele, S., Mondal, A. K., Kolhe, R., & Arbab, A. S. (2018). Delineating Pro-Angiogenic Myeloid Cells in Cancer Therapy. International Journal of Molecular Sciences, 19(9), 2565. https://doi.org/10.3390/ijms19092565

