Significant Roles of Regulatory T Cells and Myeloid Derived Suppressor Cells in Hepatitis B Virus Persistent Infection and Hepatitis B Virus-Related HCCs
Abstract
:1. Introduction
Species | MDSCs Phenotype | Diseases or Models of Diseases | Functions and Findings | References |
---|---|---|---|---|
Human | Lin-HLA-DR-CD11b+CD33+ | HBV | MDSCs might be involved in HBeAg immune tolerance | Lu et al. [30] |
Mouse | CD11b+Gr1+ | HBV (mouse model) | gammadelta T Cells drive MDSCs–mediated CD8+ T Cell exhaustion | Kong et al. [33] |
Mouse | CD11b+Gr1+ | HBV (mouse model) | In HBV TM, the frequencies of liver MDSCs were about twice those of normal mice liver | Chen et al. [34] |
Human | CD34+CD14−HLA-DR−CD11b+ | HBV vaccination in HIV patients | High frequency of MDSCs contribute to week 16 HBV vaccine response | Anthony et al. [35] |
Human | CD14+HLA-DR−/low | HCC | MDSCs induces CD4+CD25+Foxp3+ T Cells Frequency of CD14+ HLA-DR-/low cells Is Increased in PBMC and tumor of HCC patients | Hoechest et al. [19] |
Human | CD14+HLA-DR−/low | HCC | MDSCs inhibit NK cells in HCC patients via the NKp30 receptor | Hoechest et al. [36] |
Human | CD14−HLA-DR−CD11b+CD33+ | HCC | Elevated numbers of MDSC in HCC patients Over-production of inhibitory cytokines such as IL10 and TGF-β | Kalathil et al. [20] |
Mouse | Gr+CD11b+ | HCC mouse model | An accumulation of MDSC is found in various mice models with HCC | Kapanadze et al. [37] |
Mouse | Gr+CD11bint | HCC mouse model | Tumors produce IL-6 and VEGF and induced iMC (CD11b1Gr-1int) | Shmidl et al. [38] |
Cancer | Immune Suppressive Cells | Treatments, Future Treatments or Other Uses | References | |
---|---|---|---|---|
Tregs | MDSCs | |||
Large B cell lymphoma | ○ | prognostic biomarker | Ahearne et al. [44] | |
Non-Hodgkin Lymphoma | ○ | prognostic biomarker | Pinheiro et al. [45] | |
Myeloma | ○ | CTLA-4 antibody | Braga et al. [46] | |
○ | ○ | High-dose IL2 followed by Sorafenib | Monk et al. [47] | |
○ | Adjuvant GM-CSF | Daud et al. [48] | ||
○ | ○ | prognostic marker | Brimnes et al. [49] | |
Ovarian Cancer | ○ | prognostic biomarker | Brtnicky et al. [50] | |
Mouse model (liver metastasis model) | ○ | Anti-PD-L1 antibody | Ilkovitch et al. [51] | |
Esophageal Cancer | ○ | Down-regulation of B7-H1 expression | Chen et al. [52] | |
non-small-cell lung cancer | ○ | prognostic biomarker | Hasegawa et al. [53] | |
Yukawa et al. [54] | ||||
○ | prognostic biomarker | Liu et al. [43] | ||
Lewis lung carcinoma (mouse model) | ○ | anti-miR214 | Yin et al. [55] | |
Pancreatic ductal adenocarcinoma | ○ | prognostic biomarker | Luardi et al. [57] | |
Renal Cell Carcionam | ○ | ○ | High-dose IL2 followed by Sorafenib | Monk et al. [47] |
○ | prognostic biomarker | Mirza et al. [58] | ||
○ | prognostic biomarker | Kusmartsev et al. [59] | ||
Solitary Fibrous Tumor | ○ | Sunitinib malate | Tazzari et al. [60] | |
Thyroid cancer | ○ | Inhibition of FOXP3 | Chu et al. [61] | |
Glioblastoma | ○ | prognostic marker | Soyour E et al. [62] | |
Colon carcinoma (mouse model) | ○ | ○ | c-kit antibody | Pan et al. [63] |
2. Tregs Could Affect HBV Persistent Infection
Species or Model | Disease Status | Immune Subset | Frequency, Functions or Findings | References |
---|---|---|---|---|
Human | AHB Recovered | Isolated CD4+CD25+ | Suppression of CD8+ cells | Franzese et al. [68] |
CHB | Frequecny (AHB = CHB = Healthy) | |||
Healhty subjects | ||||
Human | AHB Recovered | Isolated CD4+CD25+ | Suppression of CD4+ cells | Stoop et al. [69] |
CH-B | Frequency(Chronic > recovered: Chronic > healthy donors) | |||
Healthy subjects | ||||
Human | AH-B | Isolated CD4+CD25+; FOXP3+ gated liver infiltrating lymphocytes | Suppression of CD4+ cells | Xu et al. [70] |
CH-B | Frequency(CH-B severe > CHB, CHB severe > AH-B, CH-B severe > healthy donors) | |||
Healthy subjects | ||||
Human | CH-B | Isolated CD4+ CD25+ | Suppression of CD4+ cells | Kondo et al. [23] |
Healthy subjects | Chronic = healthy donors | |||
Human | Treated CH-B | CD4+ CD25+ CTLA4+ CD45RO+ (FOXP3+) | Frequency (Treated CHB < CHB) | Stoop et al. [71] |
CH-B | ||||
Healthy subjects | ||||
Human | Recovered AH-B | Isolated CD4+CD25+; FOXP3+ liver infiltrating lymphocytes | Suppression of CD4+ cells and CD8+ cells | Yang et al. [72] |
