GH/IGF-1 Signaling and Current Knowledge of Epigenetics; a Review and Considerations on Possible Therapeutic Options
Abstract
1. Introduction
2. Intracellular Signals Regulating Growth Hormone Actions
2.1. GH Signal Transduction Pathway
2.2. Intracellular Signals Regulating Growth Hormone Actions
2.3. Epigenetic Regulation of the GH-IGF-I Axis
2.3.1. Fetal Programming and Epigenetic Regulation at the IGF1 Locus
2.3.2. Epigenetic Alterations in Intrauterine Growth Retardation Open the Possibility for a New Pharmaceutical Approach in Short Statured Small for Gestational Age Subjects
3. Conclusions and Perspectives
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
ChIP | Chromatin ImmunoPrecipitation |
Cish | Cytokine Inducible SH2 Containing Protein gene [not Homo sapiens (human)] |
DNMT | DNA Methyl Transferase |
ECD | Extracellular Domain |
EHMT2 | Euchromatic Histone Lysine N-Methyltransferase 2 |
FDA | US Food and Drug Administration |
GH | Growth Hormone |
GHR | Growth Hormone Receptor |
GHRE | Growth Hormone Response Element |
H4Kac | lysine acetylation at histone 4 |
H3K4 | Mono-methylation of lysine 4 on histone H3 |
H3K9me3 | trimethylation (me3) of lysine 9 on histone H3 |
H3K27me3 | trimethylation (me3) of lysine 27 on histone H3 |
HDAC | Histone Deacetylase |
ICD | Intracellular Domain |
IGF1 | Insulin-like Growth Factor I gene [Homo sapiens (human)] |
Igfals | Insulin Like Growth Factor Binding Protein Acid Labile Subunit gene [not Homo sapiens (human)] |
IGF-I | Insulin-like Growth Factor-I (protein) |
IN2GHRE | Intron 2 Growth Hormone Response Element |
IUGR | Intrauterine Growth Retardation |
JAK2 | Janus-Family Tyrosine Kinase-2 (JAK2) |
miRNA | microRNA |
PWS | Prader-Willi Syndrome |
PWS-IC | Prader-Willi Syndrome-Imprinting Centre |
rhGH | recombinant human Growth Hormone |
SGA | Small for Gestational Age |
SNRPN | Small Nuclear Ribonucleoprotein N Polypeptide gene (Homo sapiens) |
Socs2 | Suppressor of cytokine signaling 2 gene (not Homo sapiens) |
Spi2.1 | Transcription factor PU.1 gene (not Homo sapiens) |
STAT | Signal Transducers and Activators of Transcription |
T2DM | Type 2 Diabetes Mellitus |
TCD | Transmembrane Domain |
References
- Dominici, F.P.; Argentino, D.P.; Muñoz, M.C.; Miquet, J.G.; Sotelo, A.I.; Turyn, D. Influence of the crosstalk between growth hormone and insulin signalling on the modulation of insulin sensitivity. Growth Horm. IGF Res. 2005, 15, 324–336. [Google Scholar] [CrossRef] [PubMed]
- Fuh, G.; Cunningham, B.C.; Fukunaga, R.; Nagata, S.; Goeddel, D.V.; Wells, J.A. Rational Design of Potent Antagonists to the Human Growth Hormone Receptor. Science 1992, 256, 1677–1680. [Google Scholar] [CrossRef] [PubMed]
- Waters, M.J.; Hoang, H.N.; Fairlie, D.P.; Pelekanos, R.A.; Brown, R.J. New insights into growth hormone action. J. Mol. Endocrinol. 2006, 36, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.J.; Adams, J.J.; Pelekanos, R.A.; Wan, Y.; McKinstry, W.J.; Palethorpe, K.; Seeber, R.M.; Monks, T.A.; Eidne, K.A.; Parker, M.W.; et al. Model for growth hormone receptor activation based on subunit rotation within a receptor dimer. Nat. Struct. Mol. Biol. 2005, 12, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Behncken, S.N.; Billestrup, N.; Brown, R.; Amstrup, J.; Conway-Campbell, B.; Waters, M.J. Growth hormone (GH)-independent dimerization of GH receptor by a leucine zipper results in constitutive activation. J. Biol. Chem. 2000, 275, 17000–17007. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Schadt, E.E.; Wang, S.; Wang, H.; Arnold, A.P.; Ingram-Drake, L.; Drake, T.A.; Lusis, A.J. Tissue-specific expression and regulation of sexually dimorphic genes in mice\r10.1101/gr.5217506. Genome Res. 2006, 16, 995. [Google Scholar] [CrossRef] [PubMed]
