Next Article in Journal
Exogenous PTHrP Repairs the Damaged Fracture Healing of PTHrP+/− Mice and Accelerates Fracture Healing of Wild Mice
Next Article in Special Issue
Photoluminescent Gold Nanoclusters in Cancer Cells: Cellular Uptake, Toxicity, and Generation of Reactive Oxygen Species
Previous Article in Journal
The Dynamics of the Defense Strategy of Pea Induced by Exogenous Nitric Oxide in Response to Aphid Infestation
Previous Article in Special Issue
The Role of Reactive Oxygen Species (ROS) in the Biological Activities of Metallic Nanoparticles
Open AccessReview

The Current State of Nanoparticle-Induced Macrophage Polarization and Reprogramming Research

1
School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
2
Department of Plastic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
*
Authors to whom correspondence should be addressed.
Academic Editor: Qinghua Qin
Int. J. Mol. Sci. 2017, 18(2), 336; https://doi.org/10.3390/ijms18020336
Received: 9 December 2016 / Revised: 20 January 2017 / Accepted: 2 February 2017 / Published: 6 February 2017
(This article belongs to the Collection Bioactive Nanoparticles)
Macrophages are vital regulators of the host defense in organisms. In response to different local microenvironments, resting macrophages (M0) can be polarized into different phenotypes, pro-inflammatory (M1) or anti-inflammatory (M2), and perform different roles in different physiological or pathological conditions. Polarized macrophages can also be further reprogrammed by reversing their phenotype according to the changed milieu. Macrophage polarization and reprogramming play essential roles in maintaining the steady state of the immune system and are involved in the processes of many diseases. As foreign substances, nanoparticles (NPs) mainly target macrophages after entering the body. NPs can perturb the polarization and reprogramming of macrophages, affect their immunological function and, therefore, affect the pathological process of disease. Optimally-designed NPs for the modulation of macrophage polarization and reprogramming might provide new solutions for treating diseases. Systematically investigating how NPs affect macrophage polarization is crucial for understanding the regulatory effects of NPs on immune cells in vivo. In this review, macrophage polarization by NPs is summarized and discussed. View Full-Text
Keywords: nanoparticles; macrophage; polarization; reprogramming nanoparticles; macrophage; polarization; reprogramming
Show Figures

Graphical abstract

MDPI and ACS Style

Miao, X.; Leng, X.; Zhang, Q. The Current State of Nanoparticle-Induced Macrophage Polarization and Reprogramming Research. Int. J. Mol. Sci. 2017, 18, 336.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop