Next Article in Journal
Transcriptomic Characterization of Bradyrhizobium diazoefficiens Bacteroids Reveals a Post-Symbiotic, Hemibiotrophic-Like Lifestyle of the Bacteria within Senescing Soybean Nodules
Next Article in Special Issue
Potential Role of Fluoride in the Etiopathogenesis of Alzheimer’s Disease
Previous Article in Journal
MicroRNA 210 Mediates VEGF Upregulation in Human Periodontal Ligament Stem Cells Cultured on 3DHydroxyapatite Ceramic Scaffold
Previous Article in Special Issue
β-Naphtoflavone and Ethanol Induce Cytochrome P450 and Protect towards MPP+ Toxicity in Human Neuroblastoma SH-SY5Y Cells
Article Menu
Issue 12 (December) cover image

Export Article

Open AccessArticle
Int. J. Mol. Sci. 2018, 19(12), 3917;

Antioxidant Properties and the Formation of Iron Coordination Complexes of 8-Hydroxyquinoline

Division of Molecular Systems Biology, Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
Department of Plant Biochemistry, Albrecht-von-Haller Institut, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
Author to whom correspondence should be addressed.
Received: 29 October 2018 / Revised: 26 November 2018 / Accepted: 5 December 2018 / Published: 7 December 2018
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Neurotoxicity)
Full-Text   |   PDF [1712 KB, uploaded 7 December 2018]   |  


Background: The alkaloid 8-hydroxyquinoline (8HQ) is well-known for various biological activities, including antioxidant effects and especially for the formation of coordination complexes with various transition metals, such as iron, amongst others. Therefore, 8HQ was extensively explored as a promising antineurodegenerative agent. However, other authors noted pro-oxidant effects of 8HQ. Here, we explore the pro- and antioxidant properties of 8HQ, especially in context of coordination complexes with iron (II) and iron (III). Methods: Nano-electrospray−mass spectrometry, differential pulse voltammetry, deoxyribose degradation, iron (II) autoxidation, and brine shrimp mortality assays were used. Results: 8HQ formed a complex mixture of coordination complexes with iron (II) and iron (III). Furthermore, 8HQ showed antioxidant effects but no pro-oxidant ones. In the brine shrimp mortality assay, 8HQ demonstrated toxicity that decreased in the presence of iron (III). Conclusions: 8HQ is a potent antioxidant whose effects depend not only on the formation of the coordination complexes with iron ions, but surely on the scavenging activities due to the redox properties of the 8-hydroxyl group. No pro-oxidant effects were observed in the set of the used assays. View Full-Text
Keywords: Alzheimer’s; Fenton reaction; hydroxyl radical; iron chelates; reactive oxygen species Alzheimer’s; Fenton reaction; hydroxyl radical; iron chelates; reactive oxygen species

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material


Share & Cite This Article

MDPI and ACS Style

Chobot, V.; Hadacek, F.; Bachmann, G.; Weckwerth, W.; Kubicova, L. Antioxidant Properties and the Formation of Iron Coordination Complexes of 8-Hydroxyquinoline. Int. J. Mol. Sci. 2018, 19, 3917.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top