Next Article in Journal
The Effect of Chinese Herbal Medicine Formula mKG on Allergic Asthma by Regulating Lung and Plasma Metabolic Alternations
Next Article in Special Issue
Old Maids: Aging and Its Impact on Microglia Function
Previous Article in Journal
The Development of a Novel Therapeutic Strategy to Target Hyaluronan in the Extracellular Matrix of Pancreatic Ductal Adenocarcinoma
Previous Article in Special Issue
Microglial Function across the Spectrum of Age and Gender
Article Menu
Issue 3 (March) cover image

Export Article

Open AccessReview

Autophagy and Microglia: Novel Partners in Neurodegeneration and Aging

Achucarro Basque Center for Neuroscience, 48170 Zamudio, Spain
Department of Neurosciences, University of the Basque Country EHU/UPV, 48940 Leioa, Spain
Ikerbasque Foundation, 48013 Bilbao, Spain
Authors to whom correspondence should be addressed.
Academic Editor: Styliani-Anna E. Tsirka
Int. J. Mol. Sci. 2017, 18(3), 598;
Received: 31 January 2017 / Revised: 28 February 2017 / Accepted: 5 March 2017 / Published: 9 March 2017
(This article belongs to the Special Issue Microglia in Aging and Neurodegenerative Disease)
PDF [1233 KB, uploaded 10 March 2017]


Autophagy is emerging as a core regulator of Central Nervous System (CNS) aging and neurodegeneration. In the brain, it has mostly been studied in neurons, where the delivery of toxic molecules and organelles to the lysosome by autophagy is crucial for neuronal health and survival. However, we propose that the (dys)regulation of autophagy in microglia also affects innate immune functions such as phagocytosis and inflammation, which in turn contribute to the pathophysiology of aging and neurodegenerative diseases. Herein, we first describe the basic concepts of autophagy and its regulation, discuss key aspects for its accurate monitoring at the experimental level, and summarize the evidence linking autophagy impairment to CNS senescence and disease. We focus on acute, chronic, and autoimmunity-mediated neurodegeneration, including ischemia/stroke, Alzheimer’s, Parkinson’s, and Huntington’s diseases, and multiple sclerosis. Next, we describe the actual and potential impact of autophagy on microglial phagocytic and inflammatory function. Thus, we provide evidence of how autophagy may affect microglial phagocytosis of apoptotic cells, amyloid-β, synaptic material, and myelin debris, and regulate the progression of age-associated neurodegenerative diseases. We also discuss data linking autophagy to the regulation of the microglial inflammatory phenotype, which is known to contribute to age-related brain dysfunction. Overall, we update the current knowledge of autophagy and microglia, and highlight as yet unexplored mechanisms whereby autophagy in microglia may contribute to CNS disease and senescence. View Full-Text
Keywords: microglia; autophagy; phagocytosis; inflammation; aging; neurodegeneration microglia; autophagy; phagocytosis; inflammation; aging; neurodegeneration

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Plaza-Zabala, A.; Sierra-Torre, V.; Sierra, A. Autophagy and Microglia: Novel Partners in Neurodegeneration and Aging. Int. J. Mol. Sci. 2017, 18, 598.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top