CH-B | Frequency(Chronic asymptomatic > chronic active > resolved = healthy controls) | |||
Healthy subjects | ||||
Human | CH-B | CD4+CD25+IL7R- | sHSP60 enhances Tregs activity via TLR2 signaling | Kondo et al. [24] |
Treated CH-B patients | Frequency (Treated CHB < CHB) | |||
Healthy subjects | ||||
Woodchuck hepatits | Woodchuck hepatitis | CD4+FOXP3+ | Frequency (WHV > Control) | Otano et al. [73] |
HBV model | Interleukin-12 Increases Hepatic Tolerogenicity | |||
Mouse | AdHBV | CD4+FOXP3+ | Down-regulating the antiviral activity of effector T cells by limiting cytokine production and cytotoxicity | Stross et al. [74] |
Human | HBV-HCC | CD4+CD25+FOXP3 | TGF-b-miR-34a-CCL22 Signaling-Induced Treg Cell Recruitment | Yang et al. [75] |
Human | CH-B | CD4+CD25+ | Frequency (CH-B = Acute on choronic HBV = Healthy) | Dong et al. [76] |
Acute on choric HBV | ||||
Healthy |
3. Tregs and HBV-Related HCC
4. MDSCs for HBV Persistent Infection and HBV-Related HCC
5. Concluding Remarks
Conflicts of Interest
References
- Tiollais, P.; Pourcel, C.; Dejean, A. The hepatitis B virus. Nature 1985, 317, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.L.; Ratziu, V.; Yuen, M.F.; Poynard, T. Viral hepatitis B. Lancet 2003, 362, 2089–2094. [Google Scholar] [CrossRef] [PubMed]
- Liaw, Y.F.; Brunetto, M.R.; Hadziyannis, S. The natural history of chronic HBV infection and geographical differences. Antivir. Ther. 2010, 15, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Maeshiro, T.; Arakaki, S.; Watanabe, T.; Aoyama, H.; Shiroma, J.; Yamashiro, T.; Hirata, T.; Hokama, A.; Kinjo, F.; Nakayoshi, T.; et al. Different natural courses of chronic hepatitis B with genotypes B and C after the fourth decade of life. World J. Gastroenterol. 2007, 13, 4560–4565. [Google Scholar]
- Kondo, Y.; Ueno, Y.; Shimosegawa, T. Toll-like receptors signaling contributes to immunopathogenesis of HBV infection. Gastroenterol. Res. Pract. 2011, 2011. [Google Scholar] [CrossRef]
- Sato, S.; Li, K.; Kameyama, T.; Hayashi, T.; Ishida, Y.; Murakami, S.; Watanabe, T.; Iijima, S.; Sakurai, Y.; Watashi, K.; et al. The RNA Sensor RIG-I Dually Functions as an Innate Sensor and Direct Antiviral Factor for Hepatitis B Virus. Immunity 2015, 42, 123–132. [Google Scholar]
- Kakimi, K.; Guidotti, L.G.; Koezuka, Y.; Chisari, F.V. Natural killer T cell activation inhibits hepatitis B virus replication in vivo. J. Exp. Med. 2000, 192, 921–930. [Google Scholar] [CrossRef] [PubMed]
- Bonorino, P.; Ramzan, M.; Camous, X.; Dufeu-Duchesne, T.; Thelu, M.A.; Sturm, N.; Dariz, A.; Guillermet, C.; Pernollet, M.; Zarski, J.P.; et al. Fine characterization of intrahepatic NK cells expressing natural killer receptors in chronic hepatitis B and C. J. Hepatol. 2009, 51, 458–467. [Google Scholar]
- Kondo, Y.; Ninomiya, M.; Kakazu, E.; Kimura, O.; Shimosegawa, T. Hepatitis B surface antigen could contribute to the immunopathogenesis of hepatitis B virus infection. ISRN Gastroenterol. 2013, 2013. [Google Scholar] [CrossRef]
- Baron, J.L.; Gardiner, L.; Nishimura, S.; Shinkai, K.; Locksley, R.; Ganem, D. Activation of a nonclassical NKT cell subset in a transgenic mouse model of hepatitis B virus infection. Immunity 2002, 16, 583–594. [Google Scholar] [CrossRef] [PubMed]
- Boltjes, A.; Groothuismink, Z.M.; van Oord, G.W.; Janssen, H.L.; Woltman, A.M.; Boonstra, A. Monocytes from chronic HBV patients react in vitro to HBsAg and TLR by producing cytokines irrespective of stage of disease. PLoS One 2014, 9, e97006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.W.; Hsu, C.K.; Lin, S.C.; Wei, S.C.; Hu, J.T.; Chang, H.Y.; Liang, C.W.; Chen, D.S.; Chen, P.J.; Hsu, P.N.; et al. Reduced Toll-like receptor 9 expression on peripheral CD14+ monocytes of chronic hepatitis B patients and its restoration by effective therapy. Antivir. Ther. 2014, 19, 637–643. [Google Scholar]
- Chisari, F.V.; Ferrari, C. Hepatitis B virus immunopathogenesis. Annu. Rev. Immunol. 1995, 13, 29–60. [Google Scholar] [CrossRef] [PubMed]
- Reignat, S.; Webster, G.J.; Brown, D.; Ogg, G.S.; King, A.; Seneviratne, S.L.; Dusheiko, G.; Williams, R.; Maini, M.K.; Bertoletti, A. Escaping high viral load exhaustion: CD8 cells with altered tetramer binding in chronic hepatitis B virus infection. J. Exp. Med. 2002, 195, 1089–1101. [Google Scholar] [CrossRef] [PubMed]
