Next Article in Journal
Genomic Regions Analysis of Seedling Root Traits and Their Regulation in Responses to Phosphorus Deficiency Tolerance in CSSL Population of Elite Super Hybrid Rice
Next Article in Special Issue
Traditional Chinese Medicine as a Potential Source for HSV-1 Therapy by Acting on Virus or the Susceptibility of Host
Previous Article in Journal
Integrative Bioinformatics and Functional Analyses of GEO, ENCODE, and TCGA Reveal FADD as a Direct Target of the Tumor Suppressor BRCA1
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:

Medicinal Plants Used in the Treatment of Human Immunodeficiency Virus

Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, 88777539 Tehran, Iran
Student Research Committee, Shahid Beheshti University of Medical Sciences, 22439789 Tehran, Iran
Department of Chemistry, Manipal Institute of Technology, Manipal University, Manipal 576104, India
Department of Pharmacognosy, Gazi University, Faculty of Pharmacy, 06330 Ankara, Turkey
Department of Medical Parasitology, Zabol University of Medical Sciences, 61663-335 Zabol, Iran
PAHO/WHO Collaborating Centre for Traditional Medicine, College of Pharmacy, University of Illinois, 833 S. Wood St., Chicago, IL 60612, USA
Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, 21000 Novi Sad, Serbia
Department of Agricultural and Environmental Sciences, Milan State University, 20133 Milan, Italy
Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, 11369 Tehran, Iran
Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, 11369 Tehran, Iran
Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, 11369 Tehran, Iran
Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, Winnipeg, MB R3B 2G3, Canada
Authors to whom correspondence should be addressed.
Int. J. Mol. Sci. 2018, 19(5), 1459;
Submission received: 26 March 2018 / Revised: 29 April 2018 / Accepted: 7 May 2018 / Published: 14 May 2018
(This article belongs to the Special Issue Natural Products against Viral Infections)


Since the beginning of the epidemic, human immunodeficiency virus (HIV) has infected around 70 million people worldwide, most of whom reside is sub-Saharan Africa. There have been very promising developments in the treatment of HIV with anti-retroviral drug cocktails. However, drug resistance to anti-HIV drugs is emerging, and many people infected with HIV have adverse reactions or do not have ready access to currently available HIV chemotherapies. Thus, there is a need to discover new anti-HIV agents to supplement our current arsenal of anti-HIV drugs and to provide therapeutic options for populations with limited resources or access to currently efficacious chemotherapies. Plant-derived natural products continue to serve as a reservoir for the discovery of new medicines, including anti-HIV agents. This review presents a survey of plants that have shown anti-HIV activity, both in vitro and in vivo.

1. Introduction

The World Health Organisation estimates that over 75 million people globally have been infected with the human immunodeficiency virus (HIV), of which approximately 37 million are still alive and living with the infection [1,2]. It is currently estimated that ~26 million of these patients reside in Africa; 3.3 million in the Americas; 3.5 million in Southeast Asia; 2.4 million in Europe; 360,000 in the eastern Mediterranean; and 1.5 million in the western Pacific [2]. Data from 2016 indicates that there were approximately two million new cases of HIV infections, and as many as one million deaths due to the disease [2]. Importantly, these annual numbers are much reduced, as the numbers of newly infected patients has declined by 35% since 2000, and the mortality rate has also declined by almost 50%. The decline in HIV infections is thought to be due to increased use of condoms, a reduction in the prevalence of sexually transmitted infection, and the increased use of effective therapies, such as the three-drug therapy anti-retroviral therapy (ART). The number of HIV patients now receiving antiretroviral therapy has increased from ~685,000 in 2000 to 20.9 million in 2017 [2].
While HIV is a significant cause of morbidity and mortality worldwide, the sub-Sahara region of Africa is burdened with the largest number of HIV cases [2]. Of the 37 million cases of HIV, the sub-Saharan Africa is home to ~70%, although it has only 21% of the world’s population. In fact, African men and women worldwide are more affected by this disease than any other race [2,3]. Only ten countries in southern and eastern Africa, including South Africa (25%), Nigeria (13%), Mozambique (6%), Uganda (6%), Tanzania (6%), Zambia (4%), Zimbabwe (6%), Kenya (6%), Malawi (4%) and Ethiopia (3%), account for approximately 80% of HIV patients [2,3]; In most countries, the prevalence of HIV is the highest in specific groups including men who have sex with men, intravenous drug users, people in prisons and other confined settings, sex workers and transgender individuals. However, unlike other countries, the primary HIV transmission mode in sub-Saharan Africa is through heterosexual sex, with a concomitant epidemic in children through vertical transmission [3]. As a consequence, African women are disproportionately affected and make up ~58% of the total number of people living with HIV, have the highest number of children living with HIV and the highest number of AIDS related deaths [2].
New data from coding complete genome analyses of US serum samples from 1978 to 1979 revealed that the US HIV-1 epidemic that occurred in the 1970s was extensively genetically diverse [4]. Bayesian phylogentic analyses of HIV-1 genomes suggest that the US epidemic emerged from a preexisting Caribbean epidemic with the place of the ancestral US virus being New York City [4]. The analysis of gag, pol and env RNA sequences placed the US sequences in a monophyletic clade nested within Caribbean subtype B sequences from Haiti, and other Caribbean countries, as well as Haitian immigrants in the US [4]. The data further suggested that the US clade emerged from the early growth phase of the Caribbean epidemic (1969–1973), which began after the introduction of the subtype B lineage from Africa about 1967 [4]. The Centers for Disease Control eventually made the connections between homosexual men with AIDS and Kaposi’s syndrome and sexual transmission of an infectious agent [5,6].

1.1. Pathophysiology

The HIV virus is a retrovirus that is able to integrate a DNA copy of the viral genome into the DNA of the host cells. The virus enters the cell through receptors that are expressed on the surface of T lymphocytes (activated T lymphocytes are preferred targets), monocytes, macrophages and dendritic cells [1,7]. To gain entry to the host cell, HIV-1 binds to the chemokine receptor 5 or the CXC chemokine receptor 4 through interactions with the envelope proteins. After fusion and uncoating, single stranded RNA is reverse transcribed into HIV DNA, and then integrated into the host DNA. HIV DNA is transcribed to viral mRNA and exported to the cytoplasm where it is translated to viral Gag, Gag-Pol, and Nef polyproteins, which are then cleaved later during virion assembly and maturation at the cell surface or after relase of the new viral particles. Current therapies inhibit many of the steps in this process, such as entry inhibitors, reverse transcriptase inhibitors, integrase strand transfer inhibitors and protease inhibitors [1,7].

1.2. Diagnosis

Detection of the HIV virus in the blood is usually measured as viral RNA load and infection is associated with an acute symptomatic period that includes fever, general malaise, lymphadenopathy, rash, myalgias, however serious consequences such as meningitis have also been reported [7,8]. During the period of acute infection, the plasma levels of HIV RNA are at their highest and the severity of symptoms is associated with the level of viral load. It has been suggested that viral characteristics and viral load determine both the replication and pathogenesis. Thus, the clinical outcomes and disease progression are dependent not only on the host, but also on the viral genotype [7]. HIV is difficult to completely eradicate as it establishes a quiescent or latent infection within the memory CD4+ T cells, which have a stem-cell-like capacity for self-renewal. Once the HIV DNA is integrated into the host chromatin, the virus can repeatedly initiate replication as long as that cell exists. While ART can prevent new cells from becoming infected, it cannot eliminate infection once the DNA has successfully integrated into the target cell. The lymph nodes harbor the virus because of limited antiretroviral drug penetration, and limited host clearance mechanisms, and serves as a source of virus recrudescence in individuals who stop or interrupt their therapy. It has been suggested that ART therapy may be needed for several decades before the viral reservoir might decay to negligible levels.

1.3. Current Treatments for HIV/AIDS

Although HIV was recognized early in the 1980s, there is still no cure or an effective vaccine for HIV infection, but there have been some significant advances in treatment, control, and prevention [9]. The introduction of anti-retroviral agents and highly active antiretroviral therapy (HAART) in 1996 significantly reduced the morbidity and mortality of HIV/AIDS. Antiretroviral therapy is currently recommended for all adults with HIV. Recommendations for initial regimens include two nucleoside reverse transcriptase inhibitors (NRTIs; abacavir with lamivudine or tenofovir disoproxil fumarate with emtricitabine) and an integrase strand transfer inhibitor, such as dolutegravir, elvitegravir, or raltegravir; a nonnucleoside reverse transcriptase inhibitor (efavirenz or rilpivirine) or a boosted protease inhibitor (darunavir or atazanavir) [10]. Alternative regimens are also available. Protease inhibitor monotherapy is generally not recommended, but NRTI-sparing approaches may be considered. Suspected treatment failure warrants rapid confirmation, performance of resistance testing while the patient is receiving the failing regimen, and evaluation of reasons for failure before consideration of switching therapy. Alterations in therapeutic regimens due to adverse effects, convenience, or to reduce costs should be carefully considered so as not to jeopardize antiretroviral potency. Research continues into HIV vaccines and antimicrobial agents, however other major advances in HIV prevention has been voluntary male medical circumcision [11,12], as well as antiretrovirals for the prevention of mother to child transmission [13,14,15,16].
The reduction in the morbidity and mortality of the disease has changed it from a fatal disease to a chronic, manageable condition [2,3,11,12]. Interestingly, the increased survival rate has resulted in an aging HIV/AIDS population, which has presented a whole new set of issues including a higher prevalence of chronic diseases in this population, such as cardiovascular and pulmonary diseases, malignancies and even a unique set of comorbidities, which are now designated as HIV-associated non-AIDS (HANA) conditions.
Antiretroviral agents remain the cornerstone of HIV treatment and prevention [17]. It is currently recommended that all HIV-infected patients with detectable virus, regardless of their CD4 cell count, should be treated with anti-retroviral therapy (ART) soon after diagnosis to prevent disease progression, improve clinical outcomes including reducing AIDS-associated events, non-AIDS-related events, and all-cause mortality, as well as to decrease transmission [17]. These recommendations are supported by large randomized controlled clinical trials it is recommended that all HIV-infected individuals with detectable plasma virus receive treatment with recommended initial regimens consisting of an integrase strand transfer inhibitors (InSTI) plus two nucleoside reverse transcriptase inhibitors (NRTIs). When used effectively, the anti-retroviral agents suppress HIV and prevent new HIV infections. It has been suggested that with these treatment regimens, that survival rates among HIV-infected adults can approach those of uninfected adults [17].

1.4. New Drug Therapies for HIV

A recent review of HIV therapies with new mechanisms of action in phase 2 clinical trials has reported on drugs with new mechanisms of action, including histone deacetylase (HDAC) inhibitors, gene therapies, broadly neutralizing anti-HIV antibodies, immune modulation, and drugs with new mechanisms to block HIV entry [18]. The new therapies are being developed for both as add-on therapy to existing combination antiretroviral therapy and as agents to be used during treatment interruption. The current drugs in development have had varying degrees of success in the early trials. Each of these new drugs may potentially fill a void in current antiretroviral therapy (ART) therapies, which will ultimately lead to improved outcomes in HIV-infected individuals.

1.5. Natural Products and Herbal Medicines for HIV

Although effective, ART is not without serious adverse events, which is especially evident in persons undergoing long-term treatment. In addition, the current therapies are limited by emergence of multidrug resistance [19], and new drugs and novel targets are needed to overcome the issues of HIV reservoirs in the body in order to have the complete eradication of HIV and AIDS. Latently infected cells remain a primary barrier to eradication of HIV-1. Over the last ten years the molecular mechanism by which HIV latency persists has led to the discovery of a number of drugs that are able to selectively reactivate latent proviruses without inducing polyclonal T cell activation [20]. Interestingly, histone deacetylase (HDAC) inhibitors, including vorinostat are able to induce HIV transcription from latently infected cells. Vorinostat has been shown to increase the susceptibility of CD4+ T cells to infection by HIV in a dose- and time-dependent manner, does not enhance viral fusion with cells, but increases reverse transcription, nuclear import, and integration, and enhances viral production in a spreading-infection assay. HDAC inhibitors, particularly vorinostat, are currently being investigated clinically as part of a “shock-and-kill” strategy to purge latent reservoirs of HIV [20].
Since new drugs will be needed for the management of HIV, the World Health Organization (WHO) has suggested the that ethnomedicines and other natural products should be systematically tested against HIV as they may yield effective and more affordable therapeutic agents (World Health Organization [21,22]. Interestingly, a significant amount of work in this area was performed in the 1990s, particularly investigations of natural products with activities against HIV-1 reverse transcriptase, HIV-1 and -2 proteases and integrases (extensively reviewed by Kurapati et al. [23]). The natural products calanolides (coumarins), ursolic and betulinic acids (triterpenes), baicalin (flavonoid), polycitone A (alkaloid), lithospermic acid (phenolic compound) have been proposed as promising candidates for anti-HIV agents [23]. However, most of these studies are in vitro, and too few investigations have been performed in vivo or in human studies. In terms of clinical data, a meta-analysis assessed 12 clinical trials involving 881 patients with AIDS to determine the efficacy of traditional Chinese medicines (TCM). The results showed that TCM interventions were associated with significantly reduced plasma viral load compared with placebo. This study further suggested that TCM interventions were significantly more effective than placebo for reducing plasma viral load and increasing CD4+ T lymphocyte count in patients with AIDS. However, when compared with conventional Western medicine, TCM interventions were significantly less effective in reducing viral load, but were associated with improved symptoms in a larger number of patients, with fewer adverse events [24]. Thus, there is significant potential for natural products and traditional medicines for the management of HIV infections and symptoms but in vivo and human studies are lacking.

2. Traditional Knowledge on Plants Used against HIV

Medicinal plants can be a promising alternative for various diseases and conditions [25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46]. The 717 species belonging to 151 families are reported in this article. The taxonomy of the plant species plays a significant role in the proper identification. The website, and were considered as the authentic sources of information in resolving the ambiguity of the names related to plants. A list of plant species with inhibition studies is summarized in Table 1. A majority of the inhibition studies are carried out on the crude extracts of the plant material by various solvents, while limited literature is available on the isolated natural products for different inhibition studies. Table 2 lists all the names which are reported in this article and their synonyms are reported in the literature.
The Food and Drug Administration (FDA or USFDA) classifies antiretroviral drugs for HIV infection into the following categories:
Multi-class Combination Products,
Nucleoside Reverse Transcriptase Inhibitors (NRTIs),
Nonnucleoside Reverse Transcriptase Inhibitors (NNRTIs),
Protease Inhibitors (PIs),
Fusion Inhibitors,
Entry Inhibitors—CCR5 co-receptor antagonist and
HIV integrase strand transfer inhibitors.
For better understanding, 1st, 5th and 6th types are not explicitely mentioned in this article. 2nd and 3rd classes are categorized into HIV-reverse transcription (HIV-RT), 4th type as HIV-protease (HIV-PR) and 7th type as HIV-integrase (HIV-IN). Painter et al. [47] Konvalinka et al. [48] and Blanco et al. [49] have reviewed the roles of HIV-RT, HIV-PR and HIV-IN, respectively. Also, Matthée et al. [50] have discussed the natural inhibitors of HIV-RT.
Of these 717 species, HIV-RT, HIV-PR, and HIV-IN are reported for 206, 254 and 43 species, respectively. Apart from these three inhibitor studies, researchers have also evaluated 390 species for other enzyme inhibition studies which are grouped under anti-HIV activities.

3. Plant Extracts and Some Secondary Metabolites with Anti-HIV Activity

Most of the world’s cultures have centuries of tradition in the use of plant materials in order to control diseases. With recent advancement in pharmacognosy and technology along with the current trends of a more health-conscious general public, natural products are becoming a popular resource for researchers to discover novel and more effective antiviral drugs, considering the relatively reduced adverse effects and cost effectiveness of natural products in commercial scale [361]. Plants, as evolutionary responses to infections by fungi, nematodes, and other organisms, to avoid herbivory, and to comptete for light and space, produce numerous secondary metabolites such as phenolics, glycosides, alkaloids, coumarins, terpenoids, essential oils and peptides. These metabolites have been identified with different biological activities. Some of them play an important role in immune system enhancement, exhibiting antiviral potential [362], including viral infections associated with Human Immunodeficiency Virus type 1 (HIV-1) and 2 (HIV-2) as genetic variabilities. An increasing number of patients with HIV infection cannot use the currently approved anti-HIV drugs including the reverse transcriptase and protease inhibitors, due to the adverse reactions, particularly liver diseases, that have been reported for antiretroviral drugs. The best antiretroviral therapy (HAART) has also fallen short of completely suppressing HIV replication [363]. Therefore, the discovery and development of new anti-HIV agents or new mechanisms of activity from medicinal plants are required to reduce toxicity in drug application and to minimize side effects when compared with current synthetic drugs [364]. The potential utilization of plant extracts and their secondary metabolites to combat the development of anti-HIV agents is considered to be one of the most important approaches toward effective therapy for AIDS [365]. Bioassay-guided fractionation and isolation of secondary metabolites from medicinal plants according to their preliminary high throughput screenings provide systematic source to the novel compounds. The in vitro and in vivo evaluation affirmed the therapeutic potentials in these chemical compounds. Thus, traditional medicines can serve as sources of potential new drug candidates and initial research has focused on the isolation of bioactive lead compounds [366].
Many compounds with anti-HIV-1 effects have been screened and isolated from natural sources and discovered to inhibit HIV at nearly all stages of the viral life cycle. They include alkaloids, sulfated polysaccharides, polyphenolics, flavonoids, coumarins, phenolics, tannins, triterpenes, lectins, phloroglucinols, lactones, iridoids, depsidones, O-caffeoyl derivatives, lignans, ribosome inactivating proteins, saponins, xanthones, naphthodianthrones, photosensitisers, phosholipids, quinones and peptides [367]. Natural products provide a large reservoir for screening of anti-HIV agents with novel structures and anti-viral mechanisms because of their structural diversity. A variety of natural products have been found to inhibit unique enzymes and proteins crucial to the life cycle of HIV including efficient intervention with the reverse transcription process, virus entry, and integrase and protease inhibition [368]. However the mechanism of anti-HIV activities of many natural products is still unknown. Some of the plant extracts have significantly inhibited the enzyme activity of HIV-1 replication and protected cells infected with HIV-1. These extracts with anti-HIV activity are also active against other retroviruses such as Herpes Simplex Virus (HSV). Most studies have used in vitro test systems for anti-HIV-1 enzyme assays such as HIV-1 reverse transcriptase colorimetric assay, HIV-1 integrase assay, and HIV-1 protease fluorogenic assay, but a few in vivo studies have been carried out using compounds isolated from natural sources [369]. The anti-HIV activities of extracts from some medicinal plants have been reviewed.

3.1. Artemisia annua L. (Asteraceae)

The anti-HIV activity of the tea infusion prepared from the Chinese medicinal plant identified as Artemisia annua L. by using the validated cellular systems were examined. The tea infusion of Artemisia annua was found to be highly active with IC50 values as low as 2.0 μg/mL. In addition, artemisinin was found as inactive at 25 μg/mL and the related species Artemisia afra (not containing artemisinin) has also shown a similar level of activity [370].

3.2. Astragalus membranaceus Bunge (Fabaceae)

Astragalus membranaceus is well-known Chinese traditional medicine as an immunostimulant. Studies in immune-suppressed and immune-competent human patients have demonstrated restoration or augmentation of local graft versus host rejection using Astragalus extracts. These extracts have improved symptomology in HIV-infected patients. These results are suggested that the extracts of Astragalus to be safe, however mutagenecity has yet to be examined [115].

3.3. Calendula officinalis L. (Asteraceae)

In India, the flowers of Calendula officinalis are used in ointments for treating wounds, herpes, ulcers, frostbite, skin damage, scars and blood purification. The infusions prepared from the leaves have been used for treating varicose veins in traditional use. Dichloromethane-methanol (1:1) extract of Calendula officinalis flowers exhibited potent anti-HIV activity in in vitro (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide)(MTT)/tetrazolium-based assay. This activity was attributed to inhibition of HIV1-RT at a concentration of 1000 μg/mL as well as suppression of the HIV mediated fusion at 500 μg/mL [371]. The organic and aqueous extracts of dried flowers from Calendula officinalis were examined for their ability to inhibit the human immunodeficiency virus type 1 (HIV-l) replication. Both extracts were relatively nontoxic to human lymphocytic Molt-4 cells, but only the organic one exhibited potent anti-HIV activity in an in vitro MTT ketrazolium-based assay. In addition, in the presence of the organic extract (500 pg/mL), the uninfected Molt-4 cells were completely protected for up to 24 h from fusion and subsequent death, caused by cocultivation with persistently infected U-937/HIV-1 cells. It was also found that the organic extract from Calendula officinalis flowers caused a significant dose- and time-dependent reduction of HIV-l reverse transcription (RT) activity. An 85% RT inhibition was achieved after a 30 min treatment of partially purified enzyme in a cell-free system. These results suggested that organic extract of flowers from Calendula oflicinalis are possessed anti-HIV properties of therapeutic interest [163].

3.4. Calophyllum lanigerum Miq. var. austrocoriaceum (T.C. Whitmore) P.F. Stevens (Clusiaceae)

Calophyllum lanigerum var. austrocoriaceum has been found to inhibit the cytopathic effects of in vitro HIV infection. Bioassay-guided fractionation of the extract and the chemical along with biological characterization of active constituents as coumarine derivatives have been reported [372]. The latex of Calophyllum teysmanni L. has shown to be active against HIV-1 reverse transcriptase mediated by soulattrolide, a coumarin isolated from the latex of Calophyllum teysmanni [373].

3.5. Cassia abbreviata Oliv. Oliv., C. sieberiana D.C. (Fabaceae)

Cassia abbreviata growing in Botswana used by traditional healers to manage HIV/AIDS, was tested for their inhibitory effects on HIV replication against a clone of HIV-1c (MJ4) measuring cytopathic effect protection and levels of viral p24 antigen in infected PBMCs. Cassia sieberiana and Cassia abbreviata extracts have shown significant inhibition of HIV-1c (MJ4) replication. Anti-HIV activity of Cassia sieberiana root and bark extracts, and Cassia abbreviata root extracts were occurred in a concentration-dependent manner with an effective concentration (EC50) of 65.1 μg/mL, 85.3 μg/mL and 102.8 μg/mL, respectively [374].

3.6. Chelidonium majus L. (Papaveraceae)

The anti-retroviral activity of the freshly prepared crude extract of Chelidonium majus L. was examined and a low-sulfated poly-glycosaminoglycan moiety with molecular weight of ~3800 Da. was isolated from the extract [173]. The substance prevented infection of human CD4+ T-cell lines AA2 and H9 with HIV-1 at concentration of 25 μg/mL as well as the cell-to-cell virus spread in H9 cells continuously infected with HIV-1 were determined by the measurement of reverse transcriptase activity and p24 content in cell cultures. In addition, in a murine AIDS model that the treatment with purified substance significantly prevented splenomegaly and the enlargement of cervical lymph nodes in C57Bl/6 mice chronically infected with the pool of murine leukemia retroviruses were also reported [173].

3.7. Combretum molle (R. Br. ex. G. Don.) Engl & Diels (Combretaceae)

In vitro anti-HIV activity of various extracts prepared from the stem bark of Combretum molle widely used in Ethiopian traditional medicine for the treatment of liver diseases, malaria and tuberculosis has been assessed against human imnmuunodeficiencvy virus type 1 (HIV-1) and type 2 (HIV-2). The extracts were prepared by percolation with petroleum ether, chloroform, acetone and the methanol extract was obtained by successive hot extraction using Soxhlet apparatus. Selective inhibition of viral growth was assessed by the simultaneous determination of the in vitro cytotoxicity of each of the extracts against MT-4 cells [375]. The results obtained in this study indicate that the acetone fraction possessed the highest selective inhibition of HIV-1 replication. Phytochemical investigation of the acetone fraction has resulted in the isolation of two tannins and two oleanane-type pentacyclic triterpene glycosides. One of the tannins was identified as punicalagin (an ellagitannin), while the structure of the other (CM-A) has not yet been fully elucidated. On the other hand, both punicalagin and CM-A had displayed selective inhibition of HIV-1 replication with selectivity indices (ratio of 50% cytotoxic concentration to 50% effective antiviral concentration) of 16 and 25, respectively and afforded cell protection of viral induced cytopathic effect of 100% when compared with control samples.

3.8. Diospyros lotus L. (Ebenaceae)

Methanol extract of the fruits of Diospyros lotus were tested for anti-HIV-1 activity. Gallic acid was found the most active compound against HIV-1 with Therapeutic Index (TI) value of >32.84 and the other compounds were less potent active. Diospyros lotus fruits could provide a chemical reservoir of anti-HIV agents. All identified compounds were tested for their cytotoxicity and anti-HIV-1 activities. For positive control, the marketed drug azido-thymidine (AZT) was also tested as a reference according to the same methods. The activity data were described as 50% cytotoxicity concentration (CC50), 50% effective concentration (EC50%), and therapeutic index (TI), the ratio of CC50/EC50). Seven isolated phenolic compounds (CC50 > 200 μg/mL) have shown less toxicity to C8166 cells compared to ellagic acid (CC50 = 35.84 μg/mL). Gallic acid inhibited HIV-1 replication with EC50 value of 6.09 μg/mL and TI value of > 32.84, higher than any other compounds. The anti-HIV-1 activity assay was performed by syncytia formation. The seven phenolic compounds showed a good anti-HIV-1 activity and compound gallic acid, a simple tannin compound was the most active and its TI value was the highest [376].

3.9. Dittrichia viscosa (L.) Greuter (Asteraceae)

The aqueous extract of Dittrichia viscosa was tested for its ability to inhibit the HIV replication. HIV infection of MT-2 cells was used for evaluating antiviral test as rapid and sensitive assay system for the detection of potential antiviral drugs effective against AIDS. The aqueous extract of Dittrichia viscosa has showed inhibitory effects against HIV-1 induced infections in MT-2 cells at concentrations ranging from 25 to 400 μg/mL of therapeutic interest [377].

3.10. Galanthus nivalis L. (Amaryllidaceae)

Agglutinin isolated from Galanthus nivalis (GNA) is a member of a superfamily of strictly mannose-binding specific lectins widespread among monocotyledonous plants, and is well-known to possess a broad range of biological functions such as anti-tumor, anti-viral and anti-fungal activities [378]. The molecular mechanisms of GNA exerting anti-viral activities by blocking the entry of the virus into its target cells, preventing transmission of the virus as well as forcing virus to delete glycan in its envelope protein and triggering neutralizing antibody were discussed. These findings may provide a new perspective of GNA-related lectins as potential drugs for virus therapeutics in the future.

3.11. Garcinia edulis Exell (Clusiaceae)

The isoprenylated xanthone derivative determined as 1,4,6-trihydroxy-3-methoxy-2-(3-methyl-2-butenyl)-5-(1,1-dimethyl-prop-2-enyl)xanthone was isolated from the ethanolic extract of the root bark of Garcinia edulis. It exhibited anti-HIV-1 protease activity with IC50 value of 11.3 μg/mL in vitro while acetyl pepstatin was used as a positive control possessing an anti-HIV-1 PR activity of IC50 value of 2.2 μg/mL [379]. However, this compound has also showed potent lethality with LC50 value of 2.36 μg/mL against brine shrimp larvae in vitro.

3.12. Helichrysum populifolium (Asteraceae)

The methanol:water (1:1) extract of the aerial parts of Helichrysum populifolium growing in South Africa was tested for the anti-HIV test by using HeLa-SXR5 expressed the CD4 receptor and the CXCR4/CCR5 chemokine receptors and the extract was found to be active (IC50 value of 12 μg/mL) [123]. The anti-HIV compounds identified from H. populifolium were three dicaffeoylquinic acid derivatives, i.e., 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid and 4,5-dicaffeoylquinic acid as well as two tricaffeoylquinic acid derivatives, i.e., 1,3,5-tricaffeoylquinic acid and either 5-malonyl-1,3,4-tricaffeoylquinic or 3-malonyl-1,4,5-tricaffeoylquinic acid.

