Next Article in Journal
First Mitochondrial Genome from Nemouridae (Plecoptera) Reveals Novel Features of the Elongated Control Region and Phylogenetic Implications
Previous Article in Journal
Reply to the Letter to the Editor by Li et al.: Bioinformatics Analysis in Mice with Diet-Induced Nonalcoholic Steatohepatitis Treated with Astaxanthin and Vitamin E
Previous Article in Special Issue
Lysozyme Associated Liposomal Gentamicin Inhibits Bacterial Biofilm
Article Menu
Issue 5 (May) cover image

Export Article

Open AccessArticle
Int. J. Mol. Sci. 2017, 18(5), 997;

Antimicrobial, Optical and Mechanical Properties of Chitosan–Starch Films with Natural Extracts

Tecnológico Nacional de México-Instituto Tecnológico de Ciudad Madero, Centro de Investigación en Petroquímica, Prolongación Bahía de Aldair, Ave. de las Bahías, Parque de la Pequeña y Mediana Industria, Altamira, Tamaulipas C.P. 89600, Mexico
Tecnológico Nacional de México-Instituto Tecnológico de Querétaro, División de Estudios de Posgrado e Investigación, Av. Tecnológico s/n esquina Gral. Mariano Escobedo, Col. Centro Histórico, Querétaro, Querétaro C.P. 76000, Mexico
Author to whom correspondence should be addressed.
Academic Editors: Antonella Piozzi and Iolanda Francolini
Received: 3 April 2017 / Revised: 24 April 2017 / Accepted: 26 April 2017 / Published: 5 May 2017
(This article belongs to the Special Issue Antimicrobial Polymers 2016)
Full-Text   |   PDF [773 KB, uploaded 5 May 2017]   |  


Natural extracts possess several kinds of antioxidants (anthocyanins, betalains, thymol, carvacrol, and resveratrol) that have also demonstrated antimicrobial properties. In order to study these properties, extracts from cranberry, blueberry, beetroot, pomegranate, oregano, pitaya, and resveratrol (from grapes) were obtained. Growth inhibition tests of mesophilic aerobes, coliforms, and fungi were conducted in films prepared from the extracts in accordance with Mexican Official Norms (NOM). Optical properties such as transparency and opacity, mechanical properties, and pH were also analyzed in these materials. The films with beetroot, cranberry, and blueberry extracts demonstrated the best antimicrobial activity against various bacteria and fungi in comparison with unmodified chitosan–starch film. This study shows that the addition of antioxidants improved the antimicrobial performance of these films. It was also found that antimicrobial properties are inherent to the films. These polymers combined with the extracts effectively inhibit or reduce microorganism growth from human and environmental contact; therefore, previous sterilization could be unnecessary in comparison with traditional plastics. The presence of extracts decreased transmittance percentages at 280 and 400 nm, as well as the transparency values, while increasing their opacity values, providing better UV–VIS light barrier properties. Despite diminished glass transition temperatures (Tg), the values obtained are still adequate for food packaging applications. View Full-Text
Keywords: chitosan–starch; natural extracts; antimicrobial activity; optical and mechanical properties chitosan–starch; natural extracts; antimicrobial activity; optical and mechanical properties

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Lozano-Navarro, J.I.; Díaz-Zavala, N.P.; Velasco-Santos, C.; Martínez-Hernández, A.L.; Tijerina-Ramos, B.I.; García-Hernández, M.; Rivera-Armenta, J.L.; Páramo-García, U.; Reyes-de la Torre, A.I. Antimicrobial, Optical and Mechanical Properties of Chitosan–Starch Films with Natural Extracts. Int. J. Mol. Sci. 2017, 18, 997.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top