- Kondo, Y.; Asabe, S.; Kobayashi, K.; Shiina, M.; Niitsuma, H.; Ueno, Y.; Kobayashi, T.; Shimosegawa, T. Recovery of functional cytotoxic T lymphocytes during lamivudine therapy by acquiring multi-specificity. J. Med. Virol. 2004, 74, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Martinet, J.; Dufeu-Duchesne, T.; Bruder Costa, J.; Larrat, S.; Marlu, A.; Leroy, V.; Plumas, J.; Aspord, C. Altered functions of plasmacytoid dendritic cells and reduced cytolytic activity of natural killer cells in patients with chronic HBV infection. Gastroenterology 2012, 143, 1586–1596. [Google Scholar] [CrossRef] [PubMed]
- Shi, B.; Ren, G.; Hu, Y.; Wang, S.; Zhang, Z.; Yuan, Z. HBsAg inhibits IFN-alpha production in plasmacytoid dendritic cells through TNF-alpha and IL-10 induction in monocytes. PLoS One 2012, 7, e44900. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.J.; He, M.; Han, J.A.; Yang, L.; Ji, X.Y. A clinical study of HBsAg-activated dendritic cells and cytokine-induced killer cells during the treatment for chronic hepatitis B. Scand. J. Immunol. 2013, 78, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Hoechst, B.; Ormandy, L.A.; Ballmaier, M.; Lehner, F.; Kruger, C.; Manns, M.P.; Greten, T.F.; Korangy, F. A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4+CD25+Foxp3+ T cells. Gastroenterology 2008, 135, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Kalathil, S.; Lugade, A.A.; Miller, A.; Iyer, R.; Thanavala, Y. Higher frequencies of GARP+CTLA-4+Foxp3+ T regulatory cells and myeloid-derived suppressor cells in hepatocellular carcinoma patients are associated with impaired T-cell functionality. Cancer Res. 2013, 73, 2435–2444. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Chen, Z.; Yang, Y.; Jiang, Z.; Gu, Y.; Liu, Y.; Lin, C.; Pan, Z.; Yu, Y.; Jiang, M.; Zhou, W.; Cao, X. Human CD14+CTLA-4+ regulatory dendritic cells suppress T-cell response by cytotoxic T-lymphocyte antigen-4-dependent IL-10 and indoleamine-2,3-dioxygenase production in hepatocellular carcinoma. Hepatology 2014, 59, 567–579. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Jing, X.; Li, G.; Wang, T.; Yang, B.; Zhu, Z.; Gao, Y.; Zhang, Q.; Yang, Y.; Wang, Y.; Wang, P.; Du, Z. Foxp3+ regulatory T cells are associated with the natural history of chronic hepatitis B and poor prognosis of hepatocellular carcinoma. Liver Int. 2012, 32, 644–655. [Google Scholar] [CrossRef] [PubMed]
- Kondo, Y.; Kobayashi, K.; Ueno, Y.; Shiina, M.; Niitsuma, H.; Kanno, N.; Kobayashi, T.; Shimosegawa, T. Mechanism of T cell hyporesponsiveness to HBcAg is associated with regulatory T cells in chronic hepatitis B. World J. Gastroenterol. 2006, 12, 4310–4317. [Google Scholar] [PubMed]
- Kondo, Y.; Ueno, Y.; Kobayashi, K.; Kakazu, E.; Shiina, M.; Inoue, J.; Tamai, K.; Wakui, Y.; Tanaka, Y.; Ninomiya, M.; et al. Hepatitis B virus replication could enhance regulatory T cell activity by producing soluble heat shock protein 60 from hepatocytes. J. Infect. Dis. 2010, 202, 202–213. [Google Scholar]
- Suri-Payer, E.; Amar, A.Z.; Thornton, A.M.; Shevach, E.M. CD4+CD25+ T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells. J. Immunol. 1998, 160, 1212–1218. [Google Scholar] [PubMed]
- Shen, S.L.; Liang, L.J.; Peng, B.G.; He, Q.; Kuang, M.; Lai, J.M. Foxp3+ regulatory T cells and the formation of portal vein tumour thrombus in patients with hepatocellular carcinoma. Can. J. Surg. 2011, 54, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Jin, W.; Hardegen, N.; Lei, K.J.; Li, L.; Marinos, N.; McGrady, G.; Wahl, S.M. Conversion of peripheral CD4+CD25− naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med. 2003, 198, 1875–1886. [Google Scholar] [CrossRef] [PubMed]
- Hori, S.; Nomura, T.; Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003, 299, 1057–1061. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, S.; Thomson, A.W. Tolerogenic dendritic cells and myeloid-derived suppressor cells: Potential for regulation and therapy of liver auto- and alloimmunity. Immunobiology 2010, 215, 698–703. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.R.; Liu, J.; Xu, Z.; Zhang, G.L.; Li, D.C.; Lin, C.S. Expression and clinical significance of myeloid derived suppressor cells in chronic hepatitis B patients. Asian Pac. J. Cancer Prev. 2014, 15, 4367–4372. [Google Scholar] [CrossRef] [PubMed]