3.13. Hoodia gordonii (Masson) Sweet ex Decne (Apocynaceae)

The in vitro anti-HIV potential of the ethanol and ethylacetate extracts of Hoodia gordonii was examined. Both extracts had shown good inhibition in a dose-dependent manner against HIV-1 reverse transcriptase (RT) with IC50 values of 73.55 ± 0.04 and 69.81 ± 9.45 μg/mL, respectively. Doxorubicin, a known RT inhibitor was used as a positive control and inhibited HIV RT by 68% at 25 μg/mL (IC50 < 25 μg/mL). Both extracts also demonstrated inhibitory activity against HIV protease (PR) with IC50 values of 97.29 ± 0.01 and 63.76 ± 9.01 μg/mL for ethanol and ethyl acetate extracts, respectively. Acetyl pepstatin was used as a known PR inhibitor and inhibited HIV PR by as much as 82% at 50 μg/mL (IC50 < 50 μg/mL). In addition, both ethanol and ethyl acetate extracts had weak inhibition against HIV-1 integrase (IN) with <50% inhibition at the highest concentration tested of 400 μg/mL. Sodium azide was used as a positive control compound for IN inhibition [101]. In the same study, phytochemical screening of Hoodia gordonii was revealed the presence of phenolics, alkaloids, terpenes, steroids, cardiac glycosides and tannins in the ethanolic extract, while the ethyl acetate extract only showed the presence of phenolics, cardiac glycosides and steroids.

3.14. Hypericum perforatum L. (Hypericaceae)

Hypericum perforatum, known as St. John’s Wort, has been used for medicinal purposes, particularly wound healing, since the Middle Ages. It was also used in treatment of AIDS [380]. In a clinical trial, hypericin and pseudohypericin isolated from this plant have shown antiretroviral activity in HIV-infected patients [381].

3.15. Hyssopus officinalis L. (Lamiaceae)

Hyssopus officinalis has been used as herbal medicine and the extracts of this species have demonstrated strong activity against HIV-1 due to the content of polysaccharide-type compounds [252]. The 50% hydroalcoholic extract of Hysoppus officinalis was examined for its ability to inhibit HIV replication. Among the variety of assays for evaluating antiviral tests, HIV infection of MT-2 cells was used as a rapid and sensitive assay system for the detection of potential antiviral drugs effective against AIDS. This extract had shown inhibitory effects against HIV-1 induced infections in MT-2 cells at concentrations ranging from 50 to 100 μg/mL.

3.16. Justicia gendarussa Burm. f. (syn: Gendarussa vulgaris Nees) (Acanthaceae)

Justicia gendarussa was identified as a potent anti-HIV-1 active lead from the evaluation of over 4500 plant species growing in Vietnam and Laos by showing complete inhibition against HIV replication at a concentration 20 μg/mL. The methanol extract of the stems and barks of the plant have led to the isolation of justiprocumins A and B as new arylnaphthalide lignan glycosides by using bioassay-guided isolation. Justiprocumin B has shown potent activity against a broad spectrum of HIV strains with IC50 values in the range of 15–21 nM (AZT, IC50 77–95 nM, as positive control). Justiprocumin B also displayed potent inhibitory activity against the NRTI (nucleoside reverse transcriptase inhibitor)-resistant isolate (HIV-11617-1) of the analogue (AZT) as well as the NNRTI (non-nucleoside reverse transcriptase inhibitor)-resistant isolate (HIV-1N119) of the analogue (nevaripine) [382]. The dichloromethane plant extract has shown complete inhibition of HIV replication at a concentration of 20 μg/mL. This bioactivity was confirmed by the evaluation of the MeOH extract prepared from a re-collected sample of the same plant, with HIV-1 replication inhibition at an IC50 value of 40 ng/mL. Bioassay-guided separation of the extracts of the stems and roots of this plant led to the isolation of an anti-HIV arylnaphthalene lignan (ANL) glycoside, patentiflorin A. Evaluation of the compound against both the M- and T-tropic HIV-1 isolates showed it to possess a significantly higher inhibition effect than the clinically used anti-HIV drugs known as the nucleotide analogue (AZT) and non-nucleotide analogue (nevaripine). Thus, patentiflorin A has the potential to be developed as a novel anti-HIV drug [382]. Patentiflorin A showed anti-HIV-1 activity with an IC50 value of 26.9 nM in the defective HIV-based pseudotyped assay. The results clearly showed that patentiflorin A has broad-spectrum activity against both M-tropic and T-tropic HIV-1 isolates with IC50 values lower than that of AZT, the first anti-HIV drug developed and still used in the treatment of HIV/AIDS. Like AZT, it inhibited the particle production of all four HIV-1 isolates effectively in a dose-dependent manner. Patentiflorin A gave an IC50 value of 24–37 nM, compared to 77–95 nM for AZT.

3.17. Momordica charantia L. (Cucurbitacae)

Momordica charantia, known as bitter melon and widely exploited in folkloric medicine, has been shown to inhibit HIV-1 reverse transcriptase due to its protein coded as MRK29 [383]. The efficacies and molecular mechanisms of bitter gourd-induced anti-diabetic, anti-HIV, and antitumor activities contributed by over twenty active components were determined. Therefore, bitter gourd is a cornucopia of health and it has been deserved in-depth investigations for clinical application in the future.
Anti-HIV properties of the fruit pulp extract of Momordica balsamina, commonly used in the northern part of Nigeria for its anti-viral efficacy in poultry, was studied in vitro and was found as a potent inhibitor of HIV-1 replication; further research on fruit pulp extract should be pursued for its potential in the prophylaxis and therapy of retroviral infections in humans [384].

3.18. Pachyma hoelen Rumph (Polyporaceae)

The hexane extract of Pachyma hoelen Rumph used in folk medicine in Korea was shown to have the best anti-HIV-1 activity compared to the other extracts tested. This extract had 37.3 μg/mL (EC50) on the p24 antigen assay as the highest value, 36.8% on the RT activity test (at 200 μg/mL). In addition, this extract had shown protective effects on infected MT-4 cells; the protection was the highest observed at 58.2%. The 50% cytotoxic concentration (CC50) of the hexane extract of this plant species was found 100.6 μg/mL [196].

3.19. Phyllanthus pulcher (Euphorbiaceae)

The methanol extract of Phyllanthus species growing in Malaysia was evaluated for anti-HIV-1 reverse transcriptase (RT) activity using the HIV-RT assay by inhibition of the HIV-1 RT enzyme based on their IC50 values. Azido-deoxythymidine-triphosphate (AZT151TP) was used as a positive control. The inhibition of HIV-RT for P. pulcher was IC50 of 5.9 μg/mL [385].

3.20. Rhus chinensis Mill (Anacardiaceae)

The anti-HIV-1 activities of the petroleum ether, ethyl acetate, butanol and aqueous extracts of Rhus chinensis growing in China and Japan where it is known as Chinese Sumac were examined. The petroleum ether extract had significantly suppressed HIV-1 activity in vitro and was found to inhibit syncytium formation and HIV-1 p24 antigen at non-cytotoxic concentrations, the EC50 were 0.71 and 0.93 μg/mL respectively. The petroleum ether extract had no activity on inhibiting HIV-1 recombinant RT or HIV-1 entry into host cells cycle. R. chinensis would be a useful medicinal plant for the chemotherapy of HIV-1 infection. The petroleum ether extract of this plant likely inhibit the post entry steps or target the new sites of HIV-1 replication [386].

3.21. Sceletium tortuosum (L.) N.E. Brown (Aizoaceae)

The ethanolic and ethyl acetate extracts prepared from the whole part of Sceletium tortuosum, distributed throughout southern Africa, were investigated for their inhibitory activity against HIV-1 enzymes including protease (PR), reverse transcriptase (RT) and integrase (IN) [172]. The HIV-1 RT inhibition testing had IC50 values of <50 and 121.7 ± 2.5 μg/mL for ethanol and ethyl acetate extracts, respectively. In addition, both extracts had also inhibited HIV-1 PR with IC50 values < 100 μg/mL. Sceletium tortuosum might be a potential source of new lead compounds in the development of new anti-HIV compounds [67].

3.22. Smilax corbularia Kunth (Smilaceae)

The ethanolic and aqueous extracts were tested for their inhibitory effects against HIV-1 protease (HIV-PR) and HIV-1 integrase (HIV-1 IN). The results indicated that the ethanolic extract of S. corbularia exhibited anti-HIV-1 IN activity with an IC50 value of 1.9 μg/mL, approximately two-fold lower than that of suramin (IC50 = 3.4 μg/mL) as the positive control. The value of IC50 = 5.4 μg/mL was determined for the water extract of Smilax corbularia [120].

3.23. Terminalia paniculata (Combretaceae)

The in vitro anti-HIV1 activity of acetone and methanol extracts prepared from the fruits of Terminalia paniculata was examined. The EC50 values of the acetone and methanol extracts of T. paniculata were ≤10.3 μg/mL. The enzymatic assays were performed to determine the mechanism of action and indicated that the anti-HIV1 activity might be due to inhibition of reverse transcriptase (≥77.7% inhibition) and protease (≥69.9% inhibition) enzymes [387].

3.24. Tuberaria lignosa (Sweet) Sampaio (Asteraceae)

Tuberaria lignosa was widely used in the folk medicine to treat diseases of viral origin of the Iberian Peninsula and the ethanolic and aqueous extracts were evaluated for its anti-HIV activity by inhibiting HIV replication. The toxicity of the extracts to MT-2 cells was also investigated. The ethanolic extract was especially toxic, which prevented the evaluation of their potential antiviral effects at higher concentrations. However, the aqueous extract of T. lignosa tested was relatively nontoxic to human lymphocytic MT-2 cells, but did show anti-HIV activity at concentrations ranging from 12.5 to 50 μg/mL [61].
In conclusion, terrestrial plants produce secondary metabolites for their chemical defense, which possess unique chemical structures and have played pivotal roles in human health. There is continuous need to introduce new drug candidates to treat diseases and the drug discovery process can be realized using both ancient and modern research methodologies in a complementary manner. Some medicinal plants are still unexplored; therefore there are numerous avenues of research for the determination of their biological activities. In this review, the anti-HIV activity of some plant extracts and their potential utilization for anti-HIV agents have been summarized. Among them Calendula officinalis, Justicia gendarussa and Sceletium tortuosum might be useful potential sources for new lead compounds in the development of new candidates with anti-HIV properties of therapeutic interest. These studies are considered to be one of the most important approaches toward effective therapy for AIDS.

4. Human Clinical Trials

There are few reports about using the herbal medicine in clinical studies and treatment for HIV/AIDS. This area is not well researched. But, in Africa, where HIV, AIDS and HIV related diseases are the most widespread problems, herbal medicines are used as primary treatment for them. Highly active antiretroviral therapy is also applied in China and implies three types of treatment systems. One of them is traditional Chinese medicine provided by trained Chinese herbalists. There are several randomized studies related to beneficial effects of traditional medical plants on patients with HIV or AIDS which were compared with control group (without treatment and placebo). The effects in promoting CD4+ cells were followed. Based on selected, different, studies approximately eleven different Chinese traditional medical plants such as Panax ginseng, Astragalus membranaceus, Lycium barbarum, Trichosanthis kirilowii, and Viola mandshurica were tested in about 1000 patients within different studies. Compared with placebo, treatment with traditional medical plants showed positive effect, increasing CD4 cells, but studies need to be improved [388].
Some Chinese herbal preparation which consists of 14 plants (Coptis chinensis, Jasminum officinale, Wolfiporia extensa, Sparganium stoloniferum, Polygonatum odoratum, and Scrophularia buergeriana was investigated during 24 weeks and observed to have increased plasma CD4 count and also showed inhibition of HIV growth [389]. According to one US study, 26% of HIV-infected people use herbal medicine as part of their treatment. A European study showed that herbal medicines are used by approximately 25% of HIV infected people [390].
The study, which included 366 HIV-positive African-American women who were enrolled in herbal medicine therapy, showed that in these patients experienced 1.69 time stronger anti-retroviral effect compered to women not using the therapy based on medical plants [391]. Thirty-three HIV-positive volunteers (7 men and 26 women between 22 and 43 years of age) who used Calendula officinalis or Agastache rugosa were evaluated in South Africa. There was a significant decrease in viral loads and in CD4 T-cell counts [392].
The Ministry of Health of South Africa is actively promoting the use of traditional medicines with antiretroviral treatments and recommended two plants remedies which have been used for HIV/AIDS treatment: Hypoxis hemerocallidea and Sutherlandia frutescens [393]. Also, in Romania it was noticed that children with AIDS who were treated with natural herbal remedies showed a decrease in mortality rate [393]. Furthermore, in blood samples of 30 adults who used an extract of Alternanthera pungens, a significant increase of CD4 and CD8 lymphocytes was observed [394].
The study which was conducted to demonstrate using medical plants in different districts in Uganda, where this disease first described and one million habitants are infected, 25 traditional medicine practitioners were interviewed. The practitioners received on average 29 (range, 2–250) patients each year. They mentioned 145 belong to families Asteraceae, Fabaceae and Euphorbiaceae. It was also noted that the most used plants were Aloe spp., Erythrina abyssinica, Sarcocephalus latifolius, Psorospermum febrifugum, Mangifera indica, and Warburgia salutaris. In patients involved in herbal medicine treatment progressive loss of CD4 positive T-cell lymphocytes in the blood was observed [311].

5. Conclusions

Focusing on phytochemicals that have reached clinical trials, if there are any; highlighting medicinal plants where high level of scientific evidence has been reached; future perspectives.
Although there have been major accomplishments in HIV chemotherapy, there remains a need for new anti-HIV drug discovery, and medicinal plants can play an important role in this endeavor. Several plant species have shown remarkable anti-HIV activity, especially Artemisia annua, Garcinia edulis, Justicia gendarussa, Phyllanthus pulcher, Rhus chinensis, Smilax corbularia, Terminalia paniculata, and Tuberaria lignosa. These plant species are worthy of further study for the development of new anti-HIV chemotherapeutic options. In particular, in vivo testing and, ultimately, human clinical trials need to be carried out on key lead plants and phytochemical isolates. In addition, continuous evaluation of medicinal plants for anti-HIV activity should be pursued.

Author Contributions

All authors contributed equally in the preparation of the manuscript.


The authors are grateful to Marzieh Sharifi-Rad, Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran, for critically reading the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.