- Hansen, J.A.; Hansen, L.H.; Wang, X.; Kopchick, J.J.; Gouilleux, F.; Groner, B.; Nielsen, J.H.; Møldrup, A.; Galsgaard, E.D.; Billestrup, N. The role of GH receptor tyrosine phosphorylation in Stat5 activation. J. Mol. Endocrinol. 1997, 18, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Smit, L.S.; Meyer, D.J.; Billestrup, N.; Schwartz, J.; Carter-su, C. The Role of the Growth Hormone ( GH ) Receptor and JAKI and JAK2 Kinases in the Activation of Stats 1, 3, and 5 by GH. Mol. Endocrinol. 1996, 10, 519–533. [Google Scholar] [PubMed]
- Bergad, P.L.; Schwarzenberg, S.J.; Humbert, J.T.; Amarasinghe, S.; Towle, H.C.; Berry, S.A.; Morrison, M.; Pearl, L. Inhibition of growth hormone action in models of inflammation. Am. J. Physiol. 2010, 55455, 1906–1917. [Google Scholar]
- Vidal, O.M.; Merino, R.; Rico-bautista, E.; Fernandez-perez, L.; Chia, D.J.; Woelfle, J.; Ono, M.; Lenhard, B.; Norstedt, G.; Rotwein, P. In Vivo Transcript Profiling and Phylogenetic Analysis Identifies Suppressor of Cytokine Signaling 2 as a Direct Signal Transducer and Activator of Transcription 5b Target in Liver. Mol. Endocrinol. 2007, 21, 293–311. [Google Scholar] [CrossRef] [PubMed]
- Ram, P.A.; Park, S.H.; Choi, H.K.; Waxman, D.J. Growth hormone activation of Stat 1, Stat 3, and Stat 5 in rat liver: Differential kinetics of hormone desensitization and growth hormone stimulation of both tyrosine phosphorylation and serine/threonine phosphorylation. J. Biol. Chem. 1996, 271, 5929–5940. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.; Day, N. Characterization and Cloning of STAT5 from IM-9 Cells and Its Activation by Growth Hormone. Mol. Endocrinol. 1996, 10, 508–518. [Google Scholar] [PubMed]
- Seidel, H.M.; Milocco, L.H.; Lamb, P.; Darnell, J.E.; Stein, R.B.; Rosen, J. Spacing of palindromic half sites as a determinant of selective STAT (signal transducers and activators of transcription) DNA binding and transcriptional activity. Proc. Natl. Acad. Sci. USA 1995, 92, 3041–3045. [Google Scholar] [CrossRef] [PubMed]
- Gebert, C.A.; Park, S.H.; Waxman, D.J. Regulation of signal transducer and activator of transcription (STAT) 5b activation by the temporal pattern of growth hormone stimulation. Mol. Endocrinol. 1997, 11, 400–414. [Google Scholar] [CrossRef] [PubMed]
- Gronowski, A.M.; Lestunff, C.R.P. Acute nuclear actions of growth hormone (GH): Cycloheximide inhibits inducible activator protein-1 activity, but does not block GH-regulated signal transducer and activator of transcription activation or gene expression. Endocrinology 1996, 137, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Lupu, F.; Terwilliger, J.D.; Lee, K.; Segre, G.V.; Efstratiadis, A. Roles of Growth Hormone and Insulin-like Growth Factor 1 in Mouse Postnatal Growth. Dev. Biol. 2001, 229, 141–162. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, L.; Miquet, J.G.; Irene, P.E.; Díaz, M.E.; Rossi, S.P.; Sotelo, A.I.; Frungieri, M.B.; Hill, C.M.; Bartke, A.T.D. Attenuation of epidermal growth factor (EGF) signaling by growth hormone (GH). J. Endocrinol. 2017, 233, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, A.; Sodhi, A. Growth hormone-induced production of cytokines in murine peritoneal macrophages in vitro: Role of JAK/STAT, PI3K, PKC and MAP kinases. Immunobiology 2009, 214, 430–440. [Google Scholar] [CrossRef] [PubMed]
