Two Paralogous Genes Encoding Auxin Efflux Carrier Differentially Expressed in Bitter Gourd (Momordica charantia)
Abstract
:1. Introduction
2. Results
2.1. Isolation and Characterization of Auxin Efflux Carrier cDNAs from Bitter Gourd
2.2. Genome Organization of Auxin Efflux Carrier Genes in Bitter Gourd
2.3. Gene Expression of Auxin Efflux Carrier during Fruit Ripening in Bitter Gourd
2.4. Effects of Exogenous Auxin on Bitter Gourd Auxin Efflux Carrier Gene Expression
2.5. Effects of Exogenous Auxin on Promoter Activity of Auxin Efflux Carrier Genes from Bitter Gourd in Transgenic Tobacco
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. RNA Extraction
4.3. Construction and Screening of cDNA Library and Genomic Library
4.4. Nucleotide and Amino Acid Sequence Analysis
4.5. Southern Blot Analysis
4.6. Northern Blot Analysis
4.7. Promoter Activity Analysis
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
IAA | Indole-3-acetic acid |
NAA | 1-Naphthaleneacetic acid |
IBA | Indole-3-butyric acid |
2,4-D | 2,4-Dichlorophenoxyacetic acid |
References
- Lomax, T.L.; Muday, G.K.; Rubery, P.H. Auxin transport. In Plant Hormones: Physiology, Biochemistry, and Molecular Biology; Davies, P.J., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1995; pp. 509–530. ISBN 978-94-011-0473-9. [Google Scholar]
- Cholodny, N. Wuchshormone und Tropismen bei den Pflanzen. Biol. Zentralblatt 1927, 47, 604–626. [Google Scholar]
- Goldsmith, M.H.M. The polar transport of auxin. Annu. Rev. Plant Physiol. 1977, 28, 439–478. [Google Scholar] [CrossRef]
- Benjamins, R.; Scheres, B. Auxin: The looping star in plant development. Annu. Rev. Plant Biol. 2008, 59, 443–465. [Google Scholar] [CrossRef] [PubMed]
- Zažímalová, E.; Murphy, A.S.; Yang, H.; Hoyerová, K.; Hošek, P. Auxin Transporters—Why so many? Cold Spring Harb. Perspect. Biol. 2010, 2, a001552. [Google Scholar] [CrossRef] [PubMed]
- Mravec, J.; Skupa, P.; Bailly, A.; Hoyerová, K.; Krecek, P.; Bielach, A.; Petrášek, J.; Zhang, J.; Gaykova, V.; Stierhof, Y.D.; et al. Subcellular homeostasis of phytohormone axuin is mediated by the ER-localized PIN5 transporter. Nature 2009, 459, 1136–1140. [Google Scholar] [CrossRef] [PubMed]
- Gälweiler, L.; Guan, C.; Müller, A.; Wisman, E.; Mendgen, K.; Yephremov, A.; Palme, K. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 1998, 282, 2226–2230. [Google Scholar] [CrossRef] [PubMed]
- Blakeslee, J.J.; Bandyopadhyay, A.; Peer, W.A.; Makam, S.N.; Murphy, A.S. Relocalization of the PIN1 auxin efflux facilitator plays a role in phototropic responses. Plant Physiol. 2004, 134, 28–31. [Google Scholar] [CrossRef] [PubMed]
- Paponov, I.A.; Teale, W.D.; Trebar, M.; Blilou, I.; Palme, K. The PIN auxin efflux facilitators: Evolutionary and functional perspectives. Trends Plant Sci. 2005, 10, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Lunschnig, C.; Gaxlola, R.A.; Grisafi, P.; Fink, G.R. EIR1 a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev. 1998, 12, 2175–2187. [Google Scholar] [CrossRef]
- Friml, J.; Wisniewska, J.; Benkova, E.; Mendgen, K.; Palme, K. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 2002, 415, 806–809. [Google Scholar] [CrossRef] [PubMed]
- Rakusová, H.; Abbas, M.; Han, H.; Song, S.; Robert, H.S.; Friml, J. Termination of shoot gravitropic responses by auxin feedback on PIN3 polarity. Curr. Biol. 2016, 26, 3026–3032. [Google Scholar] [CrossRef] [PubMed]
- Blilou, I.; Xu, J.; Wildwater, M.; Willemsen, V.; Paponov, I.; Friml, J.; Heidstra, R.; Alda, M.; Palme, K.; Scheres, B. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 2005, 433, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Friml, J.; Vieten, A.; Sauer, M.; Weijers, D.; Schwarz, H.; Hamann, T.; Offringa, R.; Jürgens, G. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 2003, 426, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Křeček, P.; Skůpa, P.; Libus, J.; Naramoto, S.; Tejos, R.; Friml, J.; Zažímalová, E. The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biol. 2009, 10, 249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cazzonelli, C.I.; Vanstraelen, M.; Simon, S.; Yin, K.; Carron-Arthur, A.; Nisar, N.; Tarle, G.; Cuttriss, A.J.; Searle, I.R.; Benkova, E.; et al. Role of the Arabidopsis PIN6 auxin transorpter in auxin homeostasis and auxin-mediated development. PLoS ONE 2013, 8, e70069. [Google Scholar] [CrossRef] [PubMed]