  1. Deeks, S.G.; Overbaugh, J.; Phillips, A.; Buchbinder, S. HIV infection. Nat. Rev. Dis. Prim. 2015, 1, 15035. [Google Scholar] [CrossRef] [PubMed]
  2. World Health Organization (WHO). 2017. Available online: (accessed on 1 December 2017).
  3. Kharsany, A.B.; Karim, Q.A. HIV infection and AIDS in sub-saharan Africa: Current status, challenges and opportunities. Open AIDS J. 2016, 10, 34–48. [Google Scholar] [CrossRef] [PubMed]
  4. Worobey, M.; Watts, T.D.; McKay, R.A.; Suchard, M.A.; Granade, T.; Teuwen, D.E.; Koblin, B.A.; Heneine, W.; Lemey, P.; Jaffe, H.W. 1970s and ‘patient 0’ HIV-1 genomes illuminate early HIV/AIDS history in north america. Nature 2016, 539, 98–101. [Google Scholar] [CrossRef] [PubMed]
  5. Auerbach, D.M.; Darrow, W.W.; Jaffe, H.W.; Curran, J.W. Cluster of cases of the acquired immune deficiency syndrome: Patients linked by sexual contact. Am. J. Med. 1984, 76, 487–492. [Google Scholar] [CrossRef]
  6. Centers for Disease Control. A cluster of Kaposi’s sarcoma and Pneumocystis carinii pneumonia among homosexual male residents of Los Angeles and Orange Counties, California. MMWR Morb. Mortal. Wkly. Rep. 1982, 31, 305–307. [Google Scholar]
  7. Moir, S.; Chun, T.-W.; Fauci, A.S. Pathogenic mechanisms of HIV disease. Annu. Rev. Pathol. Mech. Dis. 2011, 6, 223–248. [Google Scholar] [CrossRef] [PubMed]
  8. Harden, V.A.; Fauci, A. AIDS at 30: A History; Potomac Books, Inc.: Lincoln, NE, USA, 2012. [Google Scholar]
  9. Piot, P.; Karim, S.S.A.; Hecht, R.; Legido-Quigley, H.; Buse, K.; Stover, J.; Resch, S.; Ryckman, T.; Møgedal, S.; Dybul, M. Defeating AIDS—Advancing global health. Lancet 2015, 386, 171–218. [Google Scholar] [CrossRef]
  10. Günthard, H.F.; Aberg, J.A.; Eron, J.J.; Hoy, J.F.; Telenti, A.; Benson, C.A.; Burger, D.M.; Cahn, P.; Gallant, J.E.; Glesby, M.J. Antiretroviral treatment of adult HIV infection: 2014 recommendations of the International Antiviral Society—USA panel. JAMA 2014, 312, 410–425. [Google Scholar] [CrossRef] [PubMed]
  11. Auvert, B.; Taljaard, D.; Lagarde, E.; Sobngwi-Tambekou, J.; Sitta, R.; Puren, A. Randomized, controlled intervention trial of male circumcision for reduction of HIV infection risk: The ANRS 1265 trial. PLoS Med. 2005, 2, e298. [Google Scholar] [CrossRef] [PubMed]
  12. Bailey, R.C.; Moses, S.; Parker, C.B.; Agot, K.; Maclean, I.; Krieger, J.N.; Williams, C.F.; Campbell, R.T.; Ndinya-Achola, J.O. Male circumcision for HIV prevention in young men in Kisumu, Kenya: A randomised controlled trial. Lancet 2007, 369, 643–656. [Google Scholar] [CrossRef]
  13. Anderson, S.-J.; Cherutich, P.; Kilonzo, N.; Cremin, I.; Fecht, D.; Kimanga, D.; Harper, M.; Masha, R.L.; Ngongo, P.B.; Maina, W. Maximising the effect of combination HIV prevention through prioritisation of the people and places in greatest need: A modelling study. Lancet 2014, 384, 249–256. [Google Scholar] [CrossRef]
  14. Cohen, M.S.; Chen, Y.Q.; McCauley, M.; Gamble, T.; Hosseinipour, M.C.; Kumarasamy, N.; Hakim, J.G.; Kumwenda, J.; Grinsztejn, B.; Pilotto, J.H. Prevention of HIV-1 infection with early antiretroviral therapy. N. Engl. J. Med. 2011, 365, 493–505. [Google Scholar] [CrossRef] [PubMed]
  15. Guay, L.A.; Musoke, P.; Fleming, T.; Bagenda, D.; Allen, M.; Nakabiito, C.; Sherman, J.; Bakaki, P.; Ducar, C.; Deseyve, M. Intrapartum and neonatal single-dose nevirapine compared with zidovudine for prevention of mother-to-child transmission of HIV-1 in Kampala, Uganda: HIVNET 012 randomised trial. Lancet 1999, 354, 795–802. [Google Scholar] [CrossRef]
  16. Maartens, G.; Celum, C.; Lewin, S.R. HIV infection: Epidemiology, pathogenesis, treatment, and prevention. Lancet 2014, 384, 258–271. [Google Scholar] [CrossRef]
  17. Günthard, H.F.; Saag, M.S.; Benson, C.A.; Del Rio, C.; Eron, J.J.; Gallant, J.E.; Hoy, J.F.; Mugavero, M.J.; Sax, P.E.; Thompson, M.A. Antiretroviral drugs for treatment and prevention of HIV infection in adults: 2016 recommendations of the International Antiviral Society—USA panel. JAMA 2016, 316, 191–210. [Google Scholar] [CrossRef] [PubMed]
  18. Gravatt, L.A.H.; Leibrand, C.R.; Patel, S.; McRae, M. New drugs in the pipeline for the treatment of HIV: A review. Curr. Infect. Dis. Rep. 2017, 19, 42. [Google Scholar] [CrossRef] [PubMed]
  19. Sharifi-Rad, J. Herbal antibiotics: Moving back into the mainstream as an alternative for “superbugs”. Cell. Mol. Biol. 2016, 62, 1–2. [Google Scholar] [PubMed]
  20. Lucera, M.B.; Tilton, C.A.; Mao, H.; Dobrowolski, C.; Tabler, C.O.; Haqqani, A.A.; Karn, J.; Tilton, J.C. The histone deacetylase inhibitor vorinostat (SAHA) increases the susceptibility of uninfected CD4+ T cells to HIV by increasing the kinetics and efficiency of postentry viral events. J. Virol. 2014, 88, 10803–10812. [Google Scholar] [CrossRef] [PubMed]
  21. WHO. In vitro screening of traditional medicines for anti-HIV activity: Memorandum from a WHO meeting. Bull. World Health Organ. 1989, 87, 613–618. [Google Scholar]
  22. WHO. Report of a Who Informal Consultation on Traditional Medicine and AIDS: In Vitro Screening for Anti-HIV Activity; WHO: Geneva, Switzerland, 1989. [Google Scholar]
  23. Kurapati, K.R.V.; Atluri, V.S.; Samikkannu, T.; Garcia, G.; Nair, M.P. Natural products as anti-HIV agents and role in HIV-associated neurocognitive disorders (hand): A brief overview. Front. Microbiol. 2016, 6, 1444. [Google Scholar] [CrossRef] [PubMed]
  24. Deng, X.; Jiang, M.; Zhao, X.; Liang, J. Efficacy and safety of traditional Chinese medicine for the treatment of acquired immunodeficiency syndrome: A systematic review. J. Tradit. Chin. Med. 2014, 34, 1–9. [Google Scholar] [CrossRef]
  25. Sharifi-Rad, M.; Varoni, E.M.; Salehi, B.; Sharifi-Rad, J.; Matthews, K.R.; Ayatollahi, S.A.; Kobarfard, F.; Ibrahim, S.A.; Mnayer, D.; Zakaria, Z.A. Plants of the genus Zingiber as a source of bioactive phytochemicals: From tradition to pharmacy. Molecules 2017, 22, 2145. [Google Scholar] [CrossRef] [PubMed]
  26. Sharifi-Rad, J.; Salehi, B.; Varoni, E.M.; Sharopov, F.; Yousaf, Z.; Ayatollahi, S.A.; Kobarfard, F.; Sharifi-Rad, M.; Afdjei, M.H.; Sharifi-Rad, M. Plants of the Melaleuca genus as antimicrobial agents: From farm to pharmacy. Phytother. Res. 2017, 31, 1475–1494. [Google Scholar] [CrossRef] [PubMed]
  27. Salehi, B.; Ayatollahi, S.; Segura-Carretero, A.; Kobarfard, F.; Contreras, M.; Faizi, M.; Sharifi-Rad, M.; Tabatabai, S.; Sharifi-Rad, J. Bioactive chemical compounds in Eremurus persicus (Joub. & Spach) Boiss. Essential oil and their health implications. Cell. Mol. Biol. 2017, 63, 1–7. [Google Scholar] [PubMed]
  28. Sharifi-Rad, J.; Salehi, B.; Schnitzler, P.; Ayatollahi, S.; Kobarfard, F.; Fathi, M.; Eisazadeh, M.; Sharifi-Rad, M. Susceptibility of herpes simplex virus type 1 to monoterpenes thymol, carvacrol, p-cymene and essential oils of Sinapis arvensis L., Lallemantia royleana Benth. and Pulicaria vulgaris Gaertn. Cell. Mol. Biol. 2017, 63, 42–47. [Google Scholar] [CrossRef] [PubMed]
  29. Sharifi-Rad, J.; Ayatollahi, S.A.; Varoni, E.M.; Salehi, B.; Kobarfard, F.; Sharifi-Rad, M.; Iriti, M.; Sharifi-Rad, M. Chemical composition and functional properties of essential oils from Nepeta schiraziana Boiss. Farmacia 2017, 65, 802–812. [Google Scholar]
  30. Sharifi-Rad, J.; Salehi, B.; Stojanović-Radić, Z.Z.; Fokou, P.V.T.; Sharifi-Rad, M.; Mahady, G.B.; Sharifi-Rad, M.; Masjedi, M.-R.; Lawal, T.O.; Ayatollahi, S.A. Medicinal plants used in the treatment of tuberculosis-ethnobotanical and ethnopharmacological approaches. Biotechnol. Adv. 2017. [Google Scholar] [CrossRef] [PubMed]
  31. Salehi, B.; Zucca, P.; Sharifi-Rad, M.; Pezzani, R.; Rajabi, S.; Setzer, W.; Varoni, E.; Iriti, M.; Kobarfard, F.; Sharifi-Rad, J. Phytotherapeutics in cancer invasion and metastasis. Phytother. Res. 2018, 1–25. [Google Scholar] [CrossRef] [PubMed]
  32. Sahraie-Rad, M.; Izadyari, A.; Rakizadeh, S.; Sharifi-Rad, J. Preparation of strong antidandruff shampoo using medicinal plant extracts: A clinical trial and chronic dandruff treatment. Jundishapur J. Nat. Pharm. Prod. 2015, 10, e21517. [Google Scholar] [CrossRef]
  33. Bagheri, G.; Mirzaei, M.; Mehrabi, R.; Sharifi-Rad, J. Cytotoxic and antioxidant activities of Alstonia scholaris, Alstonia venenata and Moringa oleifera plants from India. Jundishapur J. Nat. Pharm. Prod. 2016, 11, e31129. [Google Scholar] [CrossRef]
  34. Stojanović-Radić, Z.; Pejčić, M.; Stojanović, N.; Sharifi-Rad, J.; Stanković, N. Potential of Ocimum basilicum L. and Salvia officinalis L. essential oils against biofilms of P. aeruginosa clinical isolates. Cell. Mol. Biol. 2016, 62, 27–32. [Google Scholar] [PubMed]
  35. Sharifi-Rad, J.; Hoseini-Alfatemi, S.; Sharifi-Rad, M.; Miri, A. Phytochemical screening and antibacterial activity of different parts of the Prosopis farcta extracts against methicillin-resistant Staphylococcus aureus (MRSA). Min. Biotecnol. 2014, 26, 287–293. [Google Scholar]
  36. Sharifi-Rad, J.; Sureda, A.; Tenore, G.C.; Daglia, M.; Sharifi-Rad, M.; Valussi, M.; Tundis, R.; Sharifi-Rad, M.; Loizzo, M.R.; Ademiluyi, A.O. Biological activities of essential oils: From plant chemoecology to traditional healing systems. Molecules 2017, 22, 70. [Google Scholar] [CrossRef] [PubMed]
  37. Sharifi-Rad, J.; Fallah, F.; Setzer, W.; Entezari, R.H.; Sharifi-Rad, M. Tordylium persicum Boiss. & Hausskn extract: A possible alternative for treatment of pediatric infectious diseases. Cell. Mol. Biol. 2016, 62, 20–26. [Google Scholar] [PubMed]
  38. Sharifi-Rad, M.; Tayeboon, G.; Sharifi-Rad, J.; Iriti, M.; Varoni, E.; Razazi, S. Inhibitory activity on type 2 diabetes and hypertension key-enzymes, and antioxidant capacity of Veronica persica phenolic-rich extracts. Cell. Mol. Biol. 2016, 62, 80–85. [Google Scholar] [PubMed]
  39. Sharifi-Rad, J.; Mnayer, D.; Roointan, A.; Shahri, F.; Ayatollahi, S.; Sharifi-Rad, M.; Molaee, N. Antibacterial activities of essential oils from Iranian medicinal plants on extended-spectrum β-lactamase-producing Escherichia coli. Cell. Mol. Biol. 2016, 62, 75–82. [Google Scholar] [PubMed]
  40. Snow Setzer, M.; Sharifi-Rad, J.; Setzer, W.N. The search for herbal antibiotics: An in-silico investigation of antibacterial phytochemicals. Antibiotics 2016, 5, 30. [Google Scholar] [CrossRef] [PubMed]
  41. Sharifi-Rad, M.; Mnayer, D.; Flaviana Bezerra Morais-Braga, M.; Nályda Pereira Carneiro, J.; Fonseca Bezerra, C.; Douglas Melo Coutinho, H.; Salehi, B.; Martorell, M.; del Mar Contreras, M.; Soltani-Nejad, A.; et al. Echinacea plants as antioxidant and antibacterial agents: From traditional medicine to biotechnological applications. Phytother. Res. 2018. [Google Scholar] [CrossRef] [PubMed]
  42. Sharifi-Rad, M.; Varoni, E.M.; Iriti, M.; Martorell, M.; Setzer, W.N.; del Mar Contreras, M.; Salehi, B.; Soltani-Nejad, A.; Rajabi, S.; Tajbakhsh, M.; et al. Carvacrol and human health: A comprehensive review. Phytother. Res. 2018. [Google Scholar] [CrossRef] [PubMed]
  43. Salehi, B.; Mishra, A.P.; Shukla, I.; Sharifi-Rad, M.; del Mar Contreras, M.; Segura-Carretero, A.; Fathi, H.; Nasri Nasrabadi, N.; Kobarfard, F.; Sharifi-Rad, J. Thymol, thyme and other plant sources: Health and potential uses. Phytother. Res. 2018. [Google Scholar] [CrossRef]
  44. Sharifi-Rad, J.; Mnayer, D.; Tabanelli, G.; Stojanović-Radić, Z.; Sharifi-Rad, M.; Yousaf, Z.; Vallone, L.; Setzer, W.; Iriti, M. Plants of the genus Allium as antibacterial agents: From tradition to pharmacy. Cell. Mol. Biol. 2016, 62, 57–68. [Google Scholar] [PubMed]
  45. Sharifi-Rad, M.; Iriti, M.; Gibbons, S.; Sharifi-Rad, J. Anti-methicillin-resistant Staphylococcus aureus (MRSA) activity of Rubiaceae, Fabaceae and Poaceae plants: A search for new sources of useful alternative antibacterials against MRSA infections. Cell. Mol. Biol. 2016, 62, 39–45. [Google Scholar] [PubMed]
  46. Sharifi-Rad, J.; Soufi, L.; Ayatollahi, S.; Iriti, M.; Sharifi-Rad, M.; Varoni, E.M.; Shahri, F.; Esposito, S.; Kuhestani, K. Anti-bacterial effect of essential oil from Xanthium strumarium against shiga toxin-producing Escherichia coli. Cell. Mol. Biol. 2016, 62, 69–74. [Google Scholar] [PubMed]
  47. Painter, G.; Almond, M.; Mao, S.; Liotta, D. Biochemical and mechanistic basis for the activity of nucleoside analogue inhibitors of HIV reverse transcriptase. Curr. Top. Med. Chem. 2004, 4, 1035–1044. [Google Scholar] [CrossRef] [PubMed]
  48. Konvalinka, J.; Kräusslich, H.-G.; Müller, B. Retroviral proteases and their roles in virion maturation. Virology 2015, 479–480, 403–417. [Google Scholar] [CrossRef] [PubMed]
  49. Blanco, J.L.; Whitlock, G.; Milinkovic, A.; Moyle, G. HIV integrase inhibitors: A new era in the treatment of HIV. Expert Opin. Pharmacother. 2015, 16, 1313–1324. [Google Scholar] [CrossRef] [PubMed]
  50. Matthée, G.; Wright, A.D.; König, G.M. HIV reverse transcriptase inhibitors of natural origin. Planta Med. 1999, 65, 493–506. [Google Scholar] [CrossRef] [PubMed]
  51. Yao, X.J.; Wainberg, M.A.; Parniak, M.A. Mechanism of inhibition of HIV-1 infection in vitro by purified extract of Prunella vulgaris. Virology 1992, 187, 56–62. [Google Scholar] [CrossRef]
  52. Reddy, V.L.N.; Reddy, S.M.; Ravikanth, V.; Krishnaiah, P.; Goud, T.V.; Rao, T.P.; Ram, T.S.; Gonnade, R.G.; Bhadbhade, M.; Venkateswarlu, Y. A new BIS-andrographolide ether from Andrographis paniculata Nees and evaluation of anti-HIV activity. Nat. Prod. Res. 2005, 19, 223–230. [Google Scholar] [CrossRef] [PubMed]
  53. Behbahani, M. Evaluation of anti-HIV-1 activity of a new iridoid glycoside isolated from Avicenna marina, in vitro. Int. Immunopharmacol. 2014, 23, 262–266. [Google Scholar] [CrossRef] [PubMed]
  54. Rege, A.A.; Ambaye, R.Y.; Deshmukh, R.A. Evaluation of in vitro inhibitory effect of selected plants and Shilajit on HIV-reverse transcriptase. Indian J. Nat. Prod. Res. 2012, 3, 145–151. [Google Scholar]
  55. Rege, A.A.; Chowdhary, A.S. Evaluation of mangrove plants as putative HIV-protease inhibitors. Indian Drugs 2013, 50, 41–44. [Google Scholar]
  56. Sabde, S.; Bodiwala, H.S.; Karmase, A.; Deshpande, P.J.; Kaur, A.; Ahmed, N.; Chauthe, S.K.; Brahmbhatt, K.G.; Phadke, R.U.; Mitra, D.; et al. Anti-HIV activity of indian medicinal plants. J. Nat. Med. 2011, 65, 662–669. [Google Scholar] [CrossRef] [PubMed]
  57. Woradulayapinij, W.; Soonthornchareonnon, N.; Wiwat, C. In vitro HIV type 1 reverse transcriptase inhibitory activities of Thai medicinal plants and Canna indica L. rhizomes. J. Ethnopharmacol. 2005, 101, 84–89. [Google Scholar] [CrossRef] [PubMed]
  58. Silprasit, K.; Seetaha, S.; Pongsanarakul, P.; Hannongbua, S.; Choowongkomon, K. Anti-HIV-1 reverse transcriptase activities of hexane extracts from some Asian medicinal plants. J. Med. Plants Res. 2011, 5, 4194–4201. [Google Scholar]
  59. Blignaut, E.; Patton, L.L.; Nittayananta, W.; Ramirez-Amador, V.; Ranganathan, K.; Chattopadhyay, A. (A3) HIV phenotypes, oral lesions, and management of HIV-related disease. Adv. Dent. Res. 2006, 19, 122–129. [Google Scholar] [CrossRef] [PubMed]
  60. Lam, T.L.; Lam, M.L.; Au, T.K.; Ip, D.T.; Ng, T.B.; Fong, W.P.; Wan, D.C. A comparison of human immunodeficiency virus type-1 protease inhibition activities by the aqueous and methanol extracts of Chinese medicinal herbs. Life Sci. 2000, 67, 2889–2896. [Google Scholar] [CrossRef]
  61. Bedoya, L.M.; Sanchez-Palomino, S.; Abad, M.J.; Bermejo, P.; Alcami, J. Anti-HIV activity of medicinal plant extracts. J. Ethnopharmacol. 2001, 77, 113–116. [Google Scholar] [CrossRef]
  62. Grzybek, J.; Wongpanich, V.; Mata-Greenwood, E.; Angerhofer, C.K.; Pezzuto, J.M.; Cordell, G.A. Biological evaluation of selected plants from Poland. Pharm. Biol. 1997, 35, 1–5. [Google Scholar] [CrossRef]
  63. Uncini Manganelli, R.E.; Zaccaro, L.; Tomei, P.E. Antiviral activity in vitro of Urtica dioica L., Parietaria diffusa M. et K. and Sambucus nigra L. J. Ethnopharmacol. 2005, 98, 323–327. [Google Scholar] [CrossRef] [PubMed]
  64. Mlinarič, A.; Kreft, S.; Umek, A.; Štrukelj, B. Screening of selected plant extracts for in vitro inhibitory activity on HIV-1 reverse transcriptase (HIV-1 RT). Pharmazie 2000, 55, 75–77. [Google Scholar] [PubMed]
  65. Ma, Y.M.; Wu, H. Chemical constituents of Sambucus L. Chin. J. Org. Chem. 2012, 32, 2063–2072. [Google Scholar] [CrossRef]
  66. Chang, Y.S.; Woo, E.R. Korean medicinal plants inhibiting to human immunodeficiency virus type 1 (HIV-1) fusion. Phytother. Res. 2003, 17, 426–429. [Google Scholar] [CrossRef] [PubMed]
  67. Kapewangolo, P.; Tawha, T.; Nawinda, T.; Knott, M.; Hans, R. Sceletium tortuosum demonstrates in vitro anti-HIV and free radical scavenging activity. S. Afr. J. Bot. 2016, 106, 140–143. [Google Scholar] [CrossRef]
  68. Xu, H.-X.; Wan, M.; Loh, B.-N.; Kon, O.-L.; Chow, P.-W.; Sim, K.-Y. Screening of traditional medicines for their inhibitory activity against HIV-1 protease. Phytother. Res. 1996, 10, 207–210. [Google Scholar] [CrossRef]
  69. Peng, Z.G.; Chen, H.S.; Guo, Z.M.; Dong, B.; Tian, G.Y.; Wang, G.Q. Anti-HIV activities of Achyranthes bidentata polysaccharide sulfate in vitro and in vivo. Yaoxue Xuebao 2008, 43, 702–706. [Google Scholar]
  70. Gujjeti, R.P.; Mamidala, E. Anti-HIV activity of phytosterol isolated from Aerva lanata roots. Pharmacogn. J. 2017, 9, 112–116. [Google Scholar] [CrossRef]
  71. Lagrota, M.H.C.; Wigg, M.D.; Santos, M.M.G.; Miranda, M.M.F.S.; Camara, F.P.; Couceiro, J.N.S.S.; Costa, S.S. Inhibitory activity of extracts of Alternanthera brasiliana (Amaranthaceae) against the herpes simplex virus. Phytother. Res. 1994, 8, 358–361. [Google Scholar] [CrossRef]
  72. Chang, R.S.; Yeung, H.W. Inhibition of growth of human immunodeficiency virus in vitro by crude extracts of Chinese medicinal herbs. Antivir. Res. 1988, 9, 163–175. [Google Scholar] [CrossRef]
  73. Zhang, S.M.; He, Y.S.; Tabba, H.D.; Smith, K.M. Inhibitor against the human immunodeficiency virus in aqueous extracts of Alternanthera philoxeroides. Chin. Med. J. 1988, 101, 861–866. [Google Scholar] [PubMed]
  74. Ali, H.; Konig, G.M.; Khalid, S.A.; Wright, A.D.; Kaminsky, R. Evaluation of selected sudanese medicinal plants for their in vitro activity against hemoflagellates, selected bacteria, HIV-1-RT and tyrosine kinase inhibitory, and for cytotoxicity. J. Ethnopharmacol. 2002, 83, 219–228. [Google Scholar] [CrossRef]
  75. Klos, M.; van de Venter, M.; Milne, P.J.; Traore, H.N.; Meyer, D.; Oosthuizen, V. In vitro anti-HIV activity of five selected South African medicinal plant extracts. J. Ethnopharm. 2009, 124, 182–188. [Google Scholar] [CrossRef] [PubMed]
  76. Husson, G.P.; Subra, F.; Lai-Kuen, R.; Vilagines, R. Antiviral activity of hydroalcoholic extract from Haemanthus albiflos on the moloney murine leukemia virus and the human immunodeficiency virus. C. R. Seances Soc. Biol. Fil. 1997, 191, 473–485. [Google Scholar] [PubMed]
  77. Szlavik, L.; Gyuris, A.; Minarovits, J.; Forgo, P.; Molnar, J.; Hohmann, J. Alkaloids from Leucojum vernum and antiretroviral activity of Amaryllidaceae alkaloids. Planta Med. 2004, 70, 871–873. [Google Scholar] [CrossRef] [PubMed]
  78. Thamburan, S.; Klaasen, J.; Mabusela, W.T.; Cannon, J.F.; Folk, W.; Johnson, Q. Tulbaghia alliacea phytotherapy: A potential anti-infective remedy for candidiasis. Phytother. Res. 2006, 20, 844–850. [Google Scholar] [CrossRef] [PubMed]
  79. Sigidi, M.T.; Traoré, A.N.; Boukandou, M.M.; Tshisikhawe, M.P.; Ntuli, S.S.; Potgieter, N. Anti-HIV, pro-inflammatory and cytotoxicity properties of selected Venda plants. Indian J. Tradit. Knowl. 2017, 16, 545–552. [Google Scholar]
  80. Muanza, D.N.; Euler, K.L.; Williams, L.; Newman, D.J. Screening for antitumor and anti-HIV activities of nine medicinal plants from Zaire. Pharm. Biol. 1995, 33, 98–106. [Google Scholar] [CrossRef]
  81. Djakpo, O.; Yao, W. Rhus chinensis and Galla chinensis—Folklore to modern evidence: Review. Phytother. Res. 2010, 24, 1739–1747. [Google Scholar] [CrossRef] [PubMed]
  82. Abdel-Malek, S.; Bastien, J.W.; Mahler, W.F.; Jia, Q.; Reinecke, M.G.; Robinson, W.E.; Shu, Y.-H.; Zalles-Asin, J. Drug leads from the Kallawaya herbalists of Bolivia. 1. Background, rationale, protocol and anti-HIV activity. J. Ethnopharmacol. 1996, 50, 157–166. [Google Scholar] [CrossRef]
  83. Kusumoto, I.T.; Nakabayashi, T.; Kida, H.; Miyashiro, H.; Hattori, M.; Namba, T.; Shimotohno, K. Screening of various plant-extracts used in ayurvedic medicine for inhibitory effects on human-immunodeficiency-virus type-1 (HIV-1) protease. Phytother. Res. 1995, 9, 180–184. [Google Scholar] [CrossRef]
  84. McMahon, J.B.; Currens, M.J.; Gulakowski, R.J.; Buckheit, R.W., Jr.; Lackman-Smith, C.; Hallock, Y.F.; Boyd, M.R. Michellamine B, a novel plant alkaloid, inhibits human immunodeficiency virus-induced cell killing by at least two distinct mechanisms. Antimicrob. Agents Chemother. 1995, 39, 484–488. [Google Scholar] [CrossRef] [PubMed]
  85. Thomas, D.W.; Boyd, M.R.; Cardellina, J.H.; Gereau, R.E.; Jato, J.; Symonds, P. Notes on economic plants. Econ. Bot. 1994, 48, 413–414. [Google Scholar] [CrossRef]
  86. Bringmann, G.; Steinert, C.; Feineis, D.; Mudogo, V.; Betzin, J.; Scheller, C. HIV-inhibitory michellamine-type dimeric naphthylisoquinoline alkaloids from the central African liana Ancistrocladus congolensis. Phytochemistry 2016, 128, 71–81. [Google Scholar] [CrossRef] [PubMed]
  87. Hien, N.T.T.; Nhiem, N.X.; Yen, D.T.H.; Hang, D.T.T.; Tai, B.H.; Quang, T.H.; Anh, H.L.T.; Van Kiem, P.; Van Minh, C.; Kim, E.J.; et al. Chemical constituents of the Annona glabra fruit and their cytotoxic activity. Pharm. Biol. 2015, 53, 1602–1607. [Google Scholar] [CrossRef] [PubMed]
  88. Wu, Y.C.; Hung, Y.C.; Chang, F.R.; Cosentino, M.; Wang, H.K.; Lee, K.H. Identification of ent-16β,17-dihydroxykauran-19-oic acid as an anti-HIV principle and isolation of the new diterpenoids annosquamosins A and B from Annona squamosa. J. Nat. Prod. 1996, 59, 635–637. [Google Scholar] [CrossRef] [PubMed]
  89. Yu, Z.X.; Niu, Z.G.; Li, X.B.; Zheng, C.J.; Song, X.M.; Chen, G.Y.; Song, X.P.; Han, C.R.; Wu, S.X. New phenylpropanoid and 6H-dibenzo(b,d)pyran-6-one derivatives from the stems of Dasymaschalon rostratum. Fitoterapia 2017, 118, 27–31. [Google Scholar] [CrossRef] [PubMed]
  90. Hongthong, S.; Kuhakarn, C.; Jaipetch, T.; Prabpai, S.; Kongsaeree, P.; Piyachaturawat, P.; Jariyawat, S.; Suksen, K.; Limthongkul, J.; Panthong, A.; et al. Polyoxygenated cyclohexene derivatives isolated from Dasymaschalon sootepense and their biological activities. Fitoterapia 2015, 106, 158–166. [Google Scholar] [CrossRef] [PubMed]
  91. Li, H.Y.; Sun, N.J.; Kashiwada, Y.; Sun, L.; Snider, J.V.; Cosentino, L.M.; Lee, K.H. Anti-AIDS agents, 9. Suberosol, a new C31 lanostane-type triterpene and anti-HIV principle from Polyalthia suberosa. J. Nat. Prod. 1993, 56, 1130–1133. [Google Scholar] [CrossRef] [PubMed]
  92. Tuchinda, P.; Pohmakotr, M.; Reutrakul, V.; Thanyachareon, W.; Sophasan, S.; Yoosook, C.; Santisuk, T.; Pezzuto, J.M. 2-substituted furans from Polyalthia suberosa. Planta Med. 2001, 67, 572–575. [Google Scholar] [CrossRef] [PubMed]
  93. Matsuse, I.T.; Lim, Y.A.; Hattori, M.; Correa, M.; Gupta, M.P. A search for anti-viral properties in Panamanian medicinal plants. J. Ethnopharmacol. 1998, 64, 15–22. [Google Scholar] [CrossRef]
  94. Louvel, S.; Moodley, N.; Seibert, I.; Steenkamp, P.; Nthambeleni, R.; Vidal, V.; Maharaj, V.; Klimkait, T. Identification of compounds from the plant species Alepidea amatymbica active against HIV. S. Afr. J. Bot. 2013, 86, 9–14. [Google Scholar] [CrossRef]
  95. Hussein, G.; Miyashiro, H.; Nakamura, N.; Hattori, M.; Kawahata, T.; Otake, T.; Kakiuchi, N.; Shimotohno, K. Inhibi HIV-1 protease. Phytother. Res. 1999, 13, 31–36. [Google Scholar] [CrossRef]
  96. Min, B.S.; Bae, K.H.; Kim, Y.H.; Miyashiro, H.; Hattori, M.; Shimotohno, K. Screening of Korean plants against human immunodeficiency virus type 1 protease. Phytother. Res. 1999, 13, 680–682. [Google Scholar] [CrossRef]
  97. Lee, T.T.Y.; Kashiwada, Y.; Huang, L.; Snider, J.; Cosentino, M.; Lee, K.H. Suksdorfin: An anti-HIV principle from Lomatium suksdorfii, its structure-activity correlation with related coumarins, and synergistic effects with anti-AIDS nucleosides. Bioorgan. Med. Chem. 1994, 2, 1051–1056. [Google Scholar] [CrossRef]
  98. Bicchi, C.; Rubiolo, P.; Ballero, M.; Sanna, C.; Matteodo, M.; Esposito, F.; Zinzula, L.; Tramontano, E. HIV-1-inhibiting activity of the essential oil of Ridolfia segetum and Oenanthe crocata. Planta Med. 2009, 75, 1331–1335. [Google Scholar] [CrossRef] [PubMed]
  99. Chingwaru, W.; Vidmar, J.; Kapewangolo, P.T. The potential of sub-Saharan African plants in the management of human immunodeficiency virus infections: A review. Phytother. Res. 2015, 29, 1452–1487. [Google Scholar] [CrossRef] [PubMed]
  100. Esposito, F.; Mandrone, M.; Del Vecchio, C.; Carli, I.; Distinto, S.; Corona, A.; Lianza, M.; Piano, D.; Tacchini, M.; Maccioni, E.; et al. Multi-target activity of Hemidesmus indicus decoction against innovative HIV-1 drug targets and characterization of lupeol mode of action. Pathog. Dis. 2017, 75. [Google Scholar] [CrossRef] [PubMed]
  101. Kapewangolo, P.; Knott, M.; Shithigona, R.E.K.; Uusiku, S.L.; Kandawa-Schulz, M. In vitro anti-HIV and antioxidant activity of Hoodia gordonii (Apocynaceae), a commercial plant product. BMC Complement. Altern. Med. 2016, 16, 411. [Google Scholar] [CrossRef] [PubMed]
  102. Rukunga, G.M.; Kofi-Tsekpo, M.W.; Kurokawa, M.; Kageyama, S.; Mungai, G.M.; Muli, J.M.; Tolo, F.M.; Kibaya, R.M.; Muthaura, C.N.; Kanyara, J.N.; et al. Evaluation of the HIV-1 reverse transcriptase inhibitory properties of extracts from some medicinal plants in Kenya. Afr. J. Health Sci. 2002, 9, 81–90. [Google Scholar] [CrossRef] [PubMed]
  103. Wei, Y.; Ma, C.-M.; Hattori, M. Anti-HIV protease triterpenoids from the acid hydrolysate of Panax ginseng. Phytochem. Lett. 2009, 2, 63–66. [Google Scholar] [CrossRef]
  104. Zhang, H.; Lu, Z.; Tan, G.T.; Qiu, S.; Farnsworth, N.R.; Pezzuto, J.M.; Fong, H.H.S. Polyacetyleneginsenoside-Ro, a novel triterpene saponin from Panax ginseng. Tetrahedron Lett. 2002, 43, 973–977. [Google Scholar] [CrossRef]
  105. Au, T.K.; Lam, T.L.; Ng, T.B.; Fong, W.P.; Wan, D.C.C. A Comparison of HIV-1 Integrase Inhibition by Aqueous and Methanol Extracts of Chinese Medicinal Herbs. Life Sci. 2001, 68, 1687–1694. [Google Scholar] [CrossRef]
  106. Hasegawa, H.; Matsumiya, S.; Uchiyama, M.; Kurokawa, T.; Inouye, Y.; Kasai, R.; Ishibashi, S.; Yamasaki, K. Inhibitory effect of some triterpenoid saponins on glucose transport in tumor cells and its application to in vitro cytotoxic and antiviral activities. Planta Med. 1994, 60, 240–243. [Google Scholar] [CrossRef] [PubMed]
  107. Wu, P.-L.; Su, G.-C.; Wu, T.-S. Constituents from the stems of Aristolochia manshuriensis. J. Nat. Prod. 2003, 66, 996–998. [Google Scholar] [CrossRef] [PubMed]
  108. Salomón, H.; Pampuro, S.; Cavallaro, L.; García, G.; Coussio, J.; Campos, R. Anti-human immunodeficiency virus type 1 (HIV-1) activity of Achyrocline flaccida Wein DC and Gamochaeta simplicicaulis aqueous extracts. Phytother. Res. 1997, 11, 82–83. [Google Scholar] [CrossRef]
  109. Sattar, E.A.; Galal, A.M.; Mossa, G.S. Antitumor germacranolides from Anvillea garcinii. J. Nat. Prod. 1996, 59, 403–405. [Google Scholar] [CrossRef] [PubMed]
  110. Martinotti, E.; Calderone, V.; Breschi, M.C.; Bandini, P.; Cioni, P.L. Pharmacological action of aqueous crude extracts of Artemisia verlotorum Lamotte (Compositae). Phytother. Res. 1997, 11, 612–614. [Google Scholar] [CrossRef]
  111. Cos, P.; Hermans, N.; De Bruyne, T.; Apers, S.; Sindambiwe, J.B.; Witvrouw, M.; De Clercq, E.; Vanden Berghe, D.; Pieters, L.; Vlietinck, A.J. Antiviral activity of Rwandan medicinal plants against human immunodeficiency virus type-1 (HIV-1). Phytomedicine 2002, 9, 62–68. [Google Scholar] [CrossRef] [PubMed]
  112. Kato, T.; Horie, N.; Matsuta, T.; Naoki, U.; Shimoyama, T.; Kaneko, T.; Kanamoto, T.; Terakubo, S.; Nakashima, H.; Kusama, K.; et al. Anti-UV/HIV activity of kampo medicines and constituent plant extracts. In Vivo 2012, 26, 1007–1014. [Google Scholar] [PubMed]
  113. Bunluepuech, K.; Tewtrakul, S. Anti-HIV-1 integrase activity of Thai medicinal plants in longevity preparations. Songklanakarin J. Sci. Technol. 2011, 33, 693–697. [Google Scholar]
  114. Chukwujekwu, J.C.; Ndhlala, A.R.; de Kock, C.A.; Smith, P.J.; Van Staden, J. Antiplasmodial, HIV-1 reverse transcriptase inhibitory and cytotoxicity properties of Centratherum punctatum Cass. and its fractions. S. Afr. J. Bot. 2014, 90, 17–19. [Google Scholar] [CrossRef]
  115. Muley, B.P.; Khadabadi, S.S.; Banarase, N.B. Phytochemical constituents and pharmacological activities of Calendula officinalis Linn (Asteraceae): A review. Trop. J. Pharm. Res. 2009, 8, 455–465. [Google Scholar] [CrossRef]
  116. Wang, H.K.; Xia, Y.; Yang, Z.Y.; Morris Natschke, S.L.; Lee, K.H. Recent advances in the discovery and development of flavonoids and their analogues as antitumor and anti-HIV agents. Adv. Exp. Med. Biol. 1998, 439, 191–225. [Google Scholar] [PubMed]
  117. Lee, J.S.; Kim, H.J.; Lee, Y.S. A new anti-HIV flavonoid glucuronide from Chrysanthemum morifolium. Planta Med. 2003, 69, 859–861. [Google Scholar] [PubMed]
  118. Hu, C.-Q.; Chen, K.; Shi, Q.; Kilkuskie, R.E.; Cheng, Y.-C.; Lee, K.-H. Anti-AIDS agents, 10. Acacetin-7-o-β-d-galactopyranoside, an anti-HIV principle from Chrysanthemum morifolium and a structure-activity correlation with some related flavonoids. J. Nat. Prod. 1994, 57, 42–51. [Google Scholar] [CrossRef] [PubMed]
  119. Tewtrakul, S.; Subhadhirasakul, S.; Cheenpracha, S.; Karalai, C. HIV-1 protease and HIV-1 integrase inhibitory substances from Eclipta prostrata. Phytother. Res. 2007, 21, 1092–1095. [Google Scholar] [CrossRef] [PubMed]
  120. Tewtrakul, S.; Subhadhirasakul, S.; Kummee, S. Anti-HIV-1 integrase activity of medicinal plants used as self medication by AIDS patients. Songklanakarin J. Sci. Technol. 2006, 28, 785–790. [Google Scholar]
  121. Ross, S.; El Sayed, K.; El Sohly, M.; Hamann, M.; Abdel-Halim, O.; Ahmed, A.; Ahmed, M. Phytochemical analysis of Geigeria alata and Francoeuria crispa essential oils. Planta Med. 1997, 63, 479–482. [Google Scholar] [CrossRef] [PubMed]
  122. Hnatyszyn, O.; Broussalis, A.; Herrera, G.; Muschietti, L.; Coussio, J.; Martino, V.; Ferraro, G.; Font, M.; Monge, A.; Martínez-Irujo, J.J.; et al. Argentine plant extracts active against polymerase and ribonuclease h activities of HIV-1 reverse transcriptase. Phytother. Res. 1999, 13, 206–209. [Google Scholar] [CrossRef]
  123. Heyman, H.M.; Senejoux, F.; Seibert, I.; Klimkait, T.; Maharaj, V.J.; Meyer, J.J.M. Identification of anti-HIV active dicaffeoylquinic- and tricaffeoylquinic acids in Helichrysum populifolium by NMR-based metabolomic guided fractionation. Fitoterapia 2015, 103, 155–164. [Google Scholar] [CrossRef] [PubMed]
  124. Yu, Y.B.; Park, J.C.; Lee, J.H.; Kim, G.E.; Jo, S.K.; Byun, M.W.; Miyashiro, H.; Hattori, M. Screening of some plant extracts for inhibitory effects on HIV-1 and its essential enzymes. Korean J. Pharmacogn. 1998, 29, 338–346. [Google Scholar]
  125. Fortin, H.; Tomasi, S.; Jaccard, P.; Robin, V.; Boustie, J. A prenyloxycoumarin from Psiadia dentata. Chem. Pharm. Bull. 2001, 49, 619–621. [Google Scholar] [CrossRef] [PubMed]
  126. Kwon, H.C.; Jung, C.M.; Shin, C.G.; Lee, J.K.; Choi, S.U.; Kim, S.Y.; Lee, K.R. A new caffeoyl quinic acid from aster scaber and its inhibitory activity against human immunodeficiency virus-1 (HIV-1) integrase. Chem. Pharm. Bull. 2000, 48, 1796–1798. [Google Scholar] [CrossRef] [PubMed]
  127. Ngwira, K.J.; Maharaj, V.J.; Mgani, Q.A. In vitro antiplasmodial and HIV-1 neutralization activities of root and leaf extracts from Berberis holstii. J. Herb. Med. 2015, 5, 30–35. [Google Scholar] [CrossRef]
  128. Yu, Y.B.; Miyashiro, H.; Nakamura, N.; Hattori, M.; Jong, C.P. Effects of triterpenoids and flavonoids isolated from Alnus firma on HIV-1 viral enzymes. Arch. Pharm. Res. 2007, 30, 820–826. [Google Scholar] [CrossRef] [PubMed]
  129. Niyonzima, G.; Laekeman, G.; Witvrouw, M.; Van Poel, B.; Pieters, L.; Paper, D.; De Clercq, E.; Franz, G.; Vlietinck, A.J. Hypoglycemic, anticomplement and anti-HIV activities of Spathodea campanulata stem bark. Phytomedicine 1999, 6, 45–49. [Google Scholar] [CrossRef]
  130. Jain, M.; Kapadia, R.; Jadeja, R.N.; Thounaojam, M.C.; Devkar, R.V.; Mishra, S.H. Traditional uses, phytochemistry and pharmacology of Tecomella undulata—A review. Asian Pac. J. Trop. Biomed. 2012, 2, S1918–S1923. [Google Scholar] [CrossRef]
  131. Yamasaki, K.; Otake, T.; Mori, H.; Morimoto, M.; Ueba, N.; Kurokawa, Y.; Shiota, K.; Yuge, T. Screening test of crude drug extract on anti-HIV activity. Yakugaku Zasshi 1993, 113, 818–824. [Google Scholar] [CrossRef] [PubMed]
  132. Harnett, S.M.; Oosthuizen, V.; Van De Venter, M. Anti-HIV activities of organic and aqueous extracts of Sutherlandia frutescens and Lobostemon trigonus. J. Ethnopharmacol. 2005, 96, 113–119. [Google Scholar] [CrossRef] [PubMed]
  133. Ye, X.; Ng, T.B. Isolation and characterization of juncin, an antifungal protein from seeds of Japanese takana (Brassica juncea var. Integrifolia). J. Agric. Food Chem. 2009, 57, 4366–4371. [Google Scholar] [CrossRef] [PubMed]
  134. Jiang, Y.; Ng, T.B.; Wang, C.R.; Zhang, D.; Cheng, Z.H.; Liu, Z.K.; Qiao, W.T.; Geng, Y.Q.; Li, N.; Liu, F. Inhibitors from natural products to HIV-1 reverse transcriptase, protease and integrase. Mini-Rev. Med. Chem. 2010, 10, 1331–1344. [Google Scholar] [CrossRef] [PubMed]
  135. Bedoya, L.M.; Beltrán, M.; Sancho, R.; Olmedo, D.A.; Sánchez-Palomino, S.; Del Olmo, E.; López-Pérez, J.L.; Muñoz, E.; San Feliciano, A.; Alcamí, J. 4-phenylcoumarins as HIV transcription inhibitors. Bioorgan. Med. Chem. Lett. 2005, 15, 4447–4450. [Google Scholar] [CrossRef] [PubMed]
  136. Wang, Q.; Ding, Z.H.; Liu, J.K.; Zheng, Y.T. Xanthohumol, a novel anti-HIV-1 agent purified from Hops Humulus lupulus. Antivir. Res. 2004, 64, 189–194. [Google Scholar] [CrossRef]
  137. Chang, C.W.; Lin, M.T.; Lee, S.S.; Liu, K.C.S.C.; Hsu, F.L.; Lin, J.Y. Differential inhibition of reverse transcriptase and cellular DNA polymerase-α activities by lignans isolated from Chinese herbs, Phyllanthus myrtifolius Moon, and tannins from Lonicera japonica Thunb and Castanopsis hystrix. Antivir. Res. 1995, 27, 367–374. [Google Scholar] [CrossRef]
  138. Kashyap, K.; Sarkar, P.; Kalita, M.C.; Banu, S. A review on the widespread therapeutic application of the traditional herb Drymaria cordata. Int. J. Pharma Bio Sci. 2014, 5, P696–P705. [Google Scholar]
  139. Hsieh, P.W.; Chang, F.R.; Lee, K.H.; Hwang, T.L.; Chang, S.M.; Wu, Y.C. A new anti-HIV alkaloid, drymaritin, and a new C-glycoside flavonoid, diandraflavone, from Drymaria diandra. J. Nat. Prod. 2004, 67, 1175–1177. [Google Scholar] [CrossRef] [PubMed]
  140. Prinsloo, G.; Meyer, J.J.M.; Hussein, A.A.; Munoz, E.; Sanchez, R. A cardiac glucoside with in vitro anti-HIV activity isolated from Elaeodendron croceum. Nat. Prod. Res. 2010, 24, 1743–1746. [Google Scholar] [CrossRef] [PubMed]
  141. Maregesi, S.M.; Hermans, N.; Dhooghe, L.; Cimanga, K.; Ferreira, D.; Pannecouque, C.; Berghe, D.A.V.; Cos, P.; Maes, L.; Vlietinck, A.J.; et al. Phytochemical and biological investigations of Elaeodendron schlechteranum. J. Ethnopharmacol. 2010, 129, 319–326. [Google Scholar] [CrossRef] [PubMed]
  142. Kuo, Y.H.; Kuo, L.M.Y. Antitumour and anti-AIDS triterpenes from Celastrus hindsii. Phytochemistry 1997, 44, 1275–1281. [Google Scholar] [PubMed]
  143. Tai, B.H.; Nhut, N.D.; Nhiem, N.X.; Quang, T.H.; Thanh Ngan, N.T.; Thuy Luyen, B.T.; Huong, T.T.; Wilson, J.; Beutler, J.A.; Ban, N.K.; et al. An evaluation of the RNase H inhibitory effects of Vietnamese medicinal plant extracts and natural compounds. Pharm. Biol. 2011, 49, 1046–1051. [Google Scholar] [CrossRef] [PubMed]
  144. Piacente, S.; Dos Santos, L.C.; Mahmood, N.; Pizza, C. Triterpenes from Maytenus mWacrocarpa and evaluation of their anti-HIV activity. Nat. Prod. Commun. 2006, 1, 1073–1078. [Google Scholar]
  145. Chen, K.; Shi, Q.; Kashiwada, Y.; Hu, C.Q.; Zhang, D.C.; Jin, J.Q.; Nozaki, H.; Kilkuskie, R.E.; Tramontano, E.; Cheng, Y.C.; et al. Anti-AIDS agents, 6. Salaspermic acid, an anti-HIV principle from Tripterycium wilfordii, and the structure-activity correlation with its related compounds. J. Nat. Prod. 1992, 55, 340–346. [Google Scholar] [CrossRef] [PubMed]
  146. Chen, K.; Shi, Q.; Fujioka, T.; Zhang, D.-C.; Hu, C.-Q.; Jin, J.-Q.; Kilkuskie, R.E.; Lee, K.-H. Anti-AIDS agents, 4. Tripterifordin, a novel anti-HIV principle from Tripterygium wilfordii: Isolation and structural elucidation. J. Nat. Prod. 1992, 55, 88–92. [Google Scholar] [CrossRef] [PubMed]
  147. Duan, H.; Takaishi, Y.; Imakura, Y.; Jia, Y.; Li, D.; Cosentino, L.M.; Lee, K.-H. Sesquiterpene alkaloids from Tripterygium hypoglaucum and Tripterygium wilfordii:  A new class of potent anti-HIV agents. J. Nat. Prod. 2000, 63, 357–361. [Google Scholar] [CrossRef] [PubMed]
  148. Chen, K.; Shi, Q.; Fujioka, T.; Nakano, T.; Hu, C.Q.; Jin, J.Q.; Kilkuskie, R.E.; Lee, K.H. Anti-AIDS agents-XIX. Neotripterifordin, a novel anti-HIV principle from Tripterygium wilfordii: Isolation and structural elucidation. Bioorgan. Med. Chem. 1995, 3, 1345–1348. [Google Scholar] [CrossRef]
  149. Fang, P.L.; Cao, Y.L.; Yan, H.; Pan, L.L.; Liu, S.C.; Gong, N.B.; Lü, Y.; Chen, C.X.; Zhong, H.M.; Guo, Y.; et al. Lindenane disesquiterpenoids with anti-HIV-1 activity from Chloranthus japonicus. J. Nat. Prod. 2011, 74, 1408–1413. [Google Scholar] [CrossRef] [PubMed]
  150. Yan, H.; Ba, M.Y.; Li, X.H.; Guo, J.M.; Qin, X.J.; He, L.; Zhang, Z.Q.; Guo, Y.; Liu, H.Y. Lindenane sesquiterpenoid dimers from Chloranthus japonicus inhibit HIV-1 and HCV replication. Fitoterapia 2016, 115, 64–68. [Google Scholar] [CrossRef] [PubMed]
  151. Chattopadhyay, S.K.; Chatterjee, A.; Tandon, S.; Maulik, P.R.; Kant, R. Isolation of optically active nevirapine, a dipyridodiazepinone metabolite from the seeds of Cleome viscosa. Tetrahedron 2011, 67, 452–454. [Google Scholar] [CrossRef]
  152. Fuller, R.W.; Blunt, J.W.; Boswell, J.L.; Cardellina, J.H.; Boyd, M.R. Guttiferone F, the first prenylated benzophenone from Allanblackia stuhlmannii. J. Nat. Prod. 1999, 62, 130–132. [Google Scholar] [CrossRef] [PubMed]
  153. Huerta-Reyes, M.; Basualdo, M.D.C.; Lozada, L.; Jimenez-Estrada, M.; Soler, C.; Reyes-Chilpa, R. HIV-1 inhibition by extracts of Clusiaceae species from Mexico. Biol. Pharm. Bull. 2004, 27, 916–920. [Google Scholar] [CrossRef] [PubMed]
  154. Huerta-Reyes, M.; Basualdo, M.D.C.; Abe, F.; Jimenez-Estrada, M.; Soler, C.; Reyes-Chilpa, R. HIV-1 inhibitory compounds from Calophyllum brasiliense leaves. Biol. Pharm. Bull. 2004, 27, 1471–1475. [Google Scholar] [CrossRef] [PubMed]
  155. Gomez-Verjan, J.C.; Estrella-Parra, E.A.; Gonzalez-Sanchez, I.; Rivero-Segura, N.A.; Vazquez-Martinez, R.; Magos-Guerrero, G.; Mendoza-Villanueva, D.; Cerbón-Cervantes, M.A.; Reyes-Chilpa, R. Toxicogenomic analysis of pharmacological active coumarins isolated from Calophyllum brasiliense. Genom. Data 2015, 6, 258–259. [Google Scholar] [CrossRef] [PubMed]
  156. Spino, C.; Dodier, M.; Sotheeswaran, S. Anti-HIV coumarins from Calophyllum seed oil. Bioorgan. Med. Chem. Lett. 1998, 8, 3475–3478. [Google Scholar] [CrossRef]
  157. Dharmaratne, H.; Wanigasekera, W.; Mata-Greenwood, E.; Pezzuto, J. Inhibition of human immunodeficiency virus type 1 reverse transcriptase activity by cordatolides isolated from Calophyllum cordato-oblongum. Planta Med. 2007, 64, 460–461. [Google Scholar] [CrossRef] [PubMed]
  158. Chaitra Narayan, L.; Ravishankar Rai, V.; Tewtrakul, S. A screening strategy for selection of anti-HIV-1 integrase and anti-HIV-1 protease inhibitors from extracts of Indian medicinal plants. Int. J. Phytomed. 2011, 3, 312–318. [Google Scholar]
  159. Pawar, K.D.; Joshi, S.P.; Bhide, S.R.; Thengane, S.R. Pattern of anti-HIV dipyranocoumarin expression in callus cultures of Calophyllum inophyllum linn. J. Biotechnol. 2007, 130, 346–353. [Google Scholar] [CrossRef] [PubMed]
  160. Laure, F.; Raharivelomanana, P.; Butaud, J.F.; Bianchini, J.P.; Gaydou, E.M. Screening of anti-HIV-1 inophyllums by HPLC-DAD of Calophyllum inophyllum leaf extracts from French Polynesia islands. Anal. Chim. Acta 2008, 624, 147–153. [Google Scholar] [CrossRef] [PubMed]
  161. Currens, M.J.; Mariner, J.M.; McMahon, J.B.; Boyd, M.R. Kinetic analysis of inhibition of human immunodeficiency virus type-1 reverse transcriptase by calanolide a. J. Pharmacol. Exp. Ther. 1996, 279, 652–661. [Google Scholar] [PubMed]
  162. Galinis, D.L.; Fuller, R.W.; McKee, T.C.; Cardellina, J.H.; Gulakowski, R.J.; McMahon, J.B.; Boyd, M.R. Structure−activity modifications of the HIV-1 inhibitors (+)-calanolide a and (−)-calanolide b1. J. Med. Chem. 1996, 39, 4507–4510. [Google Scholar] [CrossRef] [PubMed]
  163. Kashman, Y.; Gustafson, K.R.; Fuller, R.; Cardellina, J., 2nd; McMahon, J.; Currens, M.; Buckheit, R., Jr.; Hughes, S.; Cragg, G.; Boyd, M. The calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum lanigerum. J. Med. Chem. 1992, 35, 2735–2743. [Google Scholar] [CrossRef] [PubMed]
  164. McKee, T.C.; Fuller, R.W.; Covington, C.D.; Cardellina Ii, J.H.; Gulakowski, R.J.; Krepps, B.L.; McMahon, J.B.; Boyd, M.R. New pyranocoumarins isolated from Calophyllum lanigerum and Calophyllum teysmannii. J. Nat. Prod. 1996, 59, 754–758. [Google Scholar] [CrossRef] [PubMed]
  165. Alkhamaiseh, S.I.; Taher, M.; Ahmad, F. The phytochemical contents and antimicrobial activities of Malaysian Calophyllum rubiginosum. Am. J. Appl. Sci. 2011, 8, 201–205. [Google Scholar] [CrossRef]
  166. Magadula, J.J.; Tewtrakul, S. Anti-HIV-1 protease activities of crude extracts of some Garcinia species growing in Tanzania. Afr. J. Biotechnol. 2010, 9, 1848–1852. [Google Scholar]
  167. Zhou, P.; Takaishi, Y.; Duan, H.; Chen, B.; Honda, G.; Itoh, M.; Takeda, Y.; Kodzhimatov, O.K.; Lee, K.H. Coumarins and bicoumarin from Ferula sumbul: Anti-HIV activity and inhibition of cytokine release. Phytochemistry 2000, 53, 689–697. [Google Scholar] [CrossRef]
  168. Magadula, J.J.; Suleimani, H.O. Cytotoxic and anti-HIV activities of some Tanzanian Garcinia species. Tanzania J. Health Res. 2010, 12. [Google Scholar] [CrossRef]
  169. Chen, S.X.; Wan, M.; Loh, B.N. Active constituents against HIV-1 protease from Garcinia mangostana. Planta Med. 1996, 62, 381–382. [Google Scholar] [CrossRef] [PubMed]
  170. Rimando, A.M.; Pezzuto, J.M.; Farnsworth, N.R.; Santisuk, T.; Reutrakul, V.; Kawanishi, K. New lignans from Anogeissus acuminata with HIV-1 reverse transcriptase inhibitory activity. J. Nat. Prod. 1994, 57, 896–904. [Google Scholar] [CrossRef] [PubMed]
  171. Mushi, N.F.; Mbwambo, Z.H.; Innocent, E.; Tewtrakul, S. Antibacterial, anti-HIV-1 protease and cytotoxic activities of aqueous ethanolic extracts from Combretum adenogonium Steud. Ex A. Rich (Combretaceae). BMC Complement. Altern. Med. 2012, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  172. Bessong, P.O.; Obi, C.L.; Andréola, M.L.; Rojas, L.B.; Pouységu, L.; Igumbor, E.; Meyer, J.J.M.; Quideau, S.; Litvak, S. Evaluation of selected south african medicinal plants for inhibitory properties against human immunodeficiency virus type 1 reverse transcriptase and integrase. J. Ethnopharmacol. 2005, 99, 83–91. [Google Scholar] [CrossRef] [PubMed]
  173. Asres, K.; Bucar, F. Anti-HIV activity against immunodeficiency virus type 1 (HIV-I) and type II (HIV-II) of compounds isolated from the stem bark of Combtetum molle. Ethiop. Med. J. 2005, 43, 15–20. [Google Scholar] [PubMed]
  174. Asres, K.; Bucar, F.; Kartnig, T.; Witvrouw, M.; Pannecouque, C.; De Clercq, E. Antiviral activity against human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2) of ethnobotanically selected Ethiopian medicinal plants. Phytother. Res. 2001, 15, 62–69. [Google Scholar] [CrossRef]
  175. El-Mekkawy, S.; Meselhy, M.R.; Kusumoto, I.T.; Kadota, S.; Hattori, M.; Namba, T. Inhibitory effects of Egyptian folk medicines on human immunodeficiency virus (HIV) reverse transcriptase. Chem. Pharm. Bull. 1995, 43, 641–648. [Google Scholar] [CrossRef] [PubMed]
  176. Valsaraj, R.; Pushpangadan, P.; Smitt, U.W.; Adsersen, A.; Christensen, S.B.; Sittie, A.; Nyman, U.; Nielsen, C.; Olsen, C.E. New anti-HIV-1, antimalarial, and antifungal compounds from Terminalia bellerica. J. Nat. Prod. 1997, 60, 739–742. [Google Scholar] [CrossRef] [PubMed]
  177. Ahn, M.J.; Chul, Y.K.; Ji, S.L.; Tae, G.K.; Seung, H.K.; Lee, C.K.; Lee, B.B.; Shin, C.G.; Huh, H.; Kim, J. Inhibition of HIV-1 integrase by galloyl glucoses from Terminalia chebula and flavonol glycoside gallates from Euphorbia pekinensis. Planta Med. 2002, 68, 457–459. [Google Scholar] [CrossRef] [PubMed]
  178. Chauke, M.A.; Shai, L.J.; Mogale, M.A.; Mokgotho, M.P. Antibacterial and anti HIV 1 reverse transcriptase activity of selected medicinal plants from Phalaborwa, South Africa. Res. J. Med. Plant 2016, 10, 388–395. [Google Scholar]
  179. Tshikalange, T.E.; Meyer, J.J.M.; Lall, N.; Muñoz, E.; Sancho, R.; Van de Venter, M.; Oosthuizen, V. In vitro anti-HIV-1 properties of ethnobotanically selected South African plants used in the treatment of sexually transmitted diseases. J. Ethnopharmacol. 2008, 119, 478–481. [Google Scholar] [CrossRef] [PubMed]
  180. Schröder, H.C.; Merz, H.; Steffen, R.; Müller, W.E.G.; Sarin, P.S.; Trumm, S.; Schulz, J.; Eich, E. Differential in vitro anti-HIV activity of natural lignans. Z. Naturforsch. C 1990, 45, 1215–1221. [Google Scholar] [PubMed]
  181. Yamamoto, T.; Takahashi, H.; Sakai, K.; Kowithayakorn, T.; Koyano, T. Screening of Thai plants for anti-HIV-1 activity. Nat. Med. 1997, 51, 541–546. [Google Scholar]
  182. Anonymous. Rubitecan: 9-NC, 9-Nitro-20(S)-Camptothecin, 9-Nitro-Camptothecin, 9-Nitrocamptothecin, RFS 2000, RFS2000. Drugs R D 2004, 5, 305–311. [Google Scholar]
  183. Ju Gwon, P.; Jong Cheol, P.; Jong Moon, H.; Sung Jong, P.; Da Rae, C.; Dong Young, S.; Ky Young, P.; Hyun Wook, C.; Moon Sung, K. Phenolic compounds from Orostachys japonicus having anti-HIV-1 protease activity. Nat. Prod. Sci. 2000, 6, 117–121. [Google Scholar]
  184. Okoye, E.L.; Nworu, C.S.; Ezeifeka, G.O.; Esimone, C.O. Inhibition of HIV-1 lentiviral particles infectivity by Gynostemma pentaphyllum extracts in a viral vectorbased assay. Afr. J. Biotechnol. 2012, 11, 1782–1788. [Google Scholar] [CrossRef]
  185. Chen, J.C.; Zhang, G.H.; Zhang, Z.Q.; Qiu, M.H.; Zheng, Y.T.; Yang, L.M.; Yu, K.B. Octanorcucurbitane and cucurbitane triterpenoids from the tubers of Hemsleya endecaphylla with HIV-1 inhibitory activity. J. Nat. Prod. 2008, 71, 153–155. [Google Scholar] [CrossRef] [PubMed]
  186. Thakur, G.S.; Bag, M.; Sanodiya, B.S.; Bhadauriya, P.; Debnath, M.; Prasad, G.B.K.S.; Bisen, P.S. Momordica balsamina: A medicinal and neutraceutical plant for health care management. Curr. Pharm. Biotechnol. 2009, 10, 667–682. [Google Scholar] [CrossRef] [PubMed]
  187. Lee-Huang, S.; Huang, P.L.; Nara, P.L.; Chen, H.-C.; Kung, H.-F.; Huang, P.; Huang, H.I.; Huang, P.L. A new class of anti-HIV agents: GAP31, DAPs 30 and 32. FEBS Lett. 1990, 272, 12–18. [Google Scholar] [CrossRef]
  188. Lee-Huang, S.; Huang, P.L.; Kung, H.F.; Li, B.Q.; Huang, P.L.; Huang, P.; Huang, H.I.; Chen, H.C. Tap 29: An anti-human immunodeficiency virus protein from Trichosanthes kirilowii that is nontoxic to intact cells. Proc. Natl. Acad. Sci. USA 1991, 88, 6570–6574. [Google Scholar] [CrossRef] [PubMed]
  189. Amouroux, P.; Jean, D.; Lamaison, J.L. Antiviral activity in vitro of Cupressus sempervirens on two human retroviruses HIV and htlv. Phytother. Res. 1998, 12, 367–368. [Google Scholar] [CrossRef]
  190. Offergeld, R.; Reinecker, C.; Gumz, E.; Schrum, S.; Treiber, R.; Neth, R.D.; Gohla, S.H. Mitogenic activity of high molecular polysaccharide fractions isolated from the Cuppressaceae Thuja occidentalis L. Enhanced cytokine-production by thyapolysaccharide, g-fraction (TPSg). Leukemia 1992, 6 (Suppl. 3), 189S–191S. [Google Scholar] [PubMed]
  191. Chaniad, P.; Wattanapiromsakul, C.; Pianwanit, S.; Tewtrakul, S. Anti-HIV-1 integrase compounds from Dioscorea bulbifera and molecular docking study. Pharm. Biol. 2016, 54, 1077–1085. [Google Scholar] [CrossRef] [PubMed]
  192. Meragelman, K.M.; McKee, T.C.; Boyd, M.R. Anti-HIV prenylated flavonoids from Monotes africanus. J. Nat. Prod. 2001, 64, 546–548. [Google Scholar] [CrossRef] [PubMed]
  193. Min, B.S.; Tomiyama, M.; Ma, C.M.; Nakamura, N.; Hattori, M. Kaempferol acetylrhamnosides from the rhizome of Dryopteris crassirhizoma and their inhibitory effects on three different activities of human immunodeficiency virus-1 reverse transcriptase. Chem. Pharm. Bull. 2001, 49, 546–550. [Google Scholar] [CrossRef] [PubMed]
  194. Lee, J.S.; Miyashiro, H.; Nakamura, N.; Hattori, M. Two new triterpenes from the rhizome of Dryopteris crassirhizoma, and inhibitory activities of its constituents on human immunodeficiency virus-1 protease. Chem. Pharm. Bull. 2008, 56, 711–714. [Google Scholar] [CrossRef] [PubMed]
  195. Mahapatra, A.; Tshikalange, T.E.; Meyer, J.J.M.; Lall, N. Synthesis and HIV-1 reverse transcriptase inhibition activity of 1,4-naphthoquinone derivatives. Chem. Nat. Compd. 2012, 47, 883–887. [Google Scholar] [CrossRef]
  196. Lee, S.-A.; Hong, S.-K.; Suh, C.-I.; Oh, M.-H.; Park, J.-H.; Choi, B.-W.; Park, S.-W.; Paik, S.-Y. Anti-HIV-1 efficacy of extracts from medicinal plants. J. Microbiol. 2010, 48, 249–252. [Google Scholar] [CrossRef] [PubMed]
  197. El-Mekkawy, S.; Meselhy, M.R.; Nakamura, N.; Hattori, M.; Kawahata, T.; Otake, T. Anti-HIV-1 phorbol esters from the seeds of Croton tiglium. Phytochemistry 2000, 53, 457–464. [Google Scholar] [CrossRef]
  198. Ayatollahi, A.M.; Zarei, S.M.; Memarnejadian, A.; Ghanadian, M.; Moghadam, M.H.; Kobarfard, F. Triterpene constituents of Euphorbia erythradenia Bioss. And their anti-HIV activity. Iran. J. Pharm. Res. 2016, 15, 19–27. [Google Scholar] [PubMed]
  199. Zheng, W.; Cui, Z.; Zhu, Q. Cytotoxicity and antiviral activity of the compounds from Euphorbia kansui. Planta Med. 2007, 64, 754–756. [Google Scholar] [CrossRef] [PubMed]
  200. Zhao, J.X.; Liu, C.P.; Qi, W.Y.; Han, M.L.; Han, Y.S.; Wainberg, M.A.; Yue, J.M. Eurifoloids A-R, structurally diverse diterpenoids from Euphorbia Neriifolia. J. Nat. Prod. 2014, 77, 2224–2233. [Google Scholar] [CrossRef] [PubMed]
  201. Yan, S.L.; Li, Y.H.; Chen, X.Q.; Liu, D.; Chen, C.H.; Li, R.T. Diterpenes from the stem bark of Euphorbia neriifolia and their in vitro anti-HIV activity. Phytochemistry 2018, 145, 40–47. [Google Scholar] [CrossRef] [PubMed]
  202. Cox, P.A. Saving the ethnopharmacological heritage of Samoa. J. Ethnopharmacol. 1993, 38, 181–188. [Google Scholar] [CrossRef]
  203. Arisawa, M. A review of the biological activity and chemistry of Mallotus japonicus (Euphorbiaceae). Phytomedicine 1994, 1, 261–269. [Google Scholar] [CrossRef]
  204. Pengsuparp, T.; Cai, L.; Constant, H.; Fong, H.H.S.; Lin, L.Z.; Kinghorn, A.D.; Pezzuto, J.M.; Cordell, G.A.; Ingolfsdóttir, K.; Wagner, H.; et al. Mechanistic evaluation of new plant-derived compounds that inhibit HIV-1 reverse transcriptase. J. Nat. Prod. 1995, 58, 1024–1031. [Google Scholar] [CrossRef] [PubMed]
  205. Pengsuparp, T.; Cai, L.; Fong, H.H.S.; Kinghorn, A.D.; Pezzuto, J.M.; Wani, M.C.; Wall, M.E. Pentacyclic triterpenes derived from Maprounea africana are potent inhibitors of HIV-1 reverse transcriptase. J. Nat. Prod. 1994, 57, 415–418. [Google Scholar] [CrossRef] [PubMed]
  206. Wang, H.X.; Ng, T.B. Examination of lectins, polysaccharopeptide, polysaccharide, alkaloid, coumarin and trypsin inhibitors for inhibitory activity against human immunodeficiency virus reverse transcriptase and glycohydrolases. Planta Med. 2001, 67, 669–672. [Google Scholar] [CrossRef] [PubMed]
  207. Ranki, A.; Nyberg, M.; Ovod, V.; Haltia, M.; Elovaara, I.; Raininko, R.; Haapasalo, H.; Krohn, K. Abundant expression of HIV Nef and Rev proteins in brain astrocytes in vivo is associated with dementia. AIDS 1995, 9, 1001–1008. [Google Scholar] [CrossRef] [PubMed]
  208. Zhang, L.; Luo, R.-H.; Wang, F.; Jiang, M.-Y.; Dong, Z.-J.; Yang, L.-M.; Zheng, Y.-T.; Liu, J.-K. Highly functionalized daphnane diterpenoids from Trigonostemon thyrsoideum. Organ. Lett. 2010, 12, 152–155. [Google Scholar] [CrossRef] [PubMed]
  209. Cheng, Y.-Y.; Chen, H.; He, H.-P.; Zhang, Y.; Li, S.-F.; Tang, G.-H.; Guo, L.-L.; Yang, W.; Zhu, F.; Zheng, Y.-T.; et al. Anti-HIV active daphnane diterpenoids from Trigonostemon thyrsoideum. Phytochemistry 2013, 96, 360–369. [Google Scholar] [CrossRef] [PubMed]
  210. Ma, C.-M.; Nakamura, N.; Hattori, M. Saponins and C-glycosyl flavones from the seeds of Abrus precatorius. Chem. Pharm. Bull. 1998, 46, 982–987. [Google Scholar] [CrossRef]
  211. Chinsembu, K.C. Ethnobotanical study of plants used in the management of HIV/AIDS-related diseases in Livingstone, Southern Province, Zambia. J. Evid.-Based Complement. Altern. Med. 2016, 2016, 4238625. [Google Scholar] [CrossRef] [PubMed]
  212. Nutan, S.K.; Modi, M.; Dezzutti, C.S.; Kulshreshtha, S.; Rawat, A.K.S.; Srivastava, S.K.; Malhotra, S.; Verma, A.; Ranga, U.; Gupta, S.K. Extracts from Acacia catechu suppress HIV-1 replication by inhibiting the activities of the viral protease and tat. J. Virol. 2013, 10, 309. [Google Scholar] [CrossRef] [PubMed]
  213. Abdallah, R.M.; Ghazy, N.M.; El-Sebakhy, N.; Pirillo, A.; Verotta, L. Astragalosides from Egyptian Astragalus spinosus Vahl. Pharmazie 1993, 48, 452–454. [Google Scholar] [PubMed]
  214. Taylor, D.L.; Nash, R.; Fellows, L.E.; Kang, M.S.; Tyms, A.S. Naturally occurring pyrrolizidines: Inhibition of α-glucosidase 1 and anti-HIV activity of one steroisomer. Antivir. Chem. Chemother. 1992, 3, 273–277. [Google Scholar] [CrossRef]
  215. Mahmood, N.; Pizza, C.; Aquino, R.; De Tommasi, N.; Piacente, S.; Colman, S.; Burke, A.; Hay, A.J. Inhibition of HIV infection by flavanoids. Antivir. Res. 1993, 22, 189–199. [Google Scholar] [CrossRef]
  216. Mohammed, M.M.D.; Ibrahim, N.A.; Awad, N.E.; Matloub, A.A.; Mohamed-Ali, A.G.; Barakat, E.E.; Mohamed, A.E.; Colla, P.L. Anti-HIV-1 and cytotoxicity of the alkaloids of Erythrina abyssinica Lam. growing in Sudan. Nat. Prod. Res. 2012, 26, 1565–1575. [Google Scholar] [CrossRef] [PubMed]
  217. Lee, J.; Oh, W.K.; Ahn, J.S.; Kim, Y.H.; Mbafor, J.T.; Wandji, J.; Fomum, Z.T. Prenylisoflavonoids from Erythrina senegalensis as novel HIV-1 protease inhibitors. Planta Med. 2009, 75, 268–270. [Google Scholar] [CrossRef] [PubMed]
  218. Lo, W.L.; Wu, C.C.; Chang, F.R.; Wang, W.Y.; Khalil, A.T.; Lee, K.H.; Wu, Y.C. Antiplatelet and anti-HIV constituents from Euchresta formosana. Nat. Prod. Res. 2003, 17, 91–97. [Google Scholar] [CrossRef] [PubMed]
  219. Konoshima, T.; Yasuda, I.; Kashiwada, Y.; Cosentino, L.M.; Lee, K.-H. Anti-AIDS agents, 21. Triterpenoid saponins as anti-HIV principles from fruits of Gleditsia japonica and Gymnocladus chinesis, and a structure-activity correlation. J. Nat. Prod. 1995, 58, 1372–1377. [Google Scholar] [CrossRef] [PubMed]
  220. Cheng, B.H.; Zhou, X.; Wang, Y.; Chan, J.Y.W.; Lin, H.Q.; Or, P.M.Y.; Wan, D.C.C.; Leung, P.C.; Fung, K.P.; Wang, Y.F.; et al. Herb-drug interaction between an anti-HIV Chinese herbal sh formula and atazanavir in vitro and in vivo. J. Ethnopharmacol. 2015, 162, 369–376. [Google Scholar] [CrossRef] [PubMed]
  221. Ito, M.; Sato, A.; Hirabayashi, K.; Tanabe, F.; Shigeta, S.; Baba, M.; De Clercq, E.; Nakashima, H.; Yamamoto, N. Mechanism of inhibitory effect of glycyrrhizin on replication of human immunodeficiency virus(HIV). Antivir. Res. 1988, 10, 289–298. [Google Scholar] [CrossRef]
  222. Baltina, L.A. Chemical modification of glycyrrhizic acid as a route to new bioactive compounds for medicine. Curr. Med. Chem. 2003, 10, 155–171. [Google Scholar] [CrossRef] [PubMed]
  223. Takada, K.; Bermingham, A.; O’Keefe, B.R.; Wamiru, A.; Beutler, J.A.; Le Grice, S.F.J.; Lloyd, J.; Gustafson, K.R.; McMahon, J.B. An HIV RNAse H inhibitory 1,3,4,5-tetragalloylapiitol from the African plant Hylodendron gabunensis. J. Nat. Prod. 2007, 70, 1647–1649. [Google Scholar] [CrossRef] [PubMed]
  224. Likhitwitayawuid, K.; Sritularak, B.; Benchanak, K.; Lipipun, V.; Mathew, J.; Schinazi, R.F. Phenolics with antiviral activity from Millettia erythrocalyx and Artocarpus lakoocha. Nat. Prod. Res. 2005, 19, 177–182. [Google Scholar] [CrossRef] [PubMed]
  225. Theo, A.; Masebe, T.; Suzuki, Y.; Kikuchi, H.; Wada, S.; Obi, C.L.; Bessong, P.O.; Usuzawa, M.; Oshima, Y.; Hattori, T. Peltophorum africanum, a traditional South African medicinal plant, contains an anti HIV-1 constituent, betulinic acid. Tohoku J. Exp. Med. 2009, 217, 93–99. [Google Scholar] [CrossRef] [PubMed]
  226. Fang, E.F.; Lin, P.; Wong, J.H.; Tsao, S.W.; Ng, T.B. A lectin with anti-HIV-1 reverse transcriptase, antitumor, and nitric oxide inducing activities from seeds of Phaseolus vulgaris cv. extralong autumn purple bean. J. Agric. Food Chem. 2010, 58, 2221–2229. [Google Scholar] [CrossRef] [PubMed]
  227. Li, L.; Li, X.; Shi, C.; Deng, Z.; Fu, H.; Proksch, P.; Lin, W. Pongamone A-E, five flavonoids from the stems of a mangrove plant, Pongamia pinnata. Phytochemistry 2006, 67, 1347–1352. [Google Scholar] [CrossRef] [PubMed]
  228. Kashiwada, Y.; Wang, H.-K.; Nagao, T.; Kitanaka, S.; Yasuda, I.; Fujioka, T.; Yamagishi, T.; Cosentino, L.M.; Kozuka, M.; Okabe, H.; et al. Anti-AIDS agents. 30. Anti-HIV activity of oleanolic acid, pomolic acid, and structurally related triterpenoids. J. Nat. Prod. 1998, 61, 1090–1095. [Google Scholar] [CrossRef] [PubMed]
  229. Thayil Seema, M.; Thyagarajan, S.P. Methanol and aqueous extracts of Ocimum kilimandscharicum (Karpuratulasi) inhibits HIV-1 reverse transcriptase in vitro. Int. J. Pharmacogn. Phytochem. Res. 2016, 8, 1099–1103. [Google Scholar]
  230. Behbahani, M.; Sayedipour, S.; Pourazar, A.; Shanehsazzadeh, M. In vitro anti-HIV-1 activities of kaempferol and kaempferol-7-O-glucoside isolated from Securigera securidaca. Res. Pharm. Sci. 2014, 9, 463–469. [Google Scholar] [PubMed]
  231. Quintero, A.; Fabbro, R.; Maillo, M.; Barrios, M.; Milano, M.B.; Fernandez, A.; Williams, B.; Michelangeli, F.; Rangel, H.R.; Pujol, F.H. Inhibition of hepatitis B virus and human immunodeficiency virus (HIV-1) replication by Warscewiczia coccinea (Vahl) Kl. (Rubiaceae) ethanol extract. Nat. Prod. Res. 2011, 25, 1565–1569. [Google Scholar] [CrossRef] [PubMed]
  232. Dong, M.; Quan, L.Q.; Dai, W.F.; Yan, S.L.; Chen, C.H.; Chen, X.Q.; Li, R.T. Anti-inflammatory and anti-HIV compounds from Swertia bimaculata. Planta Med. 2017, 83, 1368–1373. [Google Scholar] [CrossRef] [PubMed]
  233. Wang, J.-N.; Hou, C.-Y.; Liu, Y.-L.; Lin, L.-Z.; Gil, R.R.; Cordell, G.A. Swertifrancheside, an HIV-reverse transcriptase inhibitor and the first flavone-xanthone dimer, from Swertia franchetiana. J. Nat. Prod. 1994, 57, 211–217. [Google Scholar] [CrossRef] [PubMed]
  234. Du, X.G.; Wang, W.; Zhang, Q.Y.; Cheng, J.; Avula, B.; Khan, I.A.; Guo, D.A. Identification of xanthones from Swertia punicea using high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2012, 26, 2913–2923. [Google Scholar] [CrossRef] [PubMed]
  235. Chang, C.-C.; Lin, C.-N.; Lin, J.-Y. Inhibition of Moloney murine leukemia virus reverse transcriptase activity by tetrahydroxyxanthones isolated from the Chinese herb, Tripterospermum lanceolatum (Hyata). Antivir. Res. 1992, 19, 119–127. [Google Scholar] [CrossRef]
  236. Ji, S.L.; Hattori, M.; Kim, J. Inhibition of HIV-1 protease and RNase H of HIV-1 reverse transcriptase activities by long chain phenols from the sarcotestas of Ginkgo biloba. Planta Med. 2008, 74, 532–534. [Google Scholar]
  237. Lü, J.M.; Yan, S.; Jamaluddin, S.; Weakley, S.M.; Liang, Z.; Siwak, E.B.; Yao, Q.; Chen, C. Ginkgolic acid inhibits HIV protease activity and HIV infection in vitro. Med. Sci. Monit. 2012, 18, BR293–BR298. [Google Scholar] [CrossRef] [PubMed]
  238. Rowley, D.C.; Hansen, M.S.; Rhodes, D.; Sotriffer, C.A.; Ni, H.; McCammon, J.A.; Bushman, F.D.; Fenical, W. Thalassiolins A-C: New marine-derived inhibitors of HIV cDNA integrase. Bioorgan. Med. Chem. 2002, 10, 3619–3625. [Google Scholar] [CrossRef]
  239. Reutrakul, V.; Chanakul, W.; Pohmakotr, M.; Jaipetch, T.; Yoosook, C.; Kasisit, J.; Napaswat, C.; Santisuk, T.; Prabpai, S.; Kongsaeree, P.; et al. Anti-HIV-1 constituents from leaves and twigs of Cratoxylum arborescens. Planta Med. 2006, 72, 1433–1435. [Google Scholar] [CrossRef] [PubMed]
  240. Sokmen, A.; Jones, B.M.; Erturk, M. Antimicrobial activity of extracts from the cell cultures of some Turkish medicinal plants. Phytother. Res. 1999, 13, 355–357. [Google Scholar] [CrossRef]
  241. Esposito, F.; Sanna, C.; Del Vecchio, C.; Cannas, V.; Venditti, A.; Corona, A.; Bianco, A.; Serrilli, A.M.; Guarcini, L.; Parolin, C.; et al. Hypericum hircinum L. components as new single-molecule inhibitors of both HIV-1 reverse transcriptase-associated DNA polymerase and ribonuclease H activities. Pathog. Dis. 2013, 68, 116–124. [Google Scholar] [CrossRef] [PubMed]
  242. Birt, D.F.; Widrlechner, M.P.; Hammer, K.D.P.; Hillwig, M.L.; Wei, J.; Kraus, G.A.; Murphy, P.A.; McCoy, J.A.; Wurtele, E.S.; Neighbors, J.D.; et al. Hypericum in infection: Identification of anti-viral and anti-inflammatory constituents. Pharm. Biol. 2009, 47, 774–782. [Google Scholar] [CrossRef] [PubMed]
  243. Fuller, R.W.; Westergaard, C.K.; Collins, J.W.; Cardellina, J.H.; Boyd, M.R. Vismiaphenones D−G, new prenylated benzophenones from Vismia cayennensis. J. Nat. Prod. 1999, 62, 67–69. [Google Scholar] [CrossRef] [PubMed]
  244. Drewes, S.E.; Khan, F. The African potato (Hypoxis hemerocallidea): A chemical-historical perspective. S. Afr. J. Sci. 2004, 100, 425–430. [Google Scholar]
  245. Hara, H.; Maruyama, N.; Yamashita, S.; Hayashi, Y.; Lee, K.H.; Bastow, K.F.; Chairul; Marumoto, R.; Imakura, Y. Elecanacin, a novel new naphthoquinone from the bulb of Eleutherine americana. Chem. Pharm. Bull. 1997, 45, 1714–1716. [Google Scholar] [CrossRef]
  246. Byung, S.M.; Hyeong, K.L.; Sang, M.L.; Young, H.K.; Ki, H.B.; Otake, T.; Nakamura, N.; Hattori, M. Anti-human immunodeficiency virus-type 1 activity of constituents from Juglans mandshurica. Arch. Pharm. Res. 2002, 25, 441–445. [Google Scholar]
  247. Kim, H.K.; Lee, H.K.; Shin, C.G.; Huh, H. HIV integrase inhibitory activity of Agastache rugosa. Arch. Pharm. Res. 1999, 22, 520–523. [Google Scholar] [CrossRef] [PubMed]
  248. Tang, X.; Chen, H.; Zhang, X.; Quan, K.; Sun, M. Screening anti-HIV Chinese materia medica with HIV and equine infectious anemic virus reverse transcriptase. J. Tradit. Chin. Med. 1994, 14, 10–13. [Google Scholar] [PubMed]
  249. Shahidul Alam, M.; Quader, M.A.; Rashid, M.A. HIV-inhibitory diterpenoid from Anisomeles indica. Fitoterapia 2000, 71, 574–576. [Google Scholar] [CrossRef]
  250. Bodiwala, H.S.; Sabde, S.; Mitra, D.; Bhutani, K.K.; Singh, I.P. Anti-HIV diterpenes from Coleus forskohlii. Nat. Prod. Commun. 2009, 4, 1173–1175. [Google Scholar] [PubMed]
  251. Kreis, W.; Kaplan, M.H.; Freeman, J.; Sun, D.K.; Sarin, P.S. Inhibition of HIV replication by Hyssop officinalis extracts. Antivir. Res. 1990, 14, 323–337. [Google Scholar] [CrossRef]
  252. Miraj, S.; Azizi, N.; Kiani, S. A review of chemical components and pharmacological effects of Melissa officinalis L. Der Pharm. Lett. 2016, 8, 229–237. [Google Scholar]
  253. Amzazi, S.; Ghoulami, S.; Bakri, Y.; Il Idrissi, A.; Fkih-Tétouani, S.; Benjouad, A. Human immunodeficiency virus type 1 inhibitory activity of Mentha longifolia. Thérapie 2003, 58, 531–534. [Google Scholar] [CrossRef] [PubMed]
  254. Behbahani, M.; Mohabatkar, H.; Soltani, M. Anti-HIV-1 activities of aerial parts of Ocimum basilicum and its parasite Cuscuta campestris. J. Antivir. Antiretrovir. 2013, 5, 57–61. [Google Scholar] [CrossRef]
  255. Kapewangolo, P.; Omolo, J.; Fonteh, P.; Kandawa-Schulz, M.; Meyer, D. Triterpenoids from Ocimum labiatum activates latent HIV-1 expression in vitro: Potential for use in adjuvant therapy. Molecules 2017, 22, 1703. [Google Scholar] [CrossRef] [PubMed]
  256. Kapewangolo, P.; Hussein, A.A.; Meyer, D. Inhibition of HIV-1 enzymes, antioxidant and anti-inflammatory activities of Plectranthus barbatus. J. Ethnopharmacol. 2013, 149, 184–190. [Google Scholar] [CrossRef] [PubMed]
  257. Tabba, H.D.; Chang, R.S.; Smith, K.M. Isolation, purification, and partial characterization of prunellin, an anti-HIV component from aqueous extracts of Prunella vulgaris. Antivir. Res. 1989, 11, 263–273. [Google Scholar] [CrossRef]
  258. Pariš, A.; Štrukelj, B.; Renko, M.; Turk, V.; Pukl, M.; Umek, A.; Korant, B.D. Inhibitory effect of carnosolic acid on HIV-1 protease in cell-free assays. J. Nat. Prod. 1993, 56, 1426–1430. [Google Scholar] [CrossRef] [PubMed]
  259. Fu, M.; Ng, T.B.; Jiang, Y.; Pi, Z.F.; Liu, Z.K.; Li, L.; Liu, F. Compounds from rose (Rosa rugosa) flowers with human immunodeficiency virus type 1 reverse transcriptase inhibitory activity. J. Pharm. Pharmacol. 2006, 58, 1275–1280. [Google Scholar] [CrossRef] [PubMed]
  260. Abd-Elazem, I.S.; Chen, H.S.; Bates, R.B.; Huang, R.C.C. Isolation of two highly potent and non-toxic inhibitors of human immunodeficiency virus type 1 (HIV-1) integrase from Salvia miltiorrhiza. Antivir. Res. 2002, 55, 91–106. [Google Scholar] [CrossRef]
  261. Geuenich, S.; Goffinet, C.; Venzke, S.; Nolkemper, S.; Baumann, I.; Plinkert, P.; Reichling, J.; Keppler, O.T. Aqueous extracts from peppermint, sage and lemon balm leaves display potent anti-HIV-1 activity by increasing the virion density. Retrovirology 2008, 5, 27. [Google Scholar] [CrossRef] [PubMed]