- Ostrand-Rosenberg, S.; Sinha, P. Myeloid-derived suppressor cells: Linking inflammation and cancer. J. Immunol. 2009, 182, 4499–4506. [Google Scholar] [CrossRef] [PubMed]
- Peranzoni, E.; Zilio, S.; Marigo, I.; Dolcetti, L.; Zanovello, P.; Mandruzzato, S.; Bronte, V. Myeloid-derived suppressor cell heterogeneity and subset definition. Curr. Opin. Immunol. 2010, 22, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Sun, R.; Chen, Y.; Wei, H.; Tian, Z. Gammadelta T cells drive myeloid-derived suppressor cell-mediated CD8+ T cell exhaustion in hepatitis B virus-induced immunotolerance. J. Immunol. 2014, 193, 1645–1653. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Akbar, S.M.; Abe, M.; Hiasa, Y.; Onji, M. Immunosuppressive functions of hepatic myeloid-derived suppressor cells of normal mice and in a murine model of chronic hepatitis B virus. Clin. Exp. Immunol. 2011, 166, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Anthony, D.D.; Umbleja, T.; Aberg, J.A.; Kang, M.; Medvik, K.; Lederman, M.M.; Peters, M.G.; Koziel, M.J.; Overton, E.T. Lower peripheral blood CD14+ monocyte frequency and higher CD34+ progenitor cell frequency are associated with HBV vaccine induced response in HIV infected individuals. Vaccine 2011, 29, 3558–3563. [Google Scholar] [CrossRef] [PubMed]
- Hoechst, B.; Voigtlaender, T.; Ormandy, L.; Gamrekelashvili, J.; Zhao, F.; Wedemeyer, H.; Lehner, F.; Manns, M.P.; Greten, T.F.; Korangy, F. Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology 2009, 50, 799–807. [Google Scholar] [CrossRef] [PubMed]
- Kapanadze, T.; Gamrekelashvili, J.; Ma, C.; Chan, C.; Zhao, F.; Hewitt, S.; Zender, L.; Kapoor, V.; Felsher, D.W.; Manns, M.P.; et al. Regulation of accumulation and function of myeloid derived suppressor cells in different murine models of hepatocellular carcinoma. J. Hepatol. 2013, 59, 1007–1013. [Google Scholar]
- Schmidt, K.; Zilio, S.; Schmollinger, J.C.; Bronte, V.; Blankenstein, T.; Willimsky, G. Differently immunogenic cancers in mice induce immature myeloid cells that suppress CTL in vitro but not in vivo following transfer. Blood 2013, 121, 1740–1748. [Google Scholar] [CrossRef] [PubMed]
- Tacke, R.S.; Lee, H.C.; Goh, C.; Courtney, J.; Polyak, S.J.; Rosen, H.R.; Hahn, Y.S. Myeloid suppressor cells induced by hepatitis C virus suppress T-cell responses through the production of reactive oxygen species. Hepatology 2012, 55, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.L.; Yang, B.; Sun, H.Q.; Feng, G.H.; Jin, L.; Zou, Z.S.; Zhang, Z.; Zhang, J.Y.; Wang, F.S. Myeloid-derived suppressor cells are associated with viral persistence and downregulation of TCR zeta chain expression on CD8+ T cells in chronic hepatitis C patients. Mol. Cells 2014, 37, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, S.; Deguchi, K.; Zheng, R.; Tamai, H.; Wang, L.X.; Cohen, P.A.; Shu, S. Tumor-induced CD11b+Gr-1+ myeloid cells suppress T cell sensitization in tumor-draining lymph nodes. J. Immunol. 2008, 181, 3291–3300. [Google Scholar] [CrossRef] [PubMed]
- Hanson, E.M.; Clements, V.K.; Sinha, P.; Ilkovitch, D.; Ostrand-Rosenberg, S. Myeloid-derived suppressor cells down-regulate L-selectin expression on CD4+ and CD8+ T cells. J. Immunol. 2009, 183, 937–944. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.Y.; Wang, Y.M.; Wang, C.L.; Feng, P.H.; Ko, H.W.; Liu, Y.H.; Wu, Y.C.; Chu, Y.; Chung, F.T.; Kuo, C.H.; et al. Population alterations of L-arginase- and inducible nitric oxide synthase-expressed CD11b+/CD14−/CD15+/CD33+ myeloid-derived suppressor cells and CD8+ T lymphocytes in patients with advanced-stage non-small cell lung cancer. J. Cancer Res. Clin. Oncol. 2010, 136, 35–45. [Google Scholar]
- Ahearne, M.J.; Bhuller, K.; Hew, R.; Ibrahim, H.; Naresh, K.; Wagner, S.D. Expression of PD-1 (CD279) and FoxP3 in diffuse large B-cell lymphoma. Virchows Arch. 2014, 465, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, D.; Chang, Y.M.; Bryant, H.; Szladovits, B.; Dalessandri, T.; Davison, L.J.; Yallop, E.; Mills, E.; Leo, C.; Lara, A.; et al. Dissecting the regulatory microenvironment of a large animal model of non-Hodgkin lymphoma: Evidence of a negative prognostic impact of FOXP3+ T cells in canine B cell lymphoma. PLoS One 2014, 9, e105027. [Google Scholar]
- Braga, W.M.; da Silva, B.R.; de Carvalho, A.C.; Maekawa, Y.H.; Bortoluzzo, A.B.; Rizzatti, E.G.; Atanackovic, D.; Colleoni, G.W. FOXP3 and CTLA4 overexpression in multiple myeloma bone marrow as a sign of accumulation of CD4+ T regulatory cells. Cancer Immunol. Immunother. 2014, 63, 1189–1197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monk, P.; Lam, E.; Mortazavi, A.; Kendra, K.; Lesinski, G.B.; Mace, T.A.; Geyer, S.; Carson, W.E.; Tahiri, S.; Bhinder, A.; et al. A phase I study of high-dose interleukin-2 with sorafenib in patients with metastatic renal cell carcinoma and melanoma. J. Immunother. 2014, 37, 180–186. [Google Scholar]
- Daud, A.I.; Mirza, N.; Lenox, B.; Andrews, S.; Urbas, P.; Gao, G.X.; Lee, J.H.; Sondak, V.K.; Riker, A.I.; Deconti, R.C.; et al. Phenotypic and functional analysis of dendritic cells and clinical outcome in patients with high-risk melanoma treated with adjuvant granulocyte macrophage colony-stimulating factor. J. Clin. Oncol. 2008, 26, 3235–3241. [Google Scholar]
- Brimnes, M.K.; Vangsted, A.J.; Knudsen, L.M.; Gimsing, P.; Gang, A.O.; Johnsen, H.E.; Svane, I.M. Increased level of both CD4+FOXP3+ regulatory T cells and CD14+HLA-DR−/low myeloid-derived suppressor cells and decreased level of dendritic cells in patients with multiple myeloma. Scand. J. Immunol. 2010, 72, 540–547. [Google Scholar] [CrossRef] [PubMed]
- Brtnicky, T.; Fialova, A.; Lastovicka, J.; Rob, L.; Spisek, R. Clinical relevance of regulatory T cells monitoring in the peripheral blood of ovarian cancer patients. Hum. Immunol. 2014. [CrossRef]
- Ilkovitch, D.; Lopez, D.M. The liver is a site for tumor-induced myeloid-derived suppressor cell accumulation and immunosuppression. Cancer Res. 2009, 69, 5514–5521. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Deng, H.; Lu, M.; Xu, B.; Wang, Q.; Jiang, J.; Wu, C. B7-H1 expression associates with tumor invasion and predicts patient’s survival in human esophageal cancer. Int. J. Clin. Exp. Pathol. 2014, 7, 6015–6023. [Google Scholar] [PubMed]
- Hasegawa, T.; Suzuki, H.; Yamaura, T.; Muto, S.; Okabe, N.; Osugi, J.; Hoshino, M.; Higuchi, M.; Ise, K.; Gotoh, M. Prognostic value of peripheral and local forkhead box P3 regulatory T cells in patients with non-small-cell lung cancer. Mol. Clin. Oncol. 2014, 2, 685–694. [Google Scholar] [PubMed]
- Yukawa, T.; Shimizu, K.; Maeda, A.; Yasuda, K.; Saisho, S.; Okita, R.; Nakata, M. Cyclooxygenase-2 genetic variants influence intratumoral infiltration of Foxp3-positive regulatory T cells in non-small cell lung cancer. Oncol. Rep. 2015, 33, 74–80. [Google Scholar] [PubMed]
- Yin, Y.; Cai, X.; Chen, X.; Liang, H.; Zhang, Y.; Li, J.; Wang, Z.; Chen, X.; Zhang, W.; Yokoyama, S.; et al. Tumor-secreted miR-214 induces regulatory T cells: A major link between immune evasion and tumor growth. Cell Res. 2014, 24, 1164–1180. [Google Scholar]
- Lim, K.P.; Chun, N.A.; Ismail, S.M.; Abraham, M.T.; Yusoff, M.N.; Zain, R.B.; Ngeow, W.C.; Ponniah, S.; Cheong, S.C. CD4+CD25hiCD127low regulatory T cells are increased in oral squamous cell carcinoma patients. PLoS One 2014, 9, e103975. [Google Scholar] [CrossRef] [PubMed]
- Lunardi, S.; Jamieson, N.B.; Lim, S.Y.; Griffiths, K.L.; Carvalho-Gaspar, M.; al-Assar, O.; Yameen, S.; Carter, R.C.; McKay, C.J.; Spoletini, G.; et al. IP-10/CXCL10 induction in human pancreatic cancer stroma influences lymphocytes recruitment and correlates with poor survival. Oncotarget 2014, 5, 11064–11080. [Google Scholar]
- Mirza, N.; Fishman, M.; Fricke, I.; Dunn, M.; Neuger, A.M.; Frost, T.J.; Lush, R.M.; Antonia, S.; Gabrilovich, D.I. All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res. 2006, 66, 9299–9307. [Google Scholar] [CrossRef] [PubMed]
- Kusmartsev, S.; Su, Z.; Heiser, A.; Dannull, J.; Eruslanov, E.; Kubler, H.; Yancey, D.; Dahm, P.; Vieweg, J. Reversal of myeloid cell-mediated immunosuppression in patients with metastatic renal cell carcinoma. Clin. Cancer Res. 2008, 14, 8270–8278. [Google Scholar] [CrossRef] [PubMed]
- Tazzari, M.; Negri, T.; Rini, F.; Vergani, B.; Huber, V.; Villa, A.; Dagrada, P.; Colombo, C.; Fiore, M.; Gronchi, A.; et al. Adaptive immune contexture at the tumour site and downmodulation of circulating myeloid-derived suppressor cells in the response of solitary fibrous tumour patients to anti-angiogenic therapy. Br. J. Cancer 2014, 111, 1350–1362. [Google Scholar]
- Chu, R.; Liu, S.Y.; Vlantis, A.C.; van Hasselt, C.A.; Ng, E.K.; Fan, M.D.; Ng, S.K.; Chan, A.B.; Du, J.; Wei, W.; et al. Inhibition of Foxp3 in cancer cells induces apoptosis of thyroid cancer cells. Mol. Cell. Endocrinol. 2015, 399, 228–234. [Google Scholar]
- Sayour, E.J.; McLendon, P.; McLendon, R.; de Leon, G.; Reynolds, R.; Kresak, J.; Sampson, J.H.; Mitchell, D.A. Increased proportion of FoxP3+ regulatory T cells in tumor infiltrating lymphocytes is associated with tumor recurrence and reduced survival in patients with glioblastoma. Cancer Immunol. Immunother. 2015. [Google Scholar] [CrossRef]
- Pan, P.Y.; Wang, G.X.; Yin, B.; Ozao, J.; Ku, T.; Divino, C.M.; Chen, S.H. Reversion of immune tolerance in advanced malignancy: modulation of myeloid-derived suppressor cell development by blockade of stem-cell factor function. Blood 2008, 111, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Liaw, Y.F.; Leung, N.W.; Chang, T.T.; Guan, R.; Tai, D.I.; Ng, K.Y.; Chien, R.N.; Dent, J.; Roman, L.; Edmundson, S.; et al. Effects of extended lamivudine therapy in Asian patients with chronic hepatitis B. Asia Hepatitis Lamivudine Study Group. Gastroenterology 2000, 119, 172–180. [Google Scholar]
- Kondo, Y.; Ueno, Y.; Shimosegawa, T. Immunopathogenesis of hepatitis B persistent infection: Implications for immunotherapeutic strategies. Clin. J. Gastroenterol. 2009, 2, 71–79. [Google Scholar] [CrossRef]
- Yang, S.H.; Lee, C.G.; Park, S.H.; Im, S.J.; Kim, Y.M.; Son, J.M.; Wang, J.S.; Yoon, S.K.; Song, M.K.; Ambrozaitis, A.; et al. Correlation of antiviral T-cell responses with suppression of viral rebound in chronic hepatitis B carriers: A proof-of-concept study. Gene Ther. 2006, 13, 1110–1117. [Google Scholar]
- Kondo, Y.; Ueno, Y.; Ninomiya, M.; Tamai, K.; Tanaka, Y.; Inoue, J.; Kakazu, E.; Kobayashi, K.; Kimura, O.; Miura, M.; et al. Sequential immunological analysis of HBV/HCV co-infected patients during Peg-IFN/RBV therapy. J. Gastroenterol. 2012, 47, 1323–1335. [Google Scholar]
- Franzese, O.; Kennedy, P.T.; Gehring, A.J.; Gotto, J.; Williams, R.; Maini, M.K.; Bertoletti, A. Modulation of the CD8+-T-cell response by CD4+CD25+ regulatory T cells in patients with hepatitis B virus infection. J. Virol. 2005, 79, 3322–3328. [Google Scholar] [CrossRef] [PubMed]
- Stoop, J.N.; van der Molen, R.G.; Baan, C.C.; van der Laan, L.J.; Kuipers, E.J.; Kusters, J.G.; Janssen, H.L. Regulatory T cells contribute to the impaired immune response in patients with chronic hepatitis B virus infection. Hepatology 2005, 41, 771–778. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Fu, J.; Jin, L.; Zhang, H.; Zhou, C.; Zou, Z.; Zhao, J.M.; Zhang, B.; Shi, M.; Ding, X.; et al. Circulating and liver resident CD4+CD25+ regulatory T cells actively influence the antiviral immune response and disease progression in patients with hepatitis B. J. Immunol. 2006, 177, 739–747. [Google Scholar]
- Stoop, J.N.; van der Molen, R.G.; Kuipers, E.J.; Kusters, J.G.; Janssen, H.L. Inhibition of viral replication reduces regulatory T cells and enhances the antiviral immune response in chronic hepatitis B. Virology 2007, 361, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Liu, A.; Xie, Q.; Guo, T.B.; Wan, B.; Zhou, B.; Zhang, J.Z. Association of CD4+CD25+Foxp3+ regulatory T cells with chronic activity and viral clearance in patients with hepatitis B. Int. Immunol. 2007, 19, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Otano, I.; Suarez, L.; Dotor, J.; Gonzalez-Aparicio, M.; Crettaz, J.; Olague, C.; Vales, A.; Riezu, J.I.; Larrea, E.; Borras, F.; et al. Modulation of regulatory T-cell activity in combination with interleukin-12 increases hepatic tolerogenicity in woodchucks with chronic hepatitis B. Hepatology 2012, 56, 474–483. [Google Scholar]
- Stross, L.; Gunther, J.; Gasteiger, G.; Asen, T.; Graf, S.; Aichler, M.; Esposito, I.; Busch, D.H.; Knolle, P.; Sparwasser, T.; et al. Foxp3+ regulatory T cells protect the liver from immune damage and compromise virus control during acute experimental hepatitis B virus infection in mice. Hepatology 2012, 56, 873–883. [Google Scholar]
- Yang, P.; Li, Q.J.; Feng, Y.; Zhang, Y.; Markowitz, G.J.; Ning, S.; Deng, Y.; Zhao, J.; Jiang, S.; Yuan, Y.; et al. TGF-β-miR-34a-CCL22 signaling-induced Treg cell recruitment promotes venous metastases of HBV-positive hepatocellular carcinoma. Cancer Cell 2012, 22, 291–303. [Google Scholar]
- Dong, X.; Gong, Y.; Zeng, H.; Hao, Y.; Wang, X.; Hou, J.; Wang, J.; Li, J.; Zhu, Y.; Liu, H.; et al. Imbalance between circulating CD4+ regulatory T and conventional T lymphocytes in patients with HBV-related acute-on-chronic liver failure. Liver Int. 2013, 33, 1517–1526. [Google Scholar]
- Tang, Y.; Jiang, L.; Zheng, Y.; Ni, B.; Wu, Y. Expression of CD39 on FoxP3+ T regulatory cells correlates with progression of HBV infection. BMC Immunol. 2012, 13. [Google Scholar] [CrossRef]
- Boni, C.; Penna, A.; Ogg, G.S.; Bertoletti, A.; Pilli, M.; Cavallo, C.; Cavalli, A.; Urbani, S.; Boehme, R.; Panebianco, R.; et al. Lamivudine treatment can overcome cytotoxic T-cell hyporesponsiveness in chronic hepatitis B: New perspectives for immune therapy. Hepatology 2001, 33, 963–971. [Google Scholar]
- Zhang, Y.; Lian, J.Q.; Huang, C.X.; Wang, J.P.; Wei, X.; Nan, X.P.; Yu, H.T.; Jiang, L.L.; Wang, X.Q.; Zhuang, Y.; et al. Overexpression of Toll-like receptor 2/4 on monocytes modulates the activities of CD4+CD25+ regulatory T cells in chronic hepatitis B virus infection. Virology 2010, 397, 34–42. [Google Scholar]
- Stoop, J.N.; Woltman, A.M.; Biesta, P.J.; Kusters, J.G.; Kuipers, E.J.; Janssen, H.L.; van der Molen, R.G. Tumor necrosis factor alpha inhibits the suppressive effect of regulatory T cells on the hepatitis B virus-specific immune response. Hepatology 2007, 46, 699–705. [Google Scholar] [CrossRef] [PubMed]
- Fisicaro, P.; Valdatta, C.; Massari, M.; Loggi, E.; Biasini, E.; Sacchelli, L.; Cavallo, M.C.; Silini, E.M.; Andreone, P.; Missale, G.; et al. Antiviral intrahepatic T-cell responses can be restored by blocking programmed death-1 pathway in chronic hepatitis B. Gastroenterology 2010, 138, 682–693. [Google Scholar]
- Franceschini, D.; Paroli, M.; Francavilla, V.; Videtta, M.; Morrone, S.; Labbadia, G.; Cerino, A.; Mondelli, M.U.; Barnaba, V. PD-L1 negatively regulates CD4+CD25+Foxp3+ Tregs by limiting STAT-5 phosphorylation in patients chronically infected with HCV. J. Clin. Investig. 2009, 119, 551–564. [Google Scholar] [CrossRef] [PubMed]
- Evans, A.; Riva, A.; Cooksley, H.; Phillips, S.; Puranik, S.; Nathwani, A.; Brett, S.; Chokshi, S.; Naoumov, N.V. Programmed death 1 expression during antiviral treatment of chronic hepatitis B: Impact of hepatitis B e-antigen seroconversion. Hepatology 2008, 48, 759–769. [Google Scholar] [CrossRef] [PubMed]
- Peng, G.; Li, S.; Wu, W.; Sun, Z.; Chen, Y.; Chen, Z. Circulating CD4+CD25+ regulatory T cells correlate with chronic hepatitis B infection. Immunology 2008, 123, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Nan, X.P.; Zhang, Y.; Yu, H.T.; Li, Y.; Sun, R.L.; Wang, J.P.; Bai, X.F. Circulating CD4+CD25high regulatory T cells and expression of PD-1 and BTLA on CD4+ T cells in patients with chronic hepatitis B virus infection. Viral Immunol. 2010, 23, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Nan, X.P.; Zhang, Y.; Yu, H.T.; Sun, R.L.; Peng, M.J.; Li, Y.; Su, W.J.; Lian, J.Q.; Wang, J.P.; Bai, X.F. Inhibition of viral replication downregulates CD4+CD25high regulatory T cells and programmed death-ligand 1 in chronic hepatitis B. Viral Immunol. 2012, 25, 21–28. [Google Scholar] [PubMed]
- Niu, Y.; Liu, H.; Yin, D.; Yi, R.; Chen, T.; Xue, H.; Zhang, S.; Lin, S.; Zhao, Y. The balance between intrahepatic IL-17+ T cells and Foxp3+ regulatory T cells plays an important role in HBV-related end-stage liver disease. BMC Immunol. 2011, 12. [Google Scholar] [CrossRef]
- Li, J.; Qiu, S.J.; She, W.M.; Wang, F.P.; Gao, H.; Li, L.; Tu, C.T.; Wang, J.Y.; Shen, X.Z.; Jiang, W. Significance of the balance between regulatory T (Treg) and T helper 17 (Th17) cells during hepatitis B virus related liver fibrosis. PLoS One 2012, 7, e39307. [Google Scholar] [CrossRef] [PubMed]
- Xue-Song, L.; Cheng-Zhong, L.; Ying, Z.; Mo-Bin, W. Changes of Treg and Th17 cells balance in the development of acute and chronic hepatitis B virus infection. BMC Gastroenterol. 2012, 12. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Shi, J.; Ren, W.; Wu, W.; Chen, Z. Regulatory role of CD4+CD25+Foxp3+ regulatory T cells on IL-17-secreting T cells in chronic hepatitis B patients. Dig. Dis. Sci. 2014, 59, 1475–1483. [Google Scholar] [CrossRef] [PubMed]
- Sprengers, D.; Stoop, J.N.; Binda, R.S.; Kusters, J.G.; Haagmans, B.L.; Carotenuto, P.; Artsen, A.; van der Molen, R.G.; Janssen, H.L. Induction of regulatory T-cells and interleukin-10-producing cells in non-responders to pegylated interferon-alpha therapy for chronic hepatitis B. Antivir. Ther. 2007, 12, 1087–1096. [Google Scholar] [PubMed]
- Aalaei-Andabili, S.H.; Alavian, S.M. Regulatory T cells are the most important determinant factor of hepatitis B infection prognosis: A systematic review and meta-analysis. Vaccine 2012, 30, 5595–5602. [Google Scholar] [CrossRef] [PubMed]
- Ormandy, L.A.; Hillemann, T.; Wedemeyer, H.; Manns, M.P.; Greten, T.F.; Korangy, F. Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res. 2005, 65, 2457–2464. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.H.; Yamagiwa, S.; Ichida, T.; Matsuda, Y.; Sugahara, S.; Watanabe, H.; Sato, Y.; Abo, T.; Horwitz, D.A.; Aoyagi, Y. Increase of CD4+CD25+ regulatory T-cells in the liver of patients with hepatocellular carcinoma. J. Hepatol. 2006, 45, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Cabrera, R.; Xu, Y.; Firpi, R.; Zhu, H.; Liu, C.; Nelson, D.R. Hepatocellular carcinoma cell supernatants increase expansion and function of CD4+ CD25+ regulatory T cells. Lab. Investig. 2007, 87, 582–590. [Google Scholar] [PubMed]
- Fu, J.; Xu, D.; Liu, Z.; Shi, M.; Zhao, P.; Fu, B.; Zhang, Z.; Yang, H.; Zhang, H.; Zhou, C.; et al. Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology 2007, 132, 2328–2339. [Google Scholar]
- Fu, J.; Zhang, Z.; Zhou, L.; Qi, Z.; Xing, S.; Lv, J.; Shi, J.; Fu, B.; Liu, Z.; Zhang, J.Y.; et al. Impairment of CD4+ cytotoxic T cells predicts poor survival and high recurrence rates in patients with hepatocellular carcinoma. Hepatology 2013, 58, 139–149. [Google Scholar]
- Takata, Y.; Nakamoto, Y.; Nakada, A.; Terashima, T.; Arihara, F.; Kitahara, M.; Kakinoki, K.; Arai, K.; Yamashita, T.; Sakai, Y.; et al. Frequency of CD45RO+ subset in CD4+CD25high regulatory T cells associated with progression of hepatocellular carcinoma. Cancer Lett. 2011, 307, 165–173. [Google Scholar]
- Zhu, J.; Feng, A.; Sun, J.; Jiang, Z.; Zhang, G.; Wang, K.; Hu, S.; Qu, X. Increased CD4+CD69+CD25− T cells in patients with hepatocellular carcinoma are associated with tumor progression. J. Gastroenterol. Hepatol. 2011, 26, 1519–1526. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.H.; Mei, M.H.; Fei, R.; Liu, F.; Wang, J.H.; Liao, W.J.; Qin, L.L.; Wei, L.; Chen, H.S. Regulatory T cells in chronic hepatitis B patients affect the immunopathogenesis of hepatocellular carcinoma by suppressing the anti-tumour immune responses. J. Viral Hepat. 2010, 17, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Yu, T.; Yuan, Y.; Zhuang, H.; Wang, Z.; Liu, X.; Feng, M. Sorafenib reduces hepatic infiltrated regulatory T cells in hepatocellular carcinoma patients by suppressing TGF-β signal. J. Surg. Oncol. 2013, 107, 422–427. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kondo, Y.; Shimosegawa, T. Significant Roles of Regulatory T Cells and Myeloid Derived Suppressor Cells in Hepatitis B Virus Persistent Infection and Hepatitis B Virus-Related HCCs. Int. J. Mol. Sci. 2015, 16, 3307-3322. https://doi.org/10.3390/ijms16023307
Kondo Y, Shimosegawa T. Significant Roles of Regulatory T Cells and Myeloid Derived Suppressor Cells in Hepatitis B Virus Persistent Infection and Hepatitis B Virus-Related HCCs. International Journal of Molecular Sciences. 2015; 16(2):3307-3322. https://doi.org/10.3390/ijms16023307
Chicago/Turabian StyleKondo, Yasuteru, and Tooru Shimosegawa. 2015. "Significant Roles of Regulatory T Cells and Myeloid Derived Suppressor Cells in Hepatitis B Virus Persistent Infection and Hepatitis B Virus-Related HCCs" International Journal of Molecular Sciences 16, no. 2: 3307-3322. https://doi.org/10.3390/ijms16023307
APA StyleKondo, Y., & Shimosegawa, T. (2015). Significant Roles of Regulatory T Cells and Myeloid Derived Suppressor Cells in Hepatitis B Virus Persistent Infection and Hepatitis B Virus-Related HCCs. International Journal of Molecular Sciences, 16(2), 3307-3322. https://doi.org/10.3390/ijms16023307