- Chia, D.J.; Rotwein, P. Defining the epigenetic actions of growth hormone: Acute chromatin changes accompany GH-activated gene transcription. Mol. Endocrinol. 2010, 24, 2038–2049. [Google Scholar] [CrossRef] [PubMed]
- Rotwein, P. Mapping the growth hormone-Stat5b-IGF-I transcriptional circuit. Trends Endocrinol. Metab. 2012, 23, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Oberbauer, A.M. The regulation of IGF-1 gene transcription and splicing during development and aging. Front. Endocrinol. 2013, 4, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bell, G.I.; Stempien, M.M.; Fong, N.M.; Roll, L.B. Sequences of liver cDNAs encoding two different mouse insulin like growth factor I precursors. Nucleic Acids Res. 1986, 14, 7873–7882. [Google Scholar] [CrossRef] [PubMed]
- Lowe, W.L.; Lasky, S.R.; LeRoith, D.; Roberts, C.T. Distribution and regulation of rat insulin-like growth factor I messenger ribonucleic acids encoding alternative carboxyterminal E-peptides: Evidence for differential processing and regulation in liver. Mol. Endocrinol. 1988, 2, 528–535. [Google Scholar] [CrossRef] [PubMed]
- Hepler, J.E.; Van Wyk, J.J.; Lund, P.K. Different half-lives of insulin-like growth factor I mRNAs that differ in length of 3' untranslated sequence. Endocrinology 1990, 127, 1550–1552. [Google Scholar] [CrossRef] [PubMed]
- Barton, E.R. The ABCs of IGF-I isoforms: Impact on muscle hypertrophy and implications for repair. Appl. Physiol. Nutr. Metab. 2006, 31, 791–797. [Google Scholar] [CrossRef] [PubMed]
- Matheny, R.W.; Nindl, B.C.; Adamo, M.L. Minireview: Mechano-growth factor: A putative product of IGF-I gene expression involved in tissue repair and regeneration. Endocrinology 2010, 151, 865–875. [Google Scholar] [CrossRef] [PubMed]
- Chia, D.J.; Varco-Merth, B.; Rotwein, P. Dispersed chromosomal Stat5b-binding elements mediate growth hormone-activated insulin-like growth factor-I gene transcription. J. Biol. Chem. 2010, 285, 17636–17647. [Google Scholar] [CrossRef] [PubMed]
- Woelfle, J.; Chia, D.J.; Rotwein, P. Mechanisms of Growth Hormone (GH) Action prior to the onset of transcription from both major and. Biochemistry 2003, 278, 51261–51266. [Google Scholar]
- Wang, Y.; Jiang, H. Identification of a Distal STAT5-binding DNA region that may mediate growth hormone regulation of insulin-like growth factor-I gene expression *. J. Biol. Chem. 2005, 280, 10955–10963. [Google Scholar] [CrossRef] [PubMed]
- Eleswarapu, S.; Gu, Z.; Jiang, H. Growth hormone regulation of insulin-like growth factor-I gene expression may be mediated by multiple distal signal transducer and activator of transcription 5 binding sites. Endocrinology 2008, 149, 2230–2240. [Google Scholar] [CrossRef] [PubMed]