  262. Bailly, F.; Queffelec, C.; Mbemba, G.; Mouscadet, J.F.; Cotelle, P. Synthesis and HIV-1 integrase inhibitory activities of caffeic acid dimers derived from Salvia officinalis. Bioorgan. Med. Chem. Lett. 2005, 15, 5053–5056. [Google Scholar] [CrossRef] [PubMed]
  263. Watanabe, M.; Kobayashi, Y.; Ogihara, J.; Kato, J.; Oishi, K. HIV-1 reverse transcriptase-inhibitory compound in Salvia officinalis. Food Sci. Technol. Res. 2000, 6, 216–220. [Google Scholar] [CrossRef]
  264. Zhang, Z.F.; Peng, Z.G.; Gao, L.; Dong, B.; Li, J.R.; Li, Z.Y.; Chen, H.S. Three new derivatives of anti-HIV-1 polyphenols isolated from Salvia yunnanensis. J. Asian Nat. Prod. Res. 2008, 10, 391–396. [Google Scholar] [CrossRef] [PubMed]
  265. Li, B.Q.; Fu, T.; Yan, Y.D.; Baylor, N.W.; Ruscetti, F.W.; Kung, H.F. Inhibition of HIV infection by baicalin-A flavonoid compound purified from Chinese herbal medicine. Cell. Mol. Biol. Res. 1993, 39, 119–124. [Google Scholar] [PubMed]
  266. Wei, Y.; Ma, C.M.; Chen, D.Y.; Hattori, M. Anti-HIV-1 protease triterpenoids from Stauntonia obovatifoliola Hayata subsp. Intermedia. Phytochemistry 2008, 69, 1875–1879. [Google Scholar] [CrossRef] [PubMed]
  267. Zhang, C.F.; Sun, Q.S.; Wáng, Z.T.; Masao, H.; Supinya, T. Inhibitory activities of tannins extracted from stem of Lindera aggregata against HIV-1 integrase. Chin. Pharm. J. 2003, 38, 911–914. [Google Scholar]
  268. Zhang, C.F.; Nakamura, N.; Tewtrakul, S.; Hattori, M.; Sun, Q.S.; Wang, Z.T.; Fujiwara, T. Sesquiterpenes and alkaloids from Lindera chunii and their inhibitory activities against HIV-1 integrase. Chem. Pharm. Bull. 2002, 50, 1195–1200. [Google Scholar] [CrossRef] [PubMed]
  269. Byung Sun, M.; Bae, K.; Young Ho, K.; Shimotohno, K.; Miyashiro, H.; Hattori, M. Inhibitory activities of Korean plants on HIV-1 protease. Nat. Prod. Sci. 1998, 4, 241–244. [Google Scholar]
  270. Zhang, H.J.; Tan, G.T.; Hoang, V.D.; Hung, N.V.; Cuong, N.M.; Soejarto, D.D.; Pezzuto, J.M.; Fong, H.H.S. Natural anti-HIV agents. Part 2: Litseaverticillol a, a prototypic litseane sesquiterpene from Litsea verticillata. Tetrahedron Lett. 2001, 42, 8587–8591. [Google Scholar] [CrossRef]
  271. He, J.; Chen, X.-Q.; Li, M.-M.; Zhao, Y.; Xu, G.; Cheng, X.; Peng, L.-Y.; Xie, M.-J.; Zheng, Y.-T.; Wang, Y.-P.; et al. Lycojapodine a, a novel alkaloid from Lycopodium japonicum. Organ. Lett. 2009, 11, 1397–1400. [Google Scholar] [CrossRef] [PubMed]
  272. Sharma, A.; Rangari, V. HIV-1 reverse transcriptase and protease assay of methanolic extracts of Adansonia digitata L. Int. J. Pharm. Pharm. Sci. 2016, 8, 124–127. [Google Scholar] [CrossRef]
  273. Subramanya, M.D.; Pai, S.R.; Upadhya, V.; Ankad, G.M.; Bhagwat, S.S.; Hegde, H.V. Total polyphenolic contents and in vitro antioxidant properties of eight Sida species from Western Ghats, India. J. Ayurveda Integr. Med. 2015, 6, 24–28. [Google Scholar] [PubMed]
  274. Kainuma, M.; Baba, S.; Chan, H.T.; Inoue, T.; Tangah, J.; Chan, E.W.C. Medicinal plants of sandy shores: A short review on Calophyllum inophyllum and Thespesia populnea. Int. J. Pharmacogn. Phytochem. Res. 2016, 8, 2056–2062. [Google Scholar]
  275. Puripattanavong, J.; Tungcharoen, P.; Chaniad, P.; Pianwanit, S.; Tewtrakul, S. Anti-HIV-1 integrase effect of compounds from Aglaia andamanica leaves and molecular docking study with acute toxicity test in mice. Pharm. Biol. 2016, 54, 654–659. [Google Scholar] [CrossRef] [PubMed]
  276. Eid, A.M.M.; Elmarzugi, N.A.; El-Enshasy, H.A. A review on the phytopharmacological effect of Swietenia macrophylla. Int. J. Pharm. Pharm. Sci. 2013, 5, 47–53. [Google Scholar]
  277. Matsuse, I.T.; Nakabayashi, T.; Lim, Y.A.; Hussein, G.M.E.; Miyashiro, H.; Kakiuchi, N.; Hattori, M.; Stardjo, S.; Shimotohno, K. A human immunodeficiency virus protease inhibitory substance from Swietenia mahagoni. Phytother. Res. 1997, 11, 433–436. [Google Scholar] [CrossRef]
  278. Yan, M.H.; Cheng, P.; Jiang, Z.Y.; Ma, Y.B.; Zhang, X.M.; Zhang, F.X.; Yang, L.M.; Zheng, Y.T.; Chen, J.J. Periglaucines A-D, anti-HBV and -HIV-1 alkaloids from Pericampylus glaucus. J. Nat. Prod. 2008, 71, 760–763. [Google Scholar] [CrossRef] [PubMed]
  279. Ma, C.M.; Nakamura, N.; Miyashiro, H.; Hattori, M.; Komatsu, K.; Kawahata, T.; Otake, T. Screening of Chinese and Mongolian herbal drugs for anti-human immunodeficiency virus type 1 (HIV-1) activity. Phytother. Res. 2002, 16, 186–189. [Google Scholar] [CrossRef] [PubMed]
  280. Bunluepuech, K.; Tewtrakul, S. Anti-HIV-1 integrase activity of Thai medicinal plants. Songklanakarin J. Sci. Technol. 2009, 31, 289–292. [Google Scholar]
  281. Bunluepuech, K.; Sudsai, T.; Wattanapiromsakul, C.; Tewtrakul, S. Inhibition on HIV-1 integrase activity and nitric oxide production of compounds from Ficus glomerata. Nat. Prod. Commun. 2011, 6, 1095–1098. [Google Scholar] [PubMed]
  282. Groweiss, A.; Cardellina, J.H.; Boyd, M.R. HIV-Inhibitory Prenylated xanthones and flavones from Maclura tinctoria. J. Nat. Prod. 2000, 63, 1537–1539. [Google Scholar] [CrossRef] [PubMed]
  283. Swanson, M.D.; Winter, H.C.; Goldstein, I.J.; Markovitz, D.M. A lectin isolated from bananas is a potent inhibitor of HIV replication. J. Biol. Chem. 2010, 285, 8646–8655. [Google Scholar] [CrossRef] [PubMed]
  284. Kamng'Ona, A.; Moore, J.P.; Lindsey, G.; Brandt, W. Inhibition of HIV-1 and m-MLV reverse transcriptases by a major polyphenol (3,4,5 tri-O-galloylquinic acid) present in the leaves of the South African resurrection plant, Myrothamnus flabellifolia. J. Enzyme Inhib. Med. Chem. 2011, 26, 843–853. [Google Scholar] [CrossRef] [PubMed]
  285. Bokesch, H.R.; Wamiru, A.; Le Grice, S.F.J.; Beutler, J.A.; McKee, T.C.; McMahon, J.B. HIV-1 ribonuclease H inhibitory phenolic glycosides from Eugenia hyemalis. J. Nat. Prod. 2008, 71, 1634–1636. [Google Scholar] [CrossRef] [PubMed]
  286. Mao, Q.C.; Zhou, Y.C.; Li, R.M.; Hu, Y.P.; Liu, S.W.; Li, X.J. Inhibition of HIV-1 mediated cell-cell fusion by saponin fraction from Psidium guajava leaf. Zhong Yao Cai 2010, 33, 1751–1754. [Google Scholar] [PubMed]
  287. Dai, J.P.; Zhao, X.F.; Zeng, J.; Wan, Q.Y.; Yang, J.C.; Li, W.Z.; Chen, X.X.; Wang, G.F.; Li, K.S. Drug screening for autophagy inhibitors based on the dissociation of beclin1-Bcl2 complex using BiFC technique and mechanism of eugenol on anti-influenza a virus activity. PLoS ONE 2013, 8, e61026. [Google Scholar] [CrossRef] [PubMed]
  288. Goo, H.R.; Choi, J.S.; Na, D.H. Simultaneous determination of quercetin and its glycosides from the leaves of Nelumbo nucifera by reversed-phase high-performance liquid chromatography. Arch. Pharm. Res. 2009, 32, 201–206. [Google Scholar] [CrossRef] [PubMed]
  289. Thomford, N.E.; Awortwe, C.; Dzobo, K.; Adu, F.; Chopera, D.; Wonkam, A.; Skelton, M.; Blackhurst, D.; Dandara, C. Inhibition of CYP2B6 by medicinal plant extracts: Implication for use of efavirenz and nevirapine based highly active anti-retroviral therapy (HAART) in resource-limited settings. Molecules 2016, 21, 211. [Google Scholar] [CrossRef] [PubMed]
  290. Nugraha, A.S.; Hilou, A.; Vandegraaff, N.; Rhodes, D.I.; Haritakun, R.; Keller, P.A. Bioactive glycosides from the African medicinal plant Boerhavia erecta L. Nat. Prod. Res. 2015, 29, 1954–1958. [Google Scholar] [CrossRef] [PubMed]
  291. Reutrakul, V.; Ningnuek, N.; Pohmakotr, M.; Yoosook, C.; Napaswad, C.; Kasisit, J.; Santisuk, T.; Tuchinda, P. Anti HIV-1 flavonoid glycosides from Ochna integerrima. Planta Med. 2007, 73, 683–688. [Google Scholar] [CrossRef] [PubMed]
  292. Maroyi, A. Ximenia caffra Sond. (Ximeniaceae) in sub-Saharan Africa: A synthesis and review of its medicinal potential. J. Ethnopharmacol. 2016, 184, 81–100. [Google Scholar] [CrossRef] [PubMed]
  293. Hatano, T.; Yasuhara, T.; Matsuda, M.; Yazaki, K.; Yoshida, T.; Okuda, T. Oenothein B, a dimeric hydrolyzable tannin of cyclic structure. Chem. Pharm. Bull. 1989, 37, 2269–2271. [Google Scholar] [CrossRef]
  294. Hu, Q.F.; Zhou, B.; Huang, J.M.; Gao, X.M.; Shu, L.D.; Yang, G.Y.; Che, C.T. Antiviral phenolic compounds from Arundina gramnifolia. J. Nat. Prod. 2013, 76, 292–296. [Google Scholar] [CrossRef] [PubMed]
  295. Bessong, P.O.; Rojas, L.B.; Obi, L.C.; Tshisikawe, P.M.; Igunbor, E.O. Further screening of venda medicinal plants for activity against HIV type 1 reverse transcriptase and integrase. Afr. J. Biotechnol. 2006, 5, 526–528. [Google Scholar]
  296. Notka, F.; Meier, G.R.; Wagner, R. Inhibition of wild-type human immunodeficiency virus and reverse transcriptase inhibitor-resistant variants by Phyllanthus amarus. Antivir. Res. 2003, 58, 175–186. [Google Scholar] [CrossRef]
  297. Ogata, T.; Higuchi, H.; Mochida, S.; Matsumoto, H.; Kato, A.; Endo, T.; Kaji, A.; Kaji, H. HIV-1 reverse transcriptase inhibitor from Phyllanthus niruri. AIDS Res. Hum. Retrovir. 1992, 8, 1937–1944. [Google Scholar] [CrossRef] [PubMed]
  298. Eberhardt, T.L.; Young, R.A. Assessment of the anti-HIV activity of a pine cone isolate. Planta Med. 1996, 62, 63–65. [Google Scholar] [CrossRef] [PubMed]
  299. Lai, P.K.; Donovan, J.; Takayama, H.; Sakagami, H.; Tanaka, A.; Konno, K.; Nonoyama, M. Modification of human immunodeficiency viral replication by pine cone extracts. AIDS Res. Hum. Retrovir. 1990, 6, 205–217. [Google Scholar] [CrossRef] [PubMed]
  300. Porika, M.; Aileni, M.; Kokkirala, V.R.; Gadidasu, K.; Umate, P.; Rao, A.V.; Devarakonda, R.K.; Abbagani, S. In vitro HIV type-1 reverse transcriptase inhibitory activity from leaf extracts of Scoparia dulcis L. J. Herbs Spices Med. Plants 2009, 15, 241–247. [Google Scholar] [CrossRef]
  301. Esposito, F.; Carli, I.; Del Vecchio, C.; Xu, L.; Corona, A.; Grandi, N.; Piano, D.; Maccioni, E.; Distinto, S.; Parolin, C.; et al. Sennoside a, derived from the traditional Chinese medicine plant Rheum L., is a new dual HIV-1 inhibitor effective on HIV-1 replication. Phytomedicine 2016, 23, 1383–1391. [Google Scholar] [CrossRef] [PubMed]
  302. Zhao, X.H.; Han, F.; Li, Y.L.; Yue, H.L. Preparative isolation and purification of three stilbene glycosides from the Tibetan medicinal plant Rheum tanguticum Maxim. Ex Balf. By high-speed counter-current chromatography. Phytochem. Anal. 2013, 24, 171–175. [Google Scholar] [CrossRef] [PubMed]
  303. Piacente, S.; Pizza, C.; De Tommasi, N.; Mahmood, N. Constituents of Ardisia japonica and their in vitro anti-HIV activity. J. Nat. Prod. 1996, 59, 565–569. [Google Scholar] [CrossRef] [PubMed]
  304. Dai, J.-R.; Decosterd, L.A.; Gustafson, K.R.; Cardellina, J.H.; Gray, G.N.; Boyd, M.R. Novel naphthoquinones from Conospermum incurvum. J. Nat. Prod. 1994, 57, 1511–1516. [Google Scholar] [CrossRef] [PubMed]
  305. Min, B.S.; Jung, H.J.; Lee, J.S.; Kim, Y.H.; Bok, S.H.; Ma, C.M.; Nakamura, N.; Hattori, M.; Bae, K. Inhibitory effect of triterpenes from Crataegus pinatifida on HIV-I protease. Planta Med. 1999, 65, 374–375. [Google Scholar] [CrossRef] [PubMed]
  306. Mahmood, N.; Piacente, S.; Pizza, C.; Burke, A.; Khan, A.I.; Hayt, A.J. The anti-HIV activity and mechanisms of action of pure compounds isolated from Rosa damascena. Biochem. Biophys. Res. Commun. 1996, 229, 73–79. [Google Scholar] [CrossRef] [PubMed]
  307. Jong Cheol, P.; Suk Nam, K.; Kwang Jin, C.; Jong Won, C. Anti-HIV-1 protease activity and in vivo anti-lipid peroxidative effect on Rosa davurica. Korean J. Pharmacogn. 2000, 31, 264–267. [Google Scholar]
  308. Liang, J.; Chen, J.; Tan, Z.; Peng, J.; Zheng, X.; Nishiura, K.; Ng, J.; Wang, Z.; Wang, D.; Chen, Z.; et al. Extracts of the medicinal herb Sanguisorba officinalis inhibit the entry of human immunodeficiency virus-1. J. Food Drug Anal. 2013, 21, S52–S58. [Google Scholar] [CrossRef] [PubMed]
  309. Chinnaiyan, S.K.; Subramanian, M.R.; Vinoth Kumar, S.; Chandu, A.N.; Deivasigamani, K. Antimicrobial and anti-HIV activity of extracts of Canthium coromandelicum (Burm.F.) Alston leaves. J. Pharm. Res. 2013, 7, 588–594. [Google Scholar] [CrossRef]
  310. Reutrakul, V.; Krachangchaeng, C.; Tuchinda, P.; Pohmakotr, M.; Jaipetch, T.; Yoosook, C.; Kasisit, J.; Sophasan, S.; Sujarit, K.; Santisuk, T. Cytotoxic and anti-HIV-1 constituents from leaves and twigs of Gardenia tubifera. Tetrahedron 2004, 60, 1517–1523. [Google Scholar] [CrossRef]
  311. Lamorde, M.; Tabuti, J.R.S.; Obua, C.; Kukunda-Byobona, C.; Lanyero, H.; Byakika-Kibwika, P.; Bbosa, G.S.; Lubega, A.; Ogwal-Okeng, J.; Ryan, M.; et al. Medicinal plants used by traditional medicine practitioners for the treatment of HIV/AIDS and related conditions in Uganda. J. Ethnopharmacol. 2010, 130, 43–53. [Google Scholar] [CrossRef] [PubMed]
  312. Ayisi, N.K.; Nyadedzor, C. Comparative in vitro effects of azt and extracts of Ocimum gratissimum, Ficus polita, Clausena anisata, Alchornea cordifolia, and Elaeophorbia drupifera against HIV-1 and HIV-2 infections. Antivir. Res. 2003, 58, 25–33. [Google Scholar] [CrossRef]
  313. Sunthitikawinsakul, A.; Kongkathip, N.; Kongkathip, B.; Phonnakhu, S.; Daly, J.W.; Spande, T.F.; Nimit, Y.; Napaswat, C.; Kasisit, J.; Yoosook, C. Anti-HIV-1 limonoid: First isolation from Clausena excavata. Phytother. Res. 2003, 17, 1101–1103. [Google Scholar] [CrossRef] [PubMed]
  314. Rashid, M.; Gustafson, K.; Kashmani, Y.; Cardellina, J., III; McMahon, J.; Boyd, M. Anti-HIV alkaloids from Toddalia asiatica. Nat. Prod. Lett. 1995, 6, 153–156. [Google Scholar] [CrossRef]
  315. Kim, H.J.; Woo, E.-R.; Shin, C.-G.; Park, H. A new flavonol glycoside gallate ester from Acer okamotoanum and its inhibitory activity against human immunodeficiency virus-1 (HIV-1) integrase. J. Nat. Prod. 1998, 61, 145–148. [Google Scholar] [CrossRef] [PubMed]
  316. Yang, X.W.; Zhao, J.; Cui, Y.X.; Liu, X.H.; Ma, C.M.; Hattori, M.; Zhang, L.H. Anti-HIV-1 protease triterpenoid saponins from the seeds of Aesculus chinensis. J. Nat. Prod. 1999, 62, 1510–1513. [Google Scholar] [CrossRef] [PubMed]
  317. Suedee, A.; Tewtrakul, S.; Panichayupakaranant, P. Anti-HIV-1 integrase compound from Pometia pinnata leaves. Pharm. Biol. 2013, 51, 1256–1261. [Google Scholar] [CrossRef] [PubMed]
  318. Fang, E.F.; Ng, T.B. A trypsin inhibitor from rambutan seeds with antitumor, anti-HIV-1 reverse transcriptase, and nitric oxide-inducing properties. Appl. Biochem. Biotechnol. 2015, 175, 3828–3839. [Google Scholar] [CrossRef] [PubMed]
  319. Sahu, N.P.; Mandal, N.B.; Banerjee, S.; Siddiqui, K.A.I. Chemistry and biology of the triterpenes and saponins from seeds of Mimusops elengi. J. Herbs Spices Med. Plants 2001, 8, 29–37. [Google Scholar] [CrossRef]
  320. Gosse, B.; Gnabre, J.; Bates, R.B.; Dicus, C.W.; Nakkiew, P.; Huang, R.C.C. Antiviral saponins from Tieghemella heckelii. J. Nat. Prod. 2002, 65, 1942–1944. [Google Scholar] [CrossRef] [PubMed]
  321. Hayashi, K.; Kamiya, M.; Hayashi, T. Virucidal effects of the steam distillate from Houttuynia cordata and its components on HSV-1, influenza virus, and HIV. Planta Med. 1995, 61, 237–241. [Google Scholar] [CrossRef] [PubMed]
  322. Lee, J.; Huh, M.S.; Kim, Y.C.; Hattori, M.; Otake, T. Lignan, sesquilignans and dilignans, novel HIV-1 protease and cytopathic effect inhibitors purified from the rhizomes of Saururus chinensis. Antivir. Res. 2010, 85, 425–428. [Google Scholar] [CrossRef] [PubMed]
  323. Song, W.Y.; Ma, Y.B.; Bai, X.; Zhang, X.M.; Gu, Q.; Zheng, Y.T.; Zhou, J.; Chen, J.J. Two new compounds and anti-HIV active constituents from Illicium verum. Planta Med. 2007, 73, 372–375. [Google Scholar] [CrossRef] [PubMed]
  324. Gao, X.-M.; Pu, J.-X.; Huang, S.-X.; Yang, L.-M.; Huang, H.; Xiao, W.-L.; Zheng, Y.-T.; Sun, H.-D. Lignans from Kadsura angustifolia. J. Nat. Prod. 2008, 71, 558–563. [Google Scholar] [CrossRef] [PubMed]
  325. Xu, L.J.; Peng, Z.G.; Chen, H.S.; Wang, J.; Xiao, P.G. Bioactive triterpenoids from Kadsura heteroclita. Chem. Biodivers. 2010, 7, 2289–2295. [Google Scholar] [CrossRef] [PubMed]
  326. Pu, J.X.; Yang, L.M.; Xiao, W.L.; Li, R.T.; Lei, C.; Gao, X.M.; Huang, S.X.; Li, S.H.; Zheng, Y.T.; Huang, H.; et al. Compounds from Kadsura heteroclita and related anti-HIV activity. Phytochemistry 2008, 69, 1266–1272. [Google Scholar] [CrossRef] [PubMed]
  327. Sun, Q.Z.; Chen, D.F.; Ding, P.L.; Ma, C.M.; Kakuda, H.; Nakamura, N.; Hattori, M. Three new lignans, longipedunins A-C, from Kadsura longipedunculata and their inhibitory activity against HIV-1 protease. Chem. Pharm. Bull. 2006, 54, 129–132. [Google Scholar] [CrossRef] [PubMed]
  328. Xiao, W.-L.; Tian, R.-R.; Pu, J.-X.; Li, X.; Wu, L.; Lu, Y.; Li, S.-H.; Li, R.-T.; Zheng, Y.-T.; Zheng, Q.-T.; et al. Triterpenoids from Schisandra lancifolia with anti-HIV-1 activity. J. Nat. Prod. 2006, 69, 277–279. [Google Scholar] [CrossRef] [PubMed]
  329. Xiao, W.L.; Huang, S.X.; Zhang, L.; Tian, R.R.; Wu, L.; Li, X.L.; Pu, J.X.; Zheng, Y.T.; Lu, Y.; Li, R.T.; et al. Nortriterpenoids from Schisandra lancifolia. J. Nat. Prod. 2006, 69, 650–653. [Google Scholar] [CrossRef] [PubMed]
  330. Li, X.-N.; Pu, J.-X.; Du, X.; Yang, L.-M.; An, H.-M.; Lei, C.; He, F.; Luo, X.; Zheng, Y.-T.; Lu, Y.; et al. Lignans with anti-HIV activity from Schisandra propinqua var. sinensis. J. Nat. Prod. 2009, 72, 1133–1141. [Google Scholar] [CrossRef] [PubMed]
  331. Xiao, W.-L.; Li, X.L.; Wang, R.-R.; Yang, L.-M.; Li, L.M.; Huang, S.-X.; Pu, J.-X.; Zheng, Y.-T.; Li, R.-T.; Sun, H.-D. Triterpenoids from Schisandra rubriflora. J. Nat. Prod. 2007, 70, 1056–1059. [Google Scholar] [CrossRef] [PubMed]
  332. Sun, H.; Qiu, S.; Lin, L.; Wang, Z.; Lin, Z.; Pengsuparp, T.; Pezzuto, J.M.; Fong, H.H.S.; Cordell, G.A.; Farnsworth, N.R. Nigranoic acid, a triterpenoid from Schisandra sphaerandra that inhibits HIV-1 reverse transcriptase. J. Nat. Prod. 1996, 59, 525–527. [Google Scholar] [CrossRef] [PubMed]
  333. Xiao, W.L.; Pu, J.X.; Chang, Y.; Li, X.L.; Huang, S.X.; Yang, L.M.; Li, L.M.; Lu, Y.; Zheng, Y.T.; Li, R.T.; et al. Sphenadilactones A and B, two novel nortriterpenoids from Schisandra sphenanthera. Organ. Lett. 2006, 8, 1475–1478. [Google Scholar] [CrossRef] [PubMed]
  334. Liang, C.Q.; Luo, R.H.; Yan, J.M.; Li, Y.; Li, X.N.; Shi, Y.M.; Shang, S.Z.; Gao, Z.H.; Yang, L.M.; Zheng, Y.T.; et al. Structure and bioactivity of triterpenoids from the stems of Schisandra sphenanthera. Arch. Pharm. Res. 2014, 37, 168–174. [Google Scholar] [CrossRef] [PubMed]
  335. Yang, G.Y.; Li, Y.K.; Wang, R.R.; Xiao, W.L.; Yang, L.M.; Pu, J.X.; Zheng, Y.T.; Sun, H.D. Dibenzocyclooctadiene lignans from the fruits of Schisandra wilsoniana and their anti-HIV-1 activities. J. Asian Nat. Prod. Res. 2010, 12, 470–476. [Google Scholar] [CrossRef] [PubMed]
  336. Xu, Z.; Chang, F.-R.; Wang, H.-K.; Kashiwada, Y.; McPhail, A.T.; Bastow, K.F.; Tachibana, Y.; Cosentino, M.; Lee, K.-H. Anti-HIV agents 45 and antitumor agents 205. Two new sesquiterpenes, leitneridanins A and B, and the cytotoxic and anti-HIV principles from Leitneria floridana. J. Nat. Prod. 2000, 63, 1712–1715. [Google Scholar] [CrossRef] [PubMed]
  337. Wang, W.X.; Qian, J.Y.; Wang, X.J.; Jiang, A.P.; Jia, A.Q. Anti-HIV-1 activities of extracts and phenolics from Smilax china L. Pakistan J. Pharm. Sci. 2014, 27, 147–151. [Google Scholar]
  338. Shy, S.N.; Chang, W.T.; Lee, S.S.; Chen Liu, K.C.S. Production of triterpenes from cell suspension cultures of Solanum incanum L. Chin. Pharm. J. 2000, 52, 35–42. [Google Scholar]
  339. Mamba, P.; Adebayo, S.A.; Tshikalange, T.E. Anti-microbial, anti-inflammatory and HIV-1 reverse transcriptase activity of selected South African plants used to treat sexually transmitted diseases. Int. J. Pharmacogn. Phytochem. Res. 2016, 8, 1870–1876. [Google Scholar]
  340. Kumar, S.; Pandey, A.K. Medicinal attributes of Solanum xanthocarpum fruit consumed by several tribal communities as food: An in vitro antioxidant, anticancer and anti HIV perspective. BMC Complement. Altern. Med. 2014, 14, 112. [Google Scholar] [CrossRef] [PubMed]
  341. Rege, A.A.; Chowdhary, A.S. Evaluation of some medicinal plants as putative HIV-protease inhibitors. Indian Drugs 2013, 50, 24–28. [Google Scholar]
  342. Wu, N.; Wang, L.; Chzn, Y.K.; Liao, Z.; Yang, G.Y.; Hu, Q.F. Lignans from the stem of Styrax japonica. Asian J. Chem. 2011, 23, 931–932. [Google Scholar]
  343. Park, J.C.; Hur, J.M.; Park, J.G.; Hatano, T.; Yoshida, T.; Miyashiro, H.; Min, B.S.; Hattori, M. Inhibitory effects of Korean medicinal plants and camelliatannin H from Camellia japonica on human immunodeficiency virus type 1 protease. Phytother. Res. 2002, 16, 422–426. [Google Scholar] [CrossRef] [PubMed]
  344. Zhang, X.; Huang, S.Z.; Gu, W.G.; Yang, L.M.; Chen, H.; Zheng, C.B.; Zhao, Y.X.; Wan, D.C.C.; Zheng, Y.T. Wikstroelide M potently inhibits HIV replication by targeting reverse transcriptase and integrase nuclear translocation. Chin. J. Nat. Med. 2014, 12, 186–193. [Google Scholar] [CrossRef]
  345. Hu, Q.F.; Mu, H.X.; Huang, H.T.; Lv, H.Y.; Li, S.L.; Tu, P.F.; Li, G.P. Secolignans, neolignans and phenylpropanoids from Daphne feddei and their biological activities. Chem. Pharm. Bull. 2011, 59, 1421–1424. [Google Scholar] [CrossRef] [PubMed]
  346. Rahman, M.K.; Chowdhury, M.A.; Islam, M.F.; Barua, S.; Rahman, M.A. Antidiarrheal and thrombolytic effects of methanol extract of Wikstroemia indica (L.) C. A. Mey leaves. Int. J. Green Pharm. 2015, 9, 8–13. [Google Scholar] [CrossRef]
  347. Charan, R.D.; Munro, M.H.G.; O’Keefe, B.R.; Sowder Ii, R.C.; McKee, T.C.; Currens, M.J.; Pannell, L.K.; Boyd, M.R. Isolation and characterization of Myrianthus holstii lectin, a potent HIV-1 inhibitory protein from the plant Myrianthus holstii. J. Nat. Prod. 2000, 63, 1170–1174. [Google Scholar] [CrossRef] [PubMed]
  348. Piccinelli, A.L.; Mahmood, N.; Mora, G.; Poveda, L.; De Simone, F.; Rastrelli, L. Anti-HIV activity of dibenzylbutyrolactone-type lignans from Phenax species endemic in Costa Rica. J. Pharm. Pharmacol. 2005, 57, 1109–1115. [Google Scholar] [CrossRef] [PubMed]
  349. Turville, S.G.; Vermeire, K.; Balzarini, J.; Schols, D. Sugar-binding proteins potently inhibit dendritic cell human immunodeficiency virus type 1 (HIV-1) infection and dendritic-cell-directed HIV-1 transfer. J. Virol. 2005, 79, 13519–13527. [Google Scholar] [CrossRef] [PubMed]
  350. Mujovo, S.; Hussein, A.; Meyer, J.J.M.; Fourie, B.; MutHIVhi, T.; Lall, N. Bioactive compounds from Lippia javanica and Hoslundia opposita. Nat. Prod. Res. 2008, 22, 1047–1054. [Google Scholar] [CrossRef] [PubMed]
  351. Pflieger, A.; Teguo, P.W.; Papastamoulis, Y.; Chaignepain, S.; Subra, F.; Munir, S.; Delelis, O.; Lesbats, P.; Calmels, C.; Andreola, M.L.; et al. Natural stilbenoids isolated from grapevine exhibiting inhibitory effects against HIV-1 integrase and eukaryote MOS1 transposase in vitro activities. PLoS ONE 2013, 8, e81184. [Google Scholar] [CrossRef] [PubMed]
  352. Afolayan, A.J.; Grierson, D.S.; Mbeng, W.O. Ethnobotanical survey of medicinal plants used in the management of skin disorders among the Xhosa communities of the Amathole district, Eastern Cape, South Africa. J. Ethnopharmacol. 2014, 153, 220–232. [Google Scholar] [CrossRef] [PubMed]
  353. Olatunya, O.S.; Olatunya, A.M.; Anyabolu, H.C.; Adejuyigbe, E.A.; Oyelami, O.A. Preliminary trial of Aloe vera gruel on HIV infection. J. Altern. Complement. Med. 2012, 18, 850–853. [Google Scholar] [CrossRef] [PubMed]
  354. Sookkongwaree, K.; Geitmann, M.; Roengsumran, S.; Petsom, A.; Danielson, U.H. Inhibition of viral proteases by Zingiberaceae extracts and flavones isolated from Kaempferia parviflora. Pharmazie 2006, 61, 717–721. [Google Scholar] [PubMed]
  355. Voravuthikunchai, S.P.; Phongpaichit, S.; Subhadhirasakul, S. Evaluation of antibacterial activities of medicinal plants widely used among AIDS patients in Thailand. Pharm. Biol. 2005, 43, 701–706. [Google Scholar] [CrossRef]
  356. Tan, E.C.; Karsani, S.A.; Foo, G.T.; Wong, S.M.; Abdul Rahman, N.; Khalid, N.; Othman, S.; Yusof, R. Proteomic analysis of cell suspension cultures of Boesenbergia rotunda induced by phenylalanine: Identification of proteins involved in flavonoid and phenylpropanoid biosynthesis pathways. Plant Cell Tissue Organ Cult. 2012, 111, 219–229. [Google Scholar] [CrossRef]
  357. Md-Mustafa, N.D.; Khalid, N.; Gao, H.; Peng, Z.; Alimin, M.F.; Bujang, N.; Ming, W.S.; Mohd-Yusuf, Y.; Harikrishna, J.A.; Othman, R.Y. Transcriptome profiling shows gene regulation patterns in a flavonoid pathway in response to exogenous phenylalanine in Boesenbergia rotunda cell culture. BMC Genom. 2014, 15. [Google Scholar] [CrossRef] [PubMed]
  358. Mesa, M.D. Pharmacological and nutritional effects of Curcuma longa L. extracts and curcuminoids. Ars Pharm. 2000, 41, 307–321. [Google Scholar]
  359. Gnabre, J.N.; Brady, J.N.; Clanton, D.J.; Ito, Y.; Dittmer, J.; Bates, R.B.; Huang, R.C.C. Inhibition of human immunodeficiency virus type 1 transcription and replication by DNA sequence-selective plant lignans. Proc. Natl. Acad. Sci. USA 1995, 92, 11239–11243. [Google Scholar] [CrossRef] [PubMed]
  360. Borris, R.P. Natural products research: Perspectives from a major pharmaceutical company. J. Ethnopharmacol. 1996, 51, 29–38. [Google Scholar] [CrossRef]
  361. Yang, S.S.; Cragg, G.M.; Newman, D.J.; Bader, J.P. Natural product-based anti-HIV drug discovery and development facilitated by the NCI developmental therapeutics program. J. Nat. Prod. 2001, 64, 265–277. [Google Scholar] [CrossRef] [PubMed]
  362. Sarin, P.S. Molecular pharmacologic approaches to the treatment of AIDS. Annu. Rev. Pharmacol. Toxicol. 1988, 28, 411–428. [Google Scholar] [CrossRef] [PubMed]
  363. Vlietinck, A.J.; Berghe, D.A.V. Can ethnopharmacology contribute to the development of antiviral drugs? J. Ethnopharmacol. 1991, 32, 141–153. [Google Scholar] [CrossRef]
  364. Harvey, A. Strategies for discovering drugs from previously unexplored natural products. Drug Discov. Today 2000, 5, 294–300. [Google Scholar] [CrossRef]
  365. Beutler, J.A. Natural products as a foundation for drug discovery. Curr. Protoc. Pharmacol. 2009, 46, 9–11. [Google Scholar] [CrossRef] [PubMed]
  366. Vlietinck, A.; De Bruyne, T.; Apers, S.; Pieters, L. Plant-derived leading compounds for chemotherapy of human immunodeficiency virus (HIV) infection. Planta Med. 1998, 64, 97–109. [Google Scholar] [CrossRef] [PubMed]
  367. De Clercq, E. Current lead natural products for the chemotherapy of human immunodeficiency virus (HIV) infection. Med. Res. Rev. 2000, 20, 323–349. [Google Scholar] [CrossRef]
  368. Jadaun, P.; Khopkar, P.; Kulkarni, S. Repurposing Phytochemicals as Anti-HIV Agents. J. Antivir. Antiretrovir. 2016, 8, 139–141. [Google Scholar] [CrossRef]
  369. Lubbe, A.; Seibert, I.; Klimkait, T.; Van der Kooy, F. Ethnopharmacology in overdrive: The remarkable anti-HIV activity of Artemisia annua. J. Ethnopharmacol. 2012, 141, 854–859. [Google Scholar] [CrossRef] [PubMed]
  370. Burack, J.H.; Cohen, M.R.; Hahn, J.A.; Abrams, D.I. Pilot randomized controlled trial of Chinese herbal treatment for HIV-associated symptoms. J. Acquir. Immune Defic. Syndr. 1996, 12, 386–393. [Google Scholar] [CrossRef]
  371. Kalvatchev, Z.; Walder, R.; Garzaro, D. Anti-HIV activity of extracts from Calendula officinalis flowers. Biomed. Pharmacother. 1997, 51, 176–180. [Google Scholar] [CrossRef]
  372. Pengsuparp, T.; Serit, M.; Hughes, S.H.; Soejarto, D.D.; Pezzuto, J.M. Specific inhibition of human immunodeficiency virus type 1 reverse transcriptase mediated by soulattrolide, a coumarin isolated from the latex of Calophyllum teysmannii. J. Nat. Prod. 1996, 59, 839–842. [Google Scholar] [CrossRef] [PubMed]
  373. Leteane, M.M.; Ngwenya, B.N.; Muzila, M.; Namushe, A.; Mwinga, J.; Musonda, R.; Moyo, S.; Mengestu, Y.B.; Abegaz, B.M.; Andrae-Marobela, K. Old plants newly discovered: Cassia sieberiana DC and Cassia abbreviata Oliv. Oliv. root extracts inhibit in vitro HIV-1C replication in peripheral blood mononuclear cells (pbmcs) by different modes of action. J. Ethnopharmacol. 2012, 141, 48–56. [Google Scholar] [CrossRef] [PubMed]
  374. Gerenčer, M.; Turecek, P.L.; Kistner, O.; Mitterer, A.; Savidis-Dacho, H.; Barrett, N.P. In vitro and in vivo anti-retroviral activity of the substance purified from the aqueous extract of Chelidonium majus L. Antivir. Res. 2006, 72, 153–156. [Google Scholar] [CrossRef] [PubMed]
  375. Rashed, K.; Zhang, X.-J.; Luo, M.-T.; Zheng, Y.-T. Anti-HIV-1 activity of phenolic compounds isolated from Diospyros lotus fruits. Phytopharmacology 2012, 3, 199–207. [Google Scholar]
  376. Bedoya, L.; Palomino, S.S.; Abad, M.; Bermejo, P.; Alcami, J. Screening of selected plant extracts for in vitro inhibitory activity on human immunodeficiency virus. Phytother. Res. 2002, 16, 550–554. [Google Scholar] [CrossRef] [PubMed]
  377. Wu, L.; Bao, J.-k. Anti-tumor and anti-viral activities of Galanthus nivalis agglutinin (Gna)-related lectins. Glycoconj. J. 2013, 30, 269–279. [Google Scholar] [CrossRef] [PubMed]
  378. Magadula, J.J. A bioactive isoprenylated xanthone and other constituents of Garcinia edulis. Fitoterapia 2010, 81, 420–423. [Google Scholar] [CrossRef] [PubMed]
  379. Hudson, J.; Harris, L.; Towers, G. The importance of light in the anti-HIV effect of hypericin. Antivir. Res. 1993, 20, 173–178. [Google Scholar] [CrossRef]
  380. Gulick, R.M.; McAuliffe, V.; Holden-Wiltse, J.; Crumpacker, C.; Liebes, L.; Stein, D.S.; Meehan, P.; Hussey, S.; Forcht, J.; Valentine, F.T. Phase I studies of hypericin, the active compound in St. John’s wort, as an antiretroviral agent in HIV-infected adults: AIDS clinical trials group protocols 150 and 258. Ann. Intern. Med. 1999, 130, 510–514. [Google Scholar] [CrossRef] [PubMed]
  381. Zhang, H.-J.; Rumschlag-Booms, E.; Guan, Y.-F.; Wang, D.-Y.; Liu, K.-L.; Li, W.-F.; Nguyen, V.H.; Cuong, N.M.; Soejarto, D.D.; Fong, H.H. Potent inhibitor of drug-resistant HIV-1 strains identified from the medicinal plant Justicia gendarussa. J. Nat. Prod. 2017, 80, 1798–1807. [Google Scholar] [CrossRef] [PubMed]
  382. Jiratchariyakul, W.; Wiwat, C.; Vongsakul, M.; Somanabandhu, A.; Leelamanit, W.; Fujii, I.; Suwannaroj, N.; Ebizuka, Y. HIV inhibitor from Thai bitter gourd. Planta Med. 2001, 67, 350–353. [Google Scholar] [CrossRef] [PubMed]
  383. Bot, Y.; Mgbojikwe, L.; Nwosu, C.; Abimiku, A.; Dadik, J.; Damshak, D. Screening of the fruit pulp extract of Momordica balsamina for anti HIV property. Afr. J. Biotechnol. 2007, 6, 47–52. [Google Scholar]
  384. Eldeen, I.; Seow, E.; Abdullah, R.; Sulaiman, S. In vitro antibacterial, antioxidant, total phenolic contents and anti-HIV-1 reverse transcriptase activities of extracts of seven Phyllanthus sp. S. Afr. J. Bot. 2011, 77, 75–79. [Google Scholar] [CrossRef]
  385. Wang, R.-R.; Gu, Q.; Yang, L.-M.; Chen, J.-J.; Li, S.-Y.; Zheng, Y.-T. Anti-HIV-1 activities of extracts from the medicinal plant Rhus chinensis. J. Ethnopharmacol. 2006, 105, 269–273. [Google Scholar] [CrossRef] [PubMed]
  386. Durge, A.; Jadaun, P.; Wadhwani, A.; Chinchansure, A.A.; Said, M.; Thulasiram, H.; Joshi, S.P.; Kulkarni, S.S. Acetone and methanol fruit extracts of Terminalia paniculata inhibit HIV-1 infection in vitro. Nat. Prod. Res. 2017, 31, 1468–1471. [Google Scholar] [CrossRef] [PubMed]
  387. Jian, W.; Feng-Zhen, Y.; Min, Z.; Yun-Hui, Z.; Yong-Xiang, Z.; Ying, L.; Wei-Min, L.; Fu-Sheng, W.; Shu-Ling, X.; Zhi-Min, Y. Randomized double-blinded and controlled clinical trial on treatment of HIV/AIDS by zhongyan-4. Chin. J. Integr. Med. 2006, 12, 6–11. [Google Scholar] [CrossRef]
  388. Zhang, L.; Yue, S.-T.; Xue, Y.-X.; Attele, A.S.; Yuan, C.-S. Effects of Qian-Kun-Nin, a Chinese herbal medicine formulation, on HIV positive subjects: A pilot study. Am. J. Chin. Med. 2000, 28, 305–312. [Google Scholar] [CrossRef] [PubMed]
  389. Colebunders, R.; Dreezen, C.; Florence, E.; Pelgrom, Y.; Schrooten, W. The use of complementary and alternative medicine by persons with HIV infection in Europe. Int. J. STD AIDS 2003, 14, 672–674. [Google Scholar] [CrossRef] [PubMed]
  390. Owen-Smith, A.; Diclemente, R.; Wingood, G. Complementary and alternative medicine use decreases adherence to HAART in HIV-positive women. AIDS Care 2007, 19, 589–593. [Google Scholar] [CrossRef] [PubMed]
  391. Tshibangu, K.; Worku, Z.; De Jongh, M.; Van Wyk, A.; Mokwena, S.; Peranovic, V. Assessment of effectiveness of traditional herbal medicine in managing HIV/AIDS patients in south Africa. East Afr. Med. J. 2004, 81, 499–504. [Google Scholar] [CrossRef] [PubMed]
  392. Mills, E.; Cooper, C.; Seely, D.; Kanfer, I. African herbal medicines in the treatment of HIV: Hypoxis and Sutherlandia. An overview of evidence and pharmacology. Nutr. J. 2005, 4, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  393. Tani, M.; Nagase, M.; Nishiyama, T.; Yamamoto, T.; Matusa, R. The effects of long-term herbal treatment for pediatric AIDS. Am. J. Chin. Med. 2002, 30, 51–64. [Google Scholar] [CrossRef] [PubMed]
  394. Djohan, Y.; Camara, C.; Monde, A.; Koffi, G.; Niamké, G.; Déré, L.; Tiahou, G.; Djessou, P.; Sess, D. Interest of antioxidants in the care of the patients infected by the HIV: The experience of long term administration of alternanthera pungens herb tea. Ann. Biol. Clin. 2009, 67, 563–568. [Google Scholar]
Table 1. List of plant species exhibiting different human immunodeficiency virus (HIV)-inhibition activities.
Table 1. List of plant species exhibiting different human immunodeficiency virus (HIV)-inhibition activities.
FamilyPlantPlant PartHIV-RTHIV-PRHIV-INAnti-HIV
AcanthaceaeAndrographis paniculata (Burm. f.) Wall. ex NeesAerial part Crude [51,52]
AcanthaceaeAvicennia marina var. rumphiana (Hallier f.) Bakh.Seed Iridoid glycoside [53]
AcanthaceaeAvicennia officinalis L.LeafCrude [54]Crude [55]
AcanthaceaeJusticia adhatoda L. Crude [56]
AcanthaceaeJusticia gendarussa Burm.f.Aerial partCrude [57]
AcanthaceaeRhinacanthus nasutus (L.) KurzAerial partCrude [58] Crude [59]
AcanthaceaeStrobilanthes cusia (Nees) Kuntze Crude [60]
AcoraceaeAcorus calamus L.RhizomeCrude [58]
AdoxaceaeSambucus ebulus L.Whole plant Crude [61]
AdoxaceaeSambucus nigra L.Whole plantCrude [62] Crude [61,63]
AdoxaceaeSambucus racemosa L.Leaf, FruitCrude [62,64]
AdoxaceaeSambucus williamsii HanceRoots , Fruits Crude [65,66]
AdoxaceaeViburnum opulus L.Leaf, FruitCrude [62]
Aizoaceae Sceletium tortuosum (L.) N.E. Br. Crude [67]Crude [67]Crude [67]
AlismataceaeAlisma plantago-aquatica L.Rhizome Crude [68]
AmaranthaceaeAchyranthes bidentata Blume Crude [66,69]
AmaranthaceaeAchyranthes japonica (Miq.) NakaiRoot Crude [66]
AmaranthaceaeAerva lanata (L.) Juss. ex Schult.RootPhytotesrols [70]
AmaranthaceaeAlternanthera brasiliana (L.) Kuntze Crude [71]
AmaranthaceaeAlternanthera philoxeroides (Mart.) Griseb.Aerial part Crude [72,73]
AmaryllidaceaeAllium sativum L.BulbCrude [58] Crude [56]
AmaryllidaceaeCrinum amabile Donn ex Ker Gawl.BulbCrude [74]
AmaryllidaceaeCrinum macowanii BakerBulbCrude [75]Crude [75]
AmaryllidaceaeHaemanthus albiflos Jacq. Crude [76]
AmaryllidaceaeLeucojum vernum L.BulbAlkaloids [77]
AmaryllidaceaePamianthe peruviana AnonymousBulbCrude [74]
AmaryllidaceaeTulbaghia alliacea L. f.Bulb Crude [78]
AmaryllidaceaeTulbaghia violacea Harv.BulbCrude [75]Crude [75]
AnacardiaceaeLannea edulis (Sond.) Engl.Bulb Crude [79]
AnacardiaceaeMangifera indica L.Stem bark Crude [80]
AnacardiaceaeRhus chinensis Mill.Leaf, Root, Stem, Bark, Fruit Read phyto [81]
AnacardiaceaeSchinus molle L.Leaf Crude [82]
AnacardiaceaeSpondias pinnata (L. f.) KurzFruitCrude [58]
AnacardiaceaeToxicodendron acuminatum (DC.) C.Y. Wu & T.L. MingGall Crude [83]
AncistrocladaceaeAncistrocladus korupensis D.W. Thomas & GereauRootNaphthylisoquinoline alkaloids [84] Crude [85]
Naphthylisoquinoline alkaloids [86]
AnnonaceaeAnnona glabra L.Fruit Alkaloids [87]
AnnonaceaeAnnona senegalensis Pers.Leaf Crude [80]
AnnonaceaeAnnona squamosa L.Fruit Diterpenoids [88]
AnnonaceaeDasymaschalon rostratum Merr. & ChunStemPhenylpropanoid derivatives [89]
AnnonaceaeDasymaschalon sootepense CraibLeafAlkaloids, Flavonoid [90]
AnnonaceaePolyalthia suberosa (Roxb.) ThwaitesStem barkCrude [57] Triterpene [91] and 2-substituted furans [92]
AnnonaceaeXylopia frutescens Aubl.Bark Crude [93]
ApiaceaeAlepidea amatymbica Eckl. & Zeyh. Rosmarinic acid [94]
ApiaceaeAmmi visnaga (L.) Lam.Fruit Crude [95]
ApiaceaeAnethum graveolens L.Seed Crude [83]
ApiaceaeAngelica dahurica (Fisch.) Benth. & Hook. f.Root Crude [66]
ApiaceaeAngelica grosseserrata Maxim.Aerial part Crude [96]
ApiaceaeApium graveolens L.Fruit Crude [83]
ApiaceaeCryptotaenia japonica Hassk.Aerial part Crude [96]
ApiaceaeFoeniculum vulgare Mill.Fruit Crude [66]
ApiaceaeLomatium suksdorfii (S. Watson) J.M. Coult. & RoseFruit Coumarin [97]
ApiaceaeMulinum ulicinum Gillet & Hook.Leaf, Stem Crude [82]
ApiaceaeRidolfia segetum (L.) Moris Essential oils [98]
ApiaceaeSaposhnikovia divaricate (Turcz.) Schischk. Crude [60,68] Crude [66]
ApiaceaeTorilis japonica (Houtt.) DC.Seed Crude [96]
ApocynaceaeAlstonia scholaris (L.) R. Br.Stem bark Crude [56]
ApocynaceaeCarissa bispinosa Desf. ex BrenanRoots Crude [99]
ApocynaceaeCatharanthus roseus (L.) G. DonLeaf Crude [56]
ApocynaceaeCynanchum atratum BungeRoot Crude [66]
ApocynaceaeCynanchum paniculatum (Bunge) Kitag.Root Crude [66]
ApocynaceaeGymnema sylvestre (Retz.) R. Br. ex Schult. Crude [99]
ApocynaceaeHemidesmus indicus (L.) R. Br. ex Schult. Crude [100]
ApocynaceaeHoodia gordonii (Masson) Sweet ex Decne. Crude [101]Crude [101]Crude [101]
ApocynaceaeParameria laevigata (Juss.) MoldenkeBark Crude [68]
ApocynaceaeRauvolfia serpentine (L.) Benth. ex Kurz Crude [56]
ApocynaceaeSolenostemma argel (Delile) HayneRoot Crude [95]
ApocynaceaeTabernaemontana stapfiana Britten Crude [102]
Araceae Alocasia odora (Roxb.) K. KochRhizome Crude [68]
AraliaceaeAcanthopanax koreanum NakaiStem bark Crude [96] Crude [96]
AraliaceaeEleutherococcus sessiliflorus (Rupr. & Maxim.) S.Y. Hu Crude [66]
AraliaceaeKalopanax pictus (Thunb.) NakaiStem bark Crude [66]
AraliaceaePanax ginseng C.A. Mey.Root Triterpenoids [103] Saponin [104]
AraliaceaePanax notoginseng (Burkill) F.H. Chen ex C.H. Chow Crude [60]Crude [105]
AraliaceaePanax zingiberensis C.Y. Wu & K.M. FengRhizome Zingibroside [106]
ArecaceaeAreca catechu L.Seed Crude [60,83]
ArecaceaeAttalea tessmannii BurretSeed Crude [82]
AristolochiaceaeAristolochia bracteolate Lam.FruitCrude [74]Crude [95]
AristolochiaceaeAristolochia contorta BungeFruit Crude [66]
AristolochiaceaeAristolochia manshuriensis Kom.Stem Oxoperezinone [107]
AristolochiaceaeAsarum sieboldii Miq.Root Crude [66]
AsparagaceaeAnemarrhena asphodeloides BungeRhizome Crude [68]
AsparagaceaeAsparagus cochinchinensis (Lour.) Merr.Root Crude [66]
AsparagaceaeAsparagus racemosus Willd.Root Crude [56]
Asparagaceae Dracaena cochinchinensis (Lour.) S.C. Chen Crude [58]
AsteraceaeAcanthospermum hispidum DC.Aerial partCrude [74]
AsteraceaeAchyrocline alata (Kunth) DC.Flower, Stem Crude [82]
AsteraceaeAchyrocline flaccida (Weinm.) DC. Crude [108]
AsteraceaeAchyrocline satureioides (Lam.) DC.Flower Crude [82]
AsteraceaeAinsliaea acerifolia Sch. Bip.Whole plant Crude [96]
AsteraceaeAmbrosia artemisiifolia L.Whole plant Crude [96]
AsteraceaeAmbrosia maritima L.Aerial part Crude [95]
AsteraceaeAmbrosia peruviana All.Leaf, stem Crude [82]
AsteraceaeAnvillea garcinii (Burm. f.) DC.Aerial part Germacranolides [109]
AsteraceaeArctium lappa L.Aerial part Crude [60]Crude [105]Crude [51,66,72]
AsteraceaeArtemisia absinthium L.Leaf Crude [82]
AsteraceaeArtemisia annua L.Aerial part Crude [66]
AsteraceaeArtemisia capillaris Thunb.Aerial part, Seed Crude [68] Crude [66]
AsteraceaeArtemisia princeps Pamp.Leaf Crude [68,96]
AsteraceaeArtemisia verlotorum Lamotte Crude [110]
AsteraceaeAspilia pluriseta Schweinf. ex Schweinf. Crude [111]
AsteraceaeAster tataricus L. f.Root Crude [68]
AsteraceaeAtractylodes japonica Koidz.Root Crude [96] Crude [66]
AsteraceaeAtractylodes lancea (Thunb.) DC.Rhizome Crude [68] Crude [112]
AsteraceaeAtractylodes ovate (Thunb.) DC.Rhizome Crude [68]
AsteraceaeBaccharis genistelloides (Lam.) Pers.Leaf, stem Crude [82]
AsteraceaeBaccharis latifolia (Ruiz & Pav.) Pers.Leaf, stem Crude [82]
AsteraceaeBaccharis trimera (Less.) DC.Leaf, stem Crude [82]
AsteraceaeBaccharis trinervis Pers.Aerial part Crude [93]
AsteraceaeBidens pilosa L.Aerial part Crude [93]
AsteraceaeBlumea balsamifera (L.) DC. Crude [113]Crude [113]
AsteraceaeBreea segeta (Bunge) Kitam.Aerial part Crude [66]
AsteraceaeCalea jamaicensis (L.) L.Root Crude [93]
AsteraceaeCalendula officinalis L.LeafCrude [114] Crude [115]
AsteraceaeCarlina acaulis L.LeafCrude [62]
AsteraceaeCarpesium abrotanoides L. Crude [96]
AsteraceaeCarthamus tinctorius L.Flower Crude [66]
AsteraceaeCentratherum punctatum Cass.LeafCrude [114]
AsteraceaeChrysanthemum indicum L.Capitulum Crude [60]Crude [105]
AsteraceaeChrysanthemum morifolium Ramat.CapitulumFlavonoids [116]Crude [60,68]Crude [105]
Flavonoid [117]
Crude [117,118]
AsteraceaeCirsium japonicum DC. Crude [96]
AsteraceaeEclipta prostrate (L.) L.Whole plant Lactone [119]Crude [120]
Lactone [119]
AsteraceaeElephantopus scaber L.Leaf Crude [68]
AsteraceaeEupatorium lindleyanum DC.Aerial part Crude [96]
AsteraceaeFrancoeuria crispa (Forssk.) Cass. Crude [121]
AsteraceaeFranseria artemisioides Willd.Leaf, stem Crude [82]
AsteraceaeGamochaeta simplicicaulis (Willd. ex Spreng.) Cabrera Crude [122] Crude [108]
AsteraceaeGeigeria alata (DC.) Oliv. & Hiern Crude [121]
AsteraceaeGnaphalium sylvaticum L.LeafCrude [62]
AsteraceaeGynura pseudochina (L.) DC.LeafCrude [57]
AsteraceaeHelianthus tuberosus L.Whole plant Crude [96]
AsteraceaeHelichrysum acutatum DC.Aerial part Crude [123]
AsteraceaeHelichrysum allioides Less.Aerial part Crude [123]
AsteraceaeHelichrysum anomalum Less.Aerial part Crude [123]
AsteraceaeHelichrysum appendiculatum (L. f.) Less.Aerial part Crude [123]
AsteraceaeHelichrysum auronitens Sch. Bip.Aerial part Crude [123]
AsteraceaeHelichrysum cephaloideum DC.Aerial part Crude [123]
AsteraceaeHelichrysum chionosphaerum DC.Aerial part Crude [123]
AsteraceaeHelichrysum confertum N.E. Br.Aerial part Crude [123]
AsteraceaeHelichrysum cymosum (L.) D. Don ex G. DonAerial part Crude [123]
AsteraceaeHelichrysum difficile HilliardAerial part Crude [123]
AsteraceaeHelichrysum drakensbergense KillickAerial part Crude [123]
AsteraceaeHelichrysum herbaceum (Andrews) SweetAerial part Crude [123]
AsteraceaeHelichrysum melanacme DC.Aerial part Crude [123]
AsteraceaeHelichrysum miconiifolium DC.Aerial part Crude [123]
AsteraceaeHelichrysum natalitium DC.Aerial part Crude [123]
AsteraceaeHelichrysum nudifolium (L.) Less.Aerial part Crude [123]
AsteraceaeHelichrysum odoratissimum (L.) SweetAerial part Crude [123]
AsteraceaeHelichrysum oreophilum DinterAerial part Crude [123]
AsteraceaeHelichrysum oxyphyllum DC.Aerial part Crude [123]
AsteraceaeHelichrysum pallidum DC.Aerial part Crude [123]
AsteraceaeHelichrysum panduratum O. Hoffm.Aerial part Crude [123]
AsteraceaeHelichrysum pannosum DC.Aerial part Crude [123]
AsteraceaeHelichrysum pilosellum (L. f.) Less.Aerial part Crude [123]
AsteraceaeHelichrysum populifolium DC.Aerial part Crude [123]
AsteraceaeHelichrysum rugulosum Less.Aerial part Crude [123]
AsteraceaeHelichrysum splendidum (Thunb.) Less.Aerial part Crude [123]
AsteraceaeHelichrysum subluteum Burtt DavyAerial part Crude [123]
AsteraceaeHelichrysum sutherlandii Harv.Aerial part Crude [123]
AsteraceaeHelichrysum umbraculigerum Less.Aerial part Crude [123]
AsteraceaeHelichrysum vernum HilliardAerial part Crude [123]
AsteraceaeHieracium pilosella L.Whole plant Crude [61]
AsteraceaeHieracium umbellatum L.Whole plant Crude [96]
AsteraceaeInula britannica L.Flower Crude [66]
AsteraceaeInula helenium L.Root Crude [66]
AsteraceaeIxeris tamagawaensis (Makino) Kitam.Aerial part Crude [124]
AsteraceaeLactuca raddeana Maxim.Whole plant Crude [96]
AsteraceaeMiyamayomena koraiensis (Nakai) Kitam.Root Crude [96]
AsteraceaeMutisia acuminata Ruiz & Pav.Leaf Crude [82]
AsteraceaePerezia multiflora (Bonpl.) Less.Leaf Crude [82]
AsteraceaePilosella officinarum F.W. Schultz & Sch. Bip.Whole plant Crude [61]
AsteraceaePsiadia dentata (Cass.) DC. Coumarin [125]
AsteraceaeSantolina oblongifolia Boiss.Whole plant Crude [61]
AsteraceaeSaussurea seoulensis NakaiWhole plant Crude [96]
AsteraceaeSchkuhria pinnata (Lam.) Kuntze ex Thell.Leaf Crude [82]
AsteraceaeSenecio comosus Sch. Bip.Leaf Crude [82]
AsteraceaeSenecio mathewsii Wedd.Leaf Crude [82]
AsteraceaeSenecio rhizomatus RusbyLeaf Crude [82]
AsteraceaeSenecio scandens Buch.-Ham. ex D. DonWhole plant Crude [60]Crude [105]Crude [72]
AsteraceaeSerratula coronate L.Aerial part Crude [96]
AsteraceaeSigesbeckia glabrescens (Makino) MakinoWhole plant Crude [66]
AsteraceaeSonchus oleraceus L.Leaf Crude [82]
AsteraceaeSymphyotrichum undulatum (L.) G.L.NesomAerial part Quinic acid [126]
AsteraceaeTagetes riojana M. FerraroLeaf Crude [82]
AsteraceaeTanacetum microphyllum DC.Whole plant Crude [61]
AsteraceaeTaraxacum mongolicum Hand.-Mazz.Whole plant Crude [68]
AsteraceaeXanthium spinosum L.Flower Crude [82]
BerberidaceaeBerberis holstii Engl.Root and Leaf Crude [127]
BerberidaceaeEpimedium grandiflorum C. MorrenAerial part Crude [21,72]
BerberidaceaeEpimedium sagittatum (Siebold & Zucc.) Maxim.Leaf Crude [68]
BerberidaceaeNandina domestica Thunb.Leaf Crude [68]
BetulaceaeAlnus firma Siebold & Zucc.LeafTriterpenoids [128]
BetulaceaeAlnus incana (L.) MoenchLeafCrude [62]
BignoniaceaeKigelia Africana (Lam.) Benth.FruitCrude [102]
BignoniaceaeSpathodea campanulata P. Beauv.Stem bark Crude [129]
BignoniaceaeTecomella undulata (Sm.) Seem.Aerial part Crude [130]
BlechnaceaeBlechnum spicant (L.) Sm.LeafCrude [62]
BlechnaceaeBrainea insignis (Hook.) J. Sm.Rhizome Crude [68]
BlechnaceaeWoodwardia orientalis Sw.Rhizome Crude [68]
BlechnaceaeWoodwardia unigemmata (Makino) NakaiRhizome Crude [60]Crude [105]Crude [72]
BoraginaceaeBrachybotrys paridiformis Maxim. ex Oliv.Leaf Crude [96]
BoraginaceaeCordia spinescens L.Leaf Crude [93]Crude [93]
BoraginaceaeLithospermum erythrorhizon Siebold & Zucc.Root Crude [60,68]Crude [105]Crude [72,131]
BoraginaceaeLobostemon trigonus H. Buek Crude [132]
BrassicaceaeBrassica juncea (L.) Czern.SemenCrude [133] Crude [66]
BrassicaceaeBrassica oleracea L. Crude [134]
BrassicaceaeBrassica rapa L. Crude [134]
BrassicaceaeCapsella bursa-pastoris (L.) Medik.Whole plant Crude [82]
BrassicaceaeLepidium abrotanifolium Turcz.Leaf Crude [82]
BrassicaceaeRaphanus raphanistrum L. Crude Inhibition [66]
CactaceaePereskia bleo (Kunth) DC.Whole plant Crude [93]
CalophyllaceaeMarila pluricostata Standl. & L.O. Williams Phenylcoumarins [135]
CampanulaceaeAdenophora triphylla (Thunb.) A. DC.Root Crude [66]
CampanulaceaePlatycodon grandiflorus (Jacq.) A. DC.Root Crude [68]
CannabinaceaeCannabis sativa L.Fruit Crude [68]
CannabinaceaeHumulus lupulus L. Flavonoid [136]
CannaceaeCanna indica L.RhizomeCrude [57]
CanellaceaeWarburgia ugandensis Sprague Crude [102]
CapparaceaeBoscia senegalensis (Pers.) Lam. ex Poir.LeafCrude [74]
CapparaceaeCapparis decidua (Forssk.) Edgew.StemCrude [74]
CapparaceaeCrateva religiosa G. Forst.Bark Crude [83]
CaprifoliaceaeLonicera japonica Thunb.Flower budCrude [137]Crude [60,68]Crude [105]Crude [66,72]
CaprifoliaceaePatrinia scabiosifolia LinkRoot Crude [96] Crude [66]
CaprifoliaceaePatrinia villosa (Thunb.) Dufr.Root Crude [68,96]
CaprifoliaceaeValeriana coarctata Ruiz & Pav.Leaf Crude [82]
CaprifoliaceaeValeriana micropterina Wedd. Crude [82]
CaprifoliaceaeValeriana thalictroides Graebn.Root Crude [82]
CaprifoliaceaeWeigela subsessilis L.H. BaileyStem Crude [96]
CaryophyllaceaeDrymaria cordata (L.) Willd. ex Schult.Leaf Crude [138]
CaryophyllaceaeDrymaria diandra Blume Alkaloid [139]
CaryophyllaceaeSilene seoulensis NakaiAerial part Crude [96]
CelastraceaeCassine crocea (Thunb.) C.Presl Glycoside [140]
CelastraceaeCassine schlechteriana Loes. Crude [141]
CelastraceaeCelastrus hindsii Benth. triterpene [142]
CelastraceaeCelastrus orbiculatus Thunb.Root Crude [96] Crude [143]
CelastraceaeEuonymus alatus (Thunb.) SieboldLeaf Crude [96]
CelastraceaeGymnosporia buchananii Loes. Crude [102]
CelastraceaeGymnosporia senegalensis (Lam.) Loes. Crude [102]
CelastraceaeMaytenus buchananii (Loes.) R. WilczekRoot, barkCrude [102]
CelastraceaeMaytenus macrocarpa (Ruiz & Pav.) Briq. Triterpenes [144]
CelastraceaeMaytenus senegalensis (Lam.) ExellStemCrude [102]Crude [95]
CelastraceaeSalacia chinensis L.StemCrude [58]
CelastraceaeTripterygium wilfordii Hook. f.RootSalaspermic acid [145] Crude [146,147]
Diterpene [146,148]
Sesquiterpene pyridine Alkaloids [147]
Chenopodiaceae Chenopodium ambrosioides L.Leaf Crude [82]
ChloranthaceaeChloranthus japonicas SieboldWhole plantDisesquiterpenoids [149]Crude [96] Crude [150]
CistaceaeWhole plantWhole plant Crude [61]
CistaceaeTuberaria lignose Samp.Whole plant Crude [61]
CleomaceaeCleome viscosa L.SeedNevirapine [151]Crude [83]
ClusiaceaeAllanblackia stuhlmannii (Engl.) Engl. Benzophenone [152]
ClusiaceaeCalophyllum brasiliense Cambess.LeafCrude [153]
Dipyranocoumarins [154]
Coumrains [155]
ClusiaceaeCalophyllum cerasiferum Vesque Coumarins [156]
ClusiaceaeCalophyllum cordato-oblongum Thwaites Cordatolide [157]
ClusiaceaeCalophyllum inophyllum L.BarkCrude [158]Crude [158]Crude [158]Dipyranocoumarins [159]
Inophyllum [160]
ClusiaceaeCalophyllum lanigerum Miq. Calanolide [161] Calanolide [162]
Coumarin [163]
Pyranocoumarins [164]
ClusiaceaeCalophyllum rubiginosum M.R. Hend. & Wyatt-Sm.Stem bark Crude [165]
ClusiaceaeCalophyllum teysmannii Miq. Pyranocoumarins [141]
ClusiaceaeClusia quadrangular Bartlett Crude [153]
ClusiaceaeGarcinia buchneri Engl.Stem bark Crude [166]
ClusiaceaeGarcinia gummi-gutta Roxb.LeafCrude [158]Crude [158]Crude [158]
ClusiaceaeGarcinia hanburyi Hook. f.Root Xanthone [167]
ClusiaceaeGarcinia indica ChoisyLeafCrude [158]Crude [158]Crude [158]
ClusiaceaeGarcinia kingaensis Engl.Stem bark Crude [166]
ClusiaceaeGarcinia livingstonei T. AndersonFruit Crude [168]
ClusiaceaeGarcinia mangostana L.Fruit barkCrude [58]Crude [169]
ClusiaceaeGarcinia semseii Verdc.Stem bark Crude [166] Crude [168]
ClusiaceaeGarcinia smeathmanii (Planch. & Triana) Oliv.Stem bark Crude [166]
Colchicaceae Colchicum luteum BakerBulb Crude [56]
CombretaceaeAnogeissus acuminata (Roxb. ex DC.) Guill., Perr. & A. Rich. Lignans [170] Crude [170]
CombretaceaeCombretum adenogonium Steud. ex A. Rich.Root, Leaf and Stem bark Crude [171]
CombretaceaeCombretum hartmannianum C. Schweinf.StemCrude [74]
CombretaceaeCombretum molle R. Br. ex G. DonRootCrude [172] Crude [173]
CombretaceaeCombretum paniculatum Vent.Leaf Crude [174]
CombretaceaeTerminalia arjuna (Roxb. ex DC.) Wight & Arn.Stem bark Crude [68,83] Crude [56]
CombretaceaeTerminalia bellirica (Gaertn.) Roxb.FruitCrude [58,175]Crude [68] Crude [176]
CombretaceaeTerminalia chebula Retz.FruitCrude [58,175]Crude [68,83]Galloyl glycosides [177]Crude [175]
CombretaceaeTerminalia sericea Burch. ex DC. Crude [178] Crude [179]
ConvolvulaceaeArgyreia nervosa (Burm. f.) BojerAerial partCrude [57]
ConvolvulaceaeCalystegia soldanella (L.) R. Br.Leaf, Stem Crude [96]
ConvolvulaceaeCuscuta chinensis Lam.Fruit, Stem Crude [96]
ConvolvulaceaeCuscuta japonica ChoisySemen Crude [96] Crude [66]
ConvolvulaceaeIpomoea aquatic Forssk.Whole plantCrude [57]
ConvolvulaceaeIpomoea cairica (L.) SweetWhole plantCrude [57] Lignans [180]
ConvolvulaceaeIpomoea carnea Jacq.Aerial partCrude [57]
ConvolvulaceaeMerremia peltata (L.) Merr. Crude [181]
CornaceaeCornus walteri WangerinAerial part Crude [96]
CornaceaeCamptotheca acuminata Decne Rubitecan [182]
CrassulaceaeOrostachys japonica A. BergerAerial part Crude [183]
CrassulaceaeSedum album L.Whole plant Crude [61]
CrassulaceaeSedum maximum Hoffm.LeafCrude [62]
CrassulaceaeSedum polytrichoides Hemsl.Whole plant Crude [96]
CrassulaceaeSedum roseum Scop. Crude [96]
CucurbitaceaeCitrullus colocynthis (L.) Schrad.Fruit peelCrude [74]
CucurbitaceaeGynostemma pentaphyllum (Thunb.) Makino Crude [184]
CucurbitaceaeHemsleya endecaphylla C.Y. WuTuber Crude [185]
CucurbitaceaeMomordica balsamina L.Leaf Crude [186]
CucurbitaceaeMomordica charantia L.Seed, Fruit Crude [187]
CucurbitaceaeMomordica cochinchinensis (Lour.) Spreng.Semen Crude [96] Crude [66]
CucurbitaceaeTrichosanthes kirilowii Maxim.Semen Crude [66,188]
CupressaceaeCupressus sempervirens L. Crude [189]
CupressaceaePlatycladus orientalis (L.) Franco Crude [66]
CupressaceaeThuja occidentalis L. Crude [190]
CyperaceaeBolboschoenus maritimus (L.) Palla Crude [66]
CyperaceaeCyperus rotundus L.Rhizome Crude [68]
DavalliaceaeDavallia mariesii T. Moore ex BakerRoot Crude [66]
DioscoreaceaeDioscorea bulbifera L. Flavonoid [191]
DioscoreaceaeDioscorea hispida Dennst.Rhizome Crude Protease [68]
DioscoreaceaeDioscorea polystachya Turcz. Crude inhibition [66]
DioscoreaceaeDioscorea tokoro MakinoRoot Crude inhibition [66]
Dipterocarpaceae Monotes africana A. DC. Crude [192]
DryopteridaceaeCyrtomium fortune J. Sm.Rhizome Crude Protease [68]
DryopteridaceaeDryopteris crassirhizoma NakaiRhizomeFlavonoid [193]Triterpenes [194]
EbenaceaeEuclea natalensis A. DC. Naphthoquinone [195]
EbenaceaeDiospyros mollis Griff.StemCrude [58]
ElaeocarpaceaeElaeocarpus grandiflorus Sm.Fruit Crude [68]
EphedraceaeEphedra americana Humb. & Bonpl. ex Willd.Stem Crude [82]
EphedraceaeEphedra sinica StapfStemCrude [196]Crude [68] Crude [196]
EquisetaceaeEquisetum arvense L.Stem Crude [82]
EquisetaceaeEquisetum giganteum L.Stem Crude [82]
EquisetaceaeEquisetum hyemale L.Aerial part Crude [66]
ErythroxylaceaeErythroxylum citrifolium A. St.-Hil.Trunk Crude [93]
EucommiaceaeEucommia ulmoides Oliv.Stem bark Crude [66]
EuphorbiaceaeAcalypha macrostachya Jacq.Leaf Crude [93]
EuphorbiaceaeAlchornea cordifolia (Schumach. & Thonn.) Müll. Arg.Leaf Crude [80]
EuphorbiaceaeBaliospermum solanifolium (Geiseler) Suresh Crude [99]
EuphorbiaceaeChamaesyce hyssopifolia (L.) SmallWhole plantCrude [93]Crude [93]
EuphorbiaceaeCroton billbergianus Müll. Arg.Trunk Crude [93]
EuphorbiaceaeCroton gratissimus Burch. Crude [74]
EuphorbiaceaeCroton tiglium L.Seed Crude [197]
EuphorbiaceaeCroton zambesicus Müll. Arg.SeedCrude [74]Crude [95]
EuphorbiaceaeEuphorbia erythradenia Boiss.Aerial part Triterpene [198]
EuphorbiaceaeEuphorbia granulate Forssk.Leaf Crude [95]
EuphorbiaceaeEuphorbia hirta L.Whole plantCrude [58]
EuphorbiaceaeEuphorbia hyssopifolia L.Whole plantCrude [93]Crude [93]
EuphorbiaceaeEuphorbia kansui T.N. Liou ex S.B. Ho Crude [199]
EuphorbiaceaeEuphorbia neriifolia L.Stem bark Diterpenoids [200,201]
EuphorbiaceaeEuphorbia polyacantha Boiss. Crude [74]
EuphorbiaceaeEuphorbia prostrate Aiton Crude [95]
EuphorbiaceaeEuphorbia thi Schweinf.Aerial partCrude [74]
EuphorbiaceaeHomalanthus nutans (G. Forst.) Guill. Prostratin [202]
EuphorbiaceaeJatropha curcas L.LeafCrude [93]Crude [93] Crude [80,93]
EuphorbiaceaeMallotus japonicus (L.f.) Müll.Arg. Tannins [203]
EuphorbiaceaeMallotus philippensis (Lam.) Müll. Arg.FlowerCrude [58]
EuphorbiaceaeMaprounea africana Müll. Arg.LeafXanthone [204] Triterpene [205] Crude [80] Triterpene [205]
EuphorbiaceaeNeoshirakia japonica (Siebold & Zucc.) EsserLeaf Crude [96]
EuphorbiaceaeRicinus communis L.LeafLectins [206]Crude [83] Crude [207]
EuphorbiaceaeSapium indicum Willd.FruitCrude [58]
EuphorbiaceaeShirakiopsis indica (Willd.) Esser Crude [58]
EuphorbiaceaeTrigonostemon thyrsoideus StapfStem Diterpenoid [208,209]
FabaceaeAbrus precatorius L.Seed Saponins [210] Crude [211]
FabaceaeAcacia catechu (L. f.) Willd.ResinCrude [58] Crude [212]
FabaceaeAcacia mellifera (Vahl) Benth.Stem barkCrude [102]
FabaceaeAcacia nilotica (L.) Willd. ex DelileBark Crude [95]
FabaceaeAlbizia gummifera (J.F. Gmel.) C.A. Sm.Stem barkCrude [102]
FabaceaeAlbizia procera (Roxb.) Benth. Crude [113]Crude [113]
FabaceaeAstragalus propinquus Schischk.Aerial part Crude [68] Crude [51]
FabaceaeAstragalus spinosus Muschl.Aerial part Triterpene [213]
FabaceaeBauhinia strychnifolia Craib Crude [113]
FabaceaeBauhinia variegata L. Crude [134]
FabaceaeButea monosperma (Lam.) Taub.Root Crude [56]
FabaceaeCaesalpinia bonduc (L.) Roxb.Seed Crude [83]
FabaceaeCaesalpinia sappan L.StemCrude [58] Crude [113]Crude [66]
FabaceaeCanavalia gladiate (Jacq.) DC. Crude [134]
FabaceaeCassia fistula L.Bark Crude [68,83]
FabaceaeCastanospermum austral A. Cunn. & C. Fraser Alkaloid [214]
FabaceaeCullen corylifolium (L.) Medik. Crude [66]
FabaceaeDetarium microcarpum Guill. & Perr. Flavonoids [215]
FabaceaeElephantorrhiza elephantine (Burch.) SkeelsBulb Crude [79]
FabaceaeErythrina abyssinica Lam.BarkCrude [74] [102] Alkaloids [216]
FabaceaeErythrina senegalensis DC. Flavonoids [217]
FabaceaeEuchresta formosana (Hayata) Ohwi Crude [218]
FabaceaeGleditsia japonica Miq.Fruit Saponin [219]
FabaceaeGlycine max (L.) Merr. Crude [134]
FabaceaeGlycyrrhiza glabra L. Crude [220] Crude [56,221]
FabaceaeGlycyrrhiza uralensis Fisch. ex DC. Crude [222]
FabaceaeGymnocladus chinensis Baill.Fruit Saponin [219]
FabaceaeHylodendron gabunense Taub. Crude [223]
FabaceaeLespedeza juncea (L. f.) Pers.Whole plant Crude [96]
FabaceaeLespedeza tomentosa (Thunb.) Siebold ex Maxim.Leaf Crude [96]
FabaceaeMelilotus suaveolens Ledeb.Whole plant Crude [96]
FabaceaeMillettia erythrocalyx Gagnep.Leaf Flavonoid [224]
FabaceaePeltophorum africanum Sond.Stem barkCrude [172] Crude [172]Betulinic acid [225]
FabaceaePhaseolus vulgaris L.SeedLectin [226] [223]
FabaceaePongamia pinnata (L.) PierreBarkFlavonoids [227]Crude [83]
FabaceaeProsopis glandulosa Torr.Leaf Oleanolic acid [228]
FabaceaePsoralea glandulosa L.Leaf Crude [82]
FabaceaePterocarpus marsupium Roxb. Crude [229]
FabaceaePueraria montana (Lour.) Merr. Crude [60] Crude [66]
FabaceaeSaraca indica L.Bark Crude [83]
FabaceaeSecurigera securidaca (L.) Degen & Dorfl. Kaempferol [230]
FabaceaeSenna alata Roxb.Aerial partCrude [57]
FabaceaeSenna garrettiana (Craib) H.S.Irwin & Barneby Crude [113]
FabaceaeSenna obtusifolia (L.) H.S. Irwin & BarnebyAerial part Crude [95] Crude [231]
FabaceaeSenna occidentalis (L.) LinkLeaf Crude [56]
FabaceaeSophora flavescens AitonRootCrude [196]Crude [60,96]Crude [105]Crude [196]
FabaceaeSophora japonica L.Flower Crude [66]
FabaceaeSophora tonkinensis Gagnep.Root Crude [60,68]
FabaceaeSpatholobus suberectus DunnRhizome Crude [60,68]Crude [105]
FabaceaeStyphnolobium japonicum (L.) SchottFlower bud Crude [68] Crude [66]
FabaceaeSutherlandia frutescens (L.) R. Br. Crude [132]
FabaceaeTephrosia purpurea (L.) Pers.Root Crude [83]
FabaceaeVigna unguiculata (L.) Walp.Seed Crude [83]
FagaceaeQuercus infectoria OlivierFruitCrude [58]
FagaceaeQuercus robur L. Crude [175]
FlacourtiaceaeHydnocarpus anthelminthicus Pierre ex Laness.Semen Crude [66]
GentianaceaeGentiana asclepiadea L.LeafCrude [62]
GentianaceaeGentiana macrophylla Pall.Root Crude [68]
GentianaceaeGentiana scabra BungeRoot Crude [68]
GentianaceaeSwertia bimaculata (Siebold & Zucc.) Hook. f. & Thomson ex C.B. Clarke Sesterterpenoid [232]
GentianaceaeSwertia franchetiana Harry Sm.RootXanthone [204] Xanthone [233]
GentianaceaeSwertia punicea Hemsl. Xanthone [234]
GentianaceaeTripterospermum lanceolatum (Hayata) H. Hara ex Satake Crude [235]
GesneriaceaeDrymonia serrulata (Jacq.) Mart.Leaf Crude [93]
GinkgoaceaeGinkgo biloba L.SemenCrude [236]Crude [236]
Ginkgolic acid [237]
Crude [66]
GunneraceaeGunnera magellanica Lam.Stem Crude [82]
HydrangeaceaePhiladelphus schrenkii Rupr.Stem Crude [96]
HydrocharitaceaeThalassia testudunum Banks & Sol. ex K.D. Koenig Crude [238]
HypericaceaeCratoxylum arborescens BlumeLeaf Xanthones [239]
HypericaceaeHypericum capitatum Choisy Crude [240]
HypericaceaeHypericum hircinum L. Crude [241]
HypericaceaeHypericum perforatum L. Crude [242]
HypericaceaeVismia baccifera (L.) Triana & Planch. Crude [155]
HypericaceaeVismia cayennensis (Jacq.) Pers.Leaf Crude [243]
HypoxidaceaeHypoxis hemerocallidea Fisch., C.A. Mey. & Avé-Lall. Crude [244]
HypoxidaceaeHypoxis sobolifera Jacq.CormCrude [75]Crude [75]
IridaceaeAristea ecklonii Baker
IridaceaeEleutherine bulbosa (Mill.) Urb.Bulb Naphthoquinone [245]
IridaceaeIris domestica (L.) Goldblatt & Mabb. Crude [68]
JuglandaceaeJuglans mandshurica Maxim.Bark Crude [96] Glycosides [246]
LamiaceaeAegiphila anomala PittierLeafCrude [93]
LamiaceaeAgastache rugosa (Fisch. & C.A. Mey.) KuntzeWhole plant Crude [60,96]Crude [247]Crude [248]
LamiaceaeAjuga decumbens Thunb. Crude [249]
LamiaceaeAnisomeles indica (L.) Kuntze Diterpenoid [250]
LamiaceaeClinopodium bolivianum (Benth.) KuntzeLeaf Crude [82]
LamiaceaeClinopodium chinense (Benth.) KuntzeWhole plant Crude [96]
LamiaceaeColeus forskohlii (Willd.) Briq.Aerial part Crude [56,251]
LamiaceaeCornutia grandifolia (Schltdl. & Cham.) SchauerTrunk Crude [93]
LamiaceaeCornutia pyramidata L. Crude [93]
LamiaceaeHyptis capitata Jacq.Whole plant Oleanolic acid [228]
LamiaceaeHyptis lantanifolia Poit.Aerial partCrude [93]Crude [93]
LamiaceaeHyssopus officinalis L.LeafCrude [252]
LamiaceaeIsodon excisus (Maxim.) KudôWhole plant Crude [96]
LamiaceaeIsodon inflexus (Thunb.) Kudô Crude [96]
LamiaceaeLeonotis leonurus (L.) R. Br.LeafCrude [75]Crude [75]
LamiaceaeLeonurus japonicas Houtt.Semen Crude [66]
LamiaceaeLeonurus sibiricus L.Aerial part Crude [96]
LamiaceaeLycopus lucidus Turcz. ex Benth.Whole plant Crude [68]
LamiaceaeMarrubium vulgare L.Leaf Crude [82]
LamiaceaeMeehania urticifolia (Miq.) MakinoWhole plant Crude [96]
LamiaceaeMelissa officinalis L.Whole plant Crude [253]
LamiaceaeMentha arvensis L.Leaf Crude [66]
LamiaceaeMentha canadensis L.Whole plant Crude [60,68]
LamiaceaeMentha longifolia (L.) Huds. Crude [254]
LamiaceaeMinthostachys mollis Griseb.Leaf Crude [82]
LamiaceaeMosla scabra (Thunb.) C.Y. Wu & H.W. LiWhole plant Crude [96]
LamiaceaeOcimum basilicum L.LeafCrude [58] Crude [255]
LamiaceaeOcimum kilimandscharicum Baker ex Gürke Crude [255]
LamiaceaeOcimum labiatum (N.E. Br.) A.J. Paton Triterpenoid [256]
LamiaceaeOcimum tenuiflorum L.LeafCrude [54,58]
LamiaceaePerilla frutescens (L.) BrittonLeaf Crude [60] Crude [66]
LamiaceaePlectranthus amboinicus (Lour.) Spreng.LeafCrude [229]Crude [83,99]
LamiaceaePlectranthus barbatus Andrews Crude [257]
LamiaceaePogostemon heyneanus Benth.Leaf Crude [83]
LamiaceaePrunella vulgaris L.Whole plant Crude [60]Crude [105]Crude [51,72,258]
LamiaceaeRosmarinus officinalis L. Crude [259]
LamiaceaeSalvia haenkei Benth. Crude [82]
LamiaceaeSalvia miltiorrhiza BungeRootCrude [260]Crude Protease [68]Crude [261]
LamiaceaeSalvia officinalis L.LeafCrude [262] Coumarin [263]Crude [264]
LamiaceaeSalvia punctate Ruiz & Pav. Crude [82]
LamiaceaeSalvia revolute Ruiz & Pav. Crude [82]
LamiaceaeSalvia yunnanensis C.H. WrightRoot Polyphenol [265]
LamiaceaeSatureja cuneifolia Ten.Whole plant Crude [61]
LamiaceaeSatureja obovate Lag.Whole plant Crude [61]
LamiaceaeScutellaria baicalensis GeorgiRoot Crude [60,68] Flavonoid [266]
LamiaceaeTeucrium buxifolium Schreb.Whole plant Crude [61]
LamiaceaeVitex glabrata R. Br.BrancheCrude [57]
LamiaceaeVitex negundo L.Aerial partCrude [57]
LamiaceaeVitex trifolia L.Aerial partCrude [57] Crude [66]
LardizabalaceaeAkebia quinata (Houtt.) Decne.Lignum Crude [66]
LardizabalaceaeStauntonia obovatifoliola Hayata Triterpenoid [267]
LauraceaeCinnamomum loureiroi NeesStem barkCrude [58]
LauraceaeCinnamomum verum J. PreslLeaf Crude [83]
LauraceaeLindera aggregate (Sims) Kosterm.Stem Crude [60]Crude [268]Crude [66]
LauraceaeLindera chunii Merr. Sesquiterpenoid [269]
LauraceaeLindera erythrocarpa MakinoLeaf Crude [270]
LauraceaeLindera obtusiloba BlumeLeaf, Stem Crude [96]
LauraceaeLitsea glutinosa (Lour.) C.B. Rob.Bark Crude [83]
LauraceaeLitsea verticillata HanceLeafCrude [58] Crude [271]
LiliaceaeAmana edulis (Miq.) Honda Crude [196]Crude [96] Crude [196]
LiliaceaeFritillaria cirrhosa D. DonRhizome Crude [60]Crude [105]
LiliaceaeFritillaria thunbergii Miq.Rhizome Crude [68]
LoasaceaeCaiophora pentlandii (Paxton ex Graham) G. Don ex LoudonLeaf Crude [82]
LoganiaceaeStrychnos ignatii P.J. BergiusSemen Crude [66]
LoganiaceaeStrychnos nuxvomica L.SeedCrude [58]
LoganiaceaeStrychnos potatorum L. f.Seed Crude [83]
LoranthaceaeScurrula parasitica L.Aerial part Crude [68]
LycopodiaceaeLycopodium japonicum Thunb. Alkaloids [272]
LythraceaeLawsonia inermis L.Aerial partCrude [58]
LythraceaeLythrum salicaria L.LeafCrude [62]
LythraceaePunica granatum L.Fruit barkCrude [58]Crude [68,83]
LythraceaeWoodfordia fruticosa (L.) KurzFlower Crude [68]
MagnoliaceaeMagnolia biondii Pamp.Flower bud Crude [68]
MagnoliaceaeMagnolia denudate Desr.Flower Crude [96]
MagnoliaceaeMagnolia obovate Thunb.Bark Crude [68]
MagnoliaceaeMagnolia officinalis Rehder & E.H. WilsonBark Crude [68]
MalpighiaceaeTetrapterys goudotiana Triana & Planch. Crude [93]Crude [93]
MalvaceaeAdansonia digitata L.LeafCrude [273]Crude [273]
MalvaceaeCorchoropsis tomentosa (Thunb.) MakinoAerial part Crude [96]
MalvaceaeGrewia mollis Juss.RootCrude [102]
MalvaceaeHibiscus sabdariffa L.FlowerCrude [58]
MalvaceaePavonia schiedeana Steud.Aerial partCrude [93]
MalvaceaeSida cordata (Burm. f.) Borss. Waalk.Root Crude [83] Polyphenols [274]
MalvaceaeSida mysorensis Wight & Arn.Seed Crude [68] Polyphenols [274]
MalvaceaeSida rhombifolia L.Leaf Crude [80]
Polyphenols [274]
MalvaceaeThespesia populnea (L.) Sol. ex Corrêa Crude [275]
MalvaceaeTilia amurensis Rupr.Leaf, Stem Crude [96]
MalvaceaeWaltheria indicaBranch Crude [93]
MeliaceaeAglaia lawii (Wight) C.J. SaldanhaLeaf Crude [276]
MeliaceaeAzadirachta indica A. Juss.LeafCrude [58,102]Crude [83,95]
MeliaceaeKhaya senegalensis (Desr.) A. Juss. Crude [95]
MeliaceaeMelia azedarach L.FruitCrude [102] Crude [66]
MeliaceaeSwietenia macrophylla King Crude [277]
MeliaceaeSwietenia mahagoni (L.) Jacq.Bark Crude [278]
MeliaceaeTrichilia emetic Vahl Crude [95]