- Simon, S.; Skůpa, P.; Viaene, T.; Zwiewka, M.; Tejos, R.; Klíma, P.; Čarná, M.; Rolčík, J.; Rycke, R.D.; Moreno, I.; et al. PIN6 auxin transporter at endoplasmic reticulum and plasma membrane mediates auxin homeostasis and organogenesis in Arabidopsis. New Phytol. 2016, 211, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Pattison, R.J.; Catalá, C. Evaluating auxin distribution in tomato (Solanum lycopersicum) through an analysis of the PIN and AUX/LAX gene families. Plant J. 2012, 70, 588–598. [Google Scholar] [CrossRef] [PubMed]
- Mounet, F.; Moing, A.; Kowalczyk, M.; Rohrmann, J.; Petit, J.; Garcia, V.; Maucourt, M.; Yano, K.; Deborde, C.; Aoki, K.; et al. Down-regulation of a single auxin efflux transport protein in tomato induces precocious fruit development. J. Exp. Bot. 2012, 63, 4901–4917. [Google Scholar] [CrossRef] [PubMed]
- Nishio, S.; Moriguchi, R.; Ikeda, H.; Takahashi, H.; Takahashi, H.; Fujii, N.; Guilfoyle, T.J.; Kanahama, K.; Kanayama, Y. Expression analysis of the auxin efflux carrier family in tomato fruit development. Planta 2010, 232, 755–764. [Google Scholar] [CrossRef] [PubMed]
- Bendtsen, J.D.; Neilsen, H.; von Heijne, G.; Brunak, S. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 2004, 340, 783–795. [Google Scholar] [CrossRef] [PubMed]
- Zažímalová, E.; Krecek, P.; Skupa, P.; Hoyerová, K.; Petrášek, J. Polar transport of the plant hormone auxin—The role of PIN-FORMED (PIN) proteins. Cell. Mol. Life Sci. 2007, 64, 1621–1637. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Kamada, M.; Yamasaki, S.; Fujii, N.; Higashitani, A.; Takahashi, H. Gravity-induced modification of auxin transport and distribution for peg formation in cucumber seedlings: Possible roles for Cs-AUX1 and Cs-PIN1. Planta 2003, 218, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Chawla, R.; DeMason, D.A. Molecular expression of PsPIN1, a putative auxin efflux carrier gene from pea (Pisum sativum L.). Plant Growth Regul. 2004, 44, 1–14. [Google Scholar] [CrossRef]
- Schnabel, E.L.; Frugoli, J. The PIN and LAX families of auxin transport genes in Medicago truncatula. Mol. Genet. Genom. 2004, 272, 420–432. [Google Scholar] [CrossRef] [PubMed]
- Müller, A.; Guan, C.; Gälweiler, L.; Tänzler, P.; Huijser, P.; Marchant, A.; Parry, G.; Bennett, M.; Wisman, E.; Palme, K. AtPIN 2 defines a locus of Arabidopsis for root gravitropism control. EMBO J. 1998, 17, 6903–6911. [Google Scholar]
- Guilfoyle, T.J. Auxin-regulated gene expression in higher plants. CRC Crit. Rev. Plant Sci. 1986, 4, 247–276. [Google Scholar] [CrossRef]
- Theologis, A. Rapid gene regulation by auxin. Annu. Rev. Plant Physiol. 1986, 37, 407–438. [Google Scholar] [CrossRef]
- Theologis, A.; Huynh, T.V.; Davis, R.W. Rapid induction of specific mRNAs by auxin in pea epicotyl tissue. J. Mol. Biol. 1985, 183, 53–68. [Google Scholar] [CrossRef]
- Abel, S.; Oeller, P.W.; Theologis, A. Early auxin-induced genes encode short-lived nuclear proteins. Proc. Natl. Acad. Sci. USA 1994, 91, 326–330. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Hilson, P.; Sedbrook, J.; Rosen, E.; Caspar, T.; Masson, P.H. The Arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier. Proc. Natl. Acad. Sci. USA 1998, 95, 15112–15117. [Google Scholar] [CrossRef] [PubMed]
- Beyer, E.M., Jr.; Quebedeaux, B. Parthenocarpy in cucumber: Mechanism of action of auxin transport inhibitors. J. Am. Soc. Hort. Sci. 1974, 99, 385–390. [Google Scholar]
- Chomczynski, P.; Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987, 162, 156–159. [Google Scholar] [CrossRef]
- Aviv, H.; Leder, P. Purification of biologically active globin messenger RNA by chromatography on oligo thymidylic acid-cellulose. Proc. Natl. Acad. Sci. USA 1992, 69, 1408–1412. [Google Scholar] [CrossRef]
- Kimmel, A.R.; Berger, S.L. Preparation of cDNA and the generation of cDNA libraries: Overview. Methods Enzymol. 1987, 152, 307–312. [Google Scholar] [PubMed]
- Sambrook, J.; Fritsch, E.F.; Maniatis, T. Molecular Cloning: A laboratory manual, 2nd ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 1989; ISBN 10:0879693096. [Google Scholar]
- Jofuku, K.D.; Goldberg, R.B. Analysis of plant gene structure. In Plant Molecular Biology. A Practical Approach; Chaw, C.H., Ed.; IRL Press: Oxford, UK, 1988; pp. 37–42. [Google Scholar]
- Tusnády, G.E.; Simon, I. Principles governing amino acid composition of integral membrane proteins: Applications to topology prediction. J. Mol. Biol. 1998, 283, 489–506. [Google Scholar] [CrossRef] [PubMed]
- Feinberg, A.P.; Vogelstein, B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 1983, 132, 6–13. [Google Scholar] [CrossRef]
- Denhardt, D.T. A membrane-filter technique for the detection of complementary DNA. Biochem. Biophys. Res. Commun. 1966, 23, 641–652. [Google Scholar] [CrossRef]
- McMaster, G.K.; Carmichael, G.G. Analysis of single and double-stranded nucleic acids on polyacrylamide and agarose gels by using glyoxal and acridine orange. Proc. Natl. Acad. Sci. USA 1977, 74, 4835–4838. [Google Scholar] [CrossRef] [PubMed]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Jefferson, R.; Kavanagh, T.; Bevan, M. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987, 6, 3901–3907. [Google Scholar] [PubMed]
Clone Designation | Size of cDNA (bp) | Accession Number in GenBank | Name of Gene | Number of Amino Acids | Molecular Weight (Da) | Predicted pI Value |
---|---|---|---|---|---|---|
pMAEC43 | 2270 | AF247004 | McPIN1 | 607 | 66,385 | 9.13 |
pMAEC28 | 2924 | AF246995 | McPIN2 | 607 | 66,300 | 9.04 |
pMAEC93 | 2511 | AF247005 | McPIN3 | 634 | 68,821 | 8.62 |
% | McPIN1 | McPIN2 | McPIN3 | AtPIN1 | AtPIN2 | AtPIN3 | AtPIN4 | AtPIN5 | AtPIN6 | AtPIN7 |
---|---|---|---|---|---|---|---|---|---|---|
McPIN2 | 99.5 | |||||||||
McPIN3 | 64.6 | 64.2 | ||||||||
AtPIN1 | 73.6 | 73.1 | 59.3 | |||||||
AtPIN2 | 58.5 | 58.2 | 57.7 | 58.8 | ||||||
AtPIN3 | 62.5 | 62.2 | 72.5 | 59.4 | 55.6 | |||||
AtPIN4 | 64.5 | 64.2 | 72.7 | 60.8 | 57.7 | 76.3 | ||||
AtPIN5 | 24.4 | 23.9 | 22.2 | 24.1 | 23.8 | 23.0 | 24.3 | |||
AtPIN6 | 47.5 | 47.2 | 44.3 | 46.2 | 46.0 | 43.9 | 45.6 | 25.3 | ||
AtPIN7 | 62.9 | 62.6 | 72.9 | 59.9 | 56.5 | 84.2 | 76.4 | 23.6 | 45.0 | |
AtPIN8 | 31.7 | 31.4 | 28.6 | 28.9 | 27.4 | 29.6 | 30.8 | 30.0 | 29.9 | 30.4 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.-L.; Lin, Y.-S.; Huang, P.-L.; Do, Y.-Y. Two Paralogous Genes Encoding Auxin Efflux Carrier Differentially Expressed in Bitter Gourd (Momordica charantia). Int. J. Mol. Sci. 2017, 18, 2343. https://doi.org/10.3390/ijms18112343
Li Y-L, Lin Y-S, Huang P-L, Do Y-Y. Two Paralogous Genes Encoding Auxin Efflux Carrier Differentially Expressed in Bitter Gourd (Momordica charantia). International Journal of Molecular Sciences. 2017; 18(11):2343. https://doi.org/10.3390/ijms18112343
Chicago/Turabian StyleLi, Yi-Li, Yun-Shan Lin, Pung-Ling Huang, and Yi-Yin Do. 2017. "Two Paralogous Genes Encoding Auxin Efflux Carrier Differentially Expressed in Bitter Gourd (Momordica charantia)" International Journal of Molecular Sciences 18, no. 11: 2343. https://doi.org/10.3390/ijms18112343
APA StyleLi, Y.-L., Lin, Y.-S., Huang, P.-L., & Do, Y.-Y. (2017). Two Paralogous Genes Encoding Auxin Efflux Carrier Differentially Expressed in Bitter Gourd (Momordica charantia). International Journal of Molecular Sciences, 18(11), 2343. https://doi.org/10.3390/ijms18112343