- Conaway, R.C.; Sato, S.; Tomomori-Sato, C.; Yao, T.; Conaway, J.W. The mammalian Mediator complex and its role in transcriptional regulation. Trends Biochem. Sci. 2005, 30, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Heintzman, N.D.; Hon, G.C.; Hawkins, R.D.; Kheradpour, P.; Stark, A.; Harp, L.F.; Ye, Z.; Lee, L.K.; Stuart, R.K.; Ching, C.W.; et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 2009, 459, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Robertson, A.G.; Bilenky, M.; Tam, A.; Zhao, Y.; Zeng, T.; Thiessen, N.; Cezard, T.; Fejes, A.P.; Wederell, E.D.; Cullum, R. Others Genome-wide relationship between histone H3 lysine 4 mono-and tri-methylation and transcription factor binding. Genome Res. 2008, 18, 1906–1917. [Google Scholar] [CrossRef] [PubMed]
- Dekker, J. Capturing Chromosome Conformation. Science 2002, 295, 1306–1311. [Google Scholar] [CrossRef] [PubMed]
- Meyer, R.D.; Laz, E.V.; Su, T.; Waxman, D.J. Male-Specific Hepatic Bcl6: Growth Hormone-Induced Block of Transcription Elongation in Females and Binding to Target Genes Inversely Coordinated with STAT5. Mol. Endocrinol. 2009, 23, 1914–1926. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Lin, G.; Huo, J.S.; Barney, D.; Wang, Z.; Livshiz, T.; States, D.J.; Qin, Z.S.; Schwartz, J. Computational and functional analysis of growth hormone (GH)-regulated genes identifies the transcriptional repressor B-cell lymphoma 6 (Bc16) as a participant in GH-regulated transcription. Endocrinology 2009, 150, 3645–3654. [Google Scholar] [CrossRef] [PubMed]
- Illingworth, R.S.; Gruenewald-Schneider, U.; Webb, S.; Kerr, A.R.W.; James, K.D.; Turner, D.J.; Smith, C.; Harrison, D.J.; Andrews, R.; Bird, A.P. Orphan CpG Islands Identify numerous conserved promoters in the mammalian genome. PLoS Genet. 2010, 6, e1001134. [Google Scholar] [CrossRef] [PubMed]
- Bird, A.P. CpG-rich islands and the function of DNA methylation. Nature 1986, 321, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Santos-Rosa, H.; Schneider, R.; Bannister, A.J.; Sherriff, J.; Bernstein, B.E.; Bmre, N.C.; Schreiber, S.L.; Mellor, J.; Kouzarides, T. Active genes are trimethylated at K4 of histone H3. Nature 2002, 419, 407–411. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, S.J.; Schneider, R.; Bauer, U.-M.; Bannister, A.J.; Morrison, A.; O’Carroll, D.; Firestein, R.; Cleary, M.; Jenuwein, T.; Herrera, R.E.; et al. Rb targets histone H3 methylation and HP1 to promoters. Nature 2001, 412, 561–565. [Google Scholar] [CrossRef] [PubMed]
- Cao, R.; Wang, L.; Wang, H.; Xia, L.; Erdjument-Bromage, H.; Tempst, P.; Jones, R.S.; Zhang, Y. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 2002, 298, 1039–1043. [Google Scholar] [CrossRef] [PubMed]
- Altucci, L.; Rots, M.G. Epigenetic drugs: From chemistry via biology to medicine and back. Clin. Epigenet. 2016, 8, 56. [Google Scholar] [CrossRef] [PubMed]
- Jenuwein, T. Translating the Histone Code. Science 2001, 293, 1074–1080. [Google Scholar] [CrossRef] [PubMed]
- Rando, O.J. Combinatorial complexity in chromatin structure and function: Revisiting the histone code. Curr. Opin. Genet. Dev. 2012, 22, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; McKnight, R.A.; Callaway, C.W.; Yu, X.; Lane, R.H.; Majnik, A.V. Intrauterine growth restriction disrupts developmental epigenetics around distal growth hormone response elements on the rat hepatic IGF-1 gene. FASEB J. 2015, 29, 1176–1184. [Google Scholar] [CrossRef] [PubMed]
- Shimatsu, A.; Rotwein, P. Mosaic evolution of the insulin-like growth factors. Organization, sequence, and expression of the rat insulin-like growth factor I gene. J. Biol. Chem. 1987, 262, 7894–7900. [Google Scholar] [PubMed]
- Kikuchi, K.; Bichell, D.P.; Rotwein, P. Chromatin changes accompany the developmental activation of insulin-like growth factor I gene transcription. J. Biol. Chem. 1992, 267, 21505–21511. [Google Scholar] [PubMed]
- Davey, H.W.; Xie, T.; McLachlan, M.J.; Wilkins, R.J.; Waxman, D.J.; Grattan, D.R. STAT5b is required for GH-induced liver Igf-I gene expression. Endocrinology 2001, 142, 3836–3841. [Google Scholar] [CrossRef] [PubMed]
- Papers, J.B.C.; Doi, M.; Woelfle, J.; Billiard, J.; Rotwein, P. Acute Control of Insulin-like Growth Factor-I Gene Transcription by Growth Hormone through Stat5b *. J. Biol. Chem. 2003, 278, 22696–22702. [Google Scholar]
- Berger, S.L. The complex language of chromatin regulation during transcription. Nature 2007, 447, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Barski, A.; Cuddapah, S.; Cui, K.; Roh, T.Y.; Schones, D.E.; Wang, Z.; Wei, G.; Chepelev, I.; Zhao, K. High-Resolution Profiling of Histone Methylations in the Human Genome. Cell 2007, 129, 823–837. [Google Scholar] [CrossRef] [PubMed]
- Bannister, A.J.; Schneider, R.; Myers, F.A.; Thorne, A.W.; Crane-Robinson, C.; Kouzarides, T. Spatial distribution of di- and tri-methyl lysine 36 of histone H3 at active genes. J. Biol. Chem. 2005, 280, 17732–17736. [Google Scholar] [CrossRef] [PubMed]
- Ross, M.G.; Beall, M.H. Adult Sequelae of Intrauterine Growth Restriction. Semin. Perinatol. 2008, 32, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Varvarigou, A.A. Intrauterine Growth Restriction as a Potential Risk Factor for Disease Onset in Adulthood. J. Pediatr. Endocrinol. Metab. 2010, 23, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Yu, X.; Callaway, C.W.; Lane, R.H.; McKnight, R.A. Epigenetics: Intrauterine growth retardation (IUGR) modifies the histone code along the rat hepatic IGF-1 gene. FASEB J. 2009, 23, 2438–2449. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.A.; Taylor, S.M. Cellular differentiation, cytidine analogs and DNA methylation. Cell 1980, 20, 85–93. [Google Scholar] [CrossRef]
- Vierimaa, O.; Georgitsi, M.; Lehtonen, R.; Vahteristo, P.; Kokko, A.; Raitila, A.; Tuppurainen, K.; Ebeling, T.M.; Salmela, P.I.; Paschke, R.; et al. Pituitary adenoma predisposition caused by germline mutations in the AIP gene. Science 2006, 312, 1228–1230. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.U.N.; Sun, H.; Danila, D.C.; Johnson, S.R.; Zhou, Y.; Swearingen, B.; Klibanski, A. Loss of Expression of GADD45γ, a Growth Inhibitory Gene, in Human Pituitary Adenomas: Implications for Tumorigenesis. J. Clin. Endocrinol. Metab. 2002, 87, 1262–1267. [Google Scholar] [PubMed]
- Juergens, R.A.; Wrangle, J.; Vendetti, F.P.; Murphy, S.C.; Zhao, M.; Coleman, B.; Sebree, R.; Rodgers, K.; Hooker, C.M.; Franco, N.; et al. Combination Epigenetic Therapy Has Efficacy in Patients with Refractory Advanced Non – Small Cell Lung Cancer. Cancer Discov. 2011, 1, 598–607. [Google Scholar] [CrossRef] [PubMed]
- Flotho, C.; Claus, R.; Batz, C.; Schneider, M.; Sandrock, I.; Ihde, S.; Plass, C.; Niemeyer, C.M.; Lübbert, M. The DNA methyltransferase inhibitors azacitidine, decitabine and zebularine exert differential effects on cancer gene expression in acute myeloid leukemia cells. Leukemia 2009, 23, 1019–1028. [Google Scholar] [CrossRef] [PubMed]
