The Complexities of Epidemiology and Prevention of Gastrointestinal Cancers
Abstract
:1. Introduction
2. Colon Cancer
3. Hereditary Colon Cancer
4. Role of Inflammatory Bowel Disease in CRC
5. Chemoprevention in Colon Cancer
6. The Role of Nutritional Agents in Colon Cancer
7. Current Screening Recommendations in Colon Cancer
8. Pancreatic Cancer
9. Hereditary Pancreatic Cancer
10. Role of Smoking on Pancreatic Cancer
11. Role of Obesity and Diabetes in Pancreatic Carcinoma
12. Metformin as a Chemopreventive Agent
13. Alcohol and Chronic Pancreatitis in Pancreatic Carcinoma
14. Role of Natural Agents in Cancer Epidemiology and Prevention
14.1. Fat Soluble Vitamins
14.2. Vitamin D
15. Role of Natural Anti-Cancer Agents
15.1. Ciclopirox (CPX)
15.2. Cryptotanshinone (CPT)
15.3. Curcumin
15.4. Rapamycin
15.5. Isoflavone
16. Conclusion
Acknowledgements
- Conflict of InterestThe authors have no conflict of interest to declare.
References
- Zlot, A.I.; Silvey, K.; Newell, N.; Coates, R.J.; Leman, R. Family history of colorectal cancer: Clinicians’ preventive recommendations and patient behavior. Prev. Chronic. Dis 2012, 9, 100254. [Google Scholar]
- Lochan, R.; Daly, A.K.; Reeves, H.L.; Charnley, R.M. Family history of cancer and tobacco exposure in index cases of pancreatic ductal adenocarcinoma. J. Oncol 2011, 2011, 1–9. [Google Scholar]
- Lin, O.S. Colorectal cancer screening in patients at moderately increased risk due to family history. World J. Gastrointest. Oncol 2012, 4, 125–130. [Google Scholar]
- Li, Y.; Kong, D.; Bao, B.; Ahmad, A.; Sarkar, F.H. Induction of cancer cell death by isoflavone: The role of multiple signaling pathways. Nutrients 2011, 3, 877–896. [Google Scholar]
- Poljsak, B.; Milisav, I. The neglected significance of “antioxidative stress”. Oxid. Med. Cell Longev 2012, 2012, 480895. [Google Scholar]
- Kim, J.; Kim, Y. Animal models in carotenoids research and lung cancer prevention. Transl. Oncol 2011, 4, 271–281. [Google Scholar]
- Lochan, R.; Daly, A.K.; Reeves, H.L.; Charnley, R.M. Family history of cancer and tobacco exposure in index cases of pancreatic ductal adenocarcinoma. J. Oncol 2011, 2011, 215985. [Google Scholar]
- Au, J.S.; Cho, W.C.; Yip, T.T.; Law, S.C. Proteomic approach to biomarker discovery in cancer tissue from lung adenocarcinoma among nonsmoking Chinese women in Hong Kong. Cancer Invest 2008, 26, 128–135. [Google Scholar]
- Cho, W.C. Cancer research on non-small cell lung cancer in smokers and non-smokers: Snapshots from the AACR annual meeting 2009. Cancer Biol. Ther 2009, 8, 1309–1312. [Google Scholar]
- Gupta, S.; Wang, F.; Holly, E.A.; Bracci, P.M. Risk of pancreatic cancer by alcohol dose, duration, and pattern of consumption, including binge drinking: A population-based study. Cancer Causes Control 2010, 21, 1047–1059. [Google Scholar]
- Rubin, D.C.; Shaker, A.; Levin, M.S. Chronic intestinal inflammation: Inflammatory bowel disease and colitis-associated colon cancer. Front Immunol 2012, 3, 107. [Google Scholar]
- Tang, H.; Dong, X.; Hassan, M.; Abbruzzese, J.L.; Li, D. Body mass index and obesity- and diabetes