- Gius, D.; Cui, H.; Bradbury, C.M.; Cook, J.; Smart, D.D.K.; Zhao, S.; Young, L.; Brandenburg, S.A.; Hu, Y.; Bisht, K.S.; et al. Distinct effects on gene expression of chemical and genetic manipulation of the cancer epigenome revealed by a multimodality approach. Cancer Cell 2004, 6, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Cameron, E.E.; Bachman, K.E.; Myöhänen, S.; Herman, J.G.; Baylin, S.B. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat. Genet. 1999, 21, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Saitoh, S.; Buiting, K.; Rogan, P.K.; Buxton, J.L.; Driscoll, D.J.; Arnemann, J.; König, R.; Malcolm, S.; Horsthemke, B.; Nicholls, R.D. Minimal definition of the imprinting center and fixation of chromosome 15q11-q13 epigenotype by imprinting mutations. Proc. Natl. Acad. Sci. USA 1996, 93, 7811–7815. [Google Scholar] [CrossRef] [PubMed]
- Fulmer-Smentek, S.B.; Francke, U. Association of acetylated histones with paternally expressed genes in the Prader--Willi deletion region. Hum. Mol. Genet. 2001, 10, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Xin, Z.; Allis, C.D.; Wagstaff, J. Parent-Specific Complementary Patterns of Histone H3 Lysine 9 and H3 Lysine 4 Methylation at the Prader-Willi Syndrome Imprinting Center. AJHG 2001, 69, 1389–1394. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Lee, H.-M.; Xiong, Y.; Sciaky, N.; Hulbert, S.W.; Cao, X.; Everitt, J.I.; Jin, J.; Roth, B.L.; Jiang, Y. Targeting the histone methyltransferase G9a activates imprinted genes and improves survival of a mouse model of Prader–Willi syndrome. Nat. Med. 2016, 23, 213. [Google Scholar] [CrossRef] [PubMed]
- Mendenhall, E.M.; Williamson, K.E.; Reyon, D.; Zou, J.Y.; Ram, O.; Joung, J.K.; Bernstein, B.E. Locus-specific editing of histone modifications at endogenous enhancers. Nat. Biotechnol. 2013, 31, 1133–1136. [Google Scholar] [CrossRef] [PubMed]
- Cano-Rodriguez, D.; Rots, M.G. Epigenetic Editing: On the Verge of Reprogramming Gene Expression at Will. Curr. Genet. Med. Rep. 2016, 4, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Horvath, P.; Aulner, N.; Bickle, M.; Davies, A.M.; Nery, E.D.; Ebner, D.; Montoya, M.C.; Östling, P.; Pietiäinen, V.; Price, L.S.; et al. Screening out irrelevant cell-based models of disease. Nat. Rev. Drug Discov. 2016, 15, 751–769. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Álvarez-Nava, F.; Lanes, R. GH/IGF-1 Signaling and Current Knowledge of Epigenetics; a Review and Considerations on Possible Therapeutic Options. Int. J. Mol. Sci. 2017, 18, 1624. https://doi.org/10.3390/ijms18101624
Álvarez-Nava F, Lanes R. GH/IGF-1 Signaling and Current Knowledge of Epigenetics; a Review and Considerations on Possible Therapeutic Options. International Journal of Molecular Sciences. 2017; 18(10):1624. https://doi.org/10.3390/ijms18101624
Chicago/Turabian StyleÁlvarez-Nava, Francisco, and Roberto Lanes. 2017. "GH/IGF-1 Signaling and Current Knowledge of Epigenetics; a Review and Considerations on Possible Therapeutic Options" International Journal of Molecular Sciences 18, no. 10: 1624. https://doi.org/10.3390/ijms18101624
APA StyleÁlvarez-Nava, F., & Lanes, R. (2017). GH/IGF-1 Signaling and Current Knowledge of Epigenetics; a Review and Considerations on Possible Therapeutic Options. International Journal of Molecular Sciences, 18(10), 1624. https://doi.org/10.3390/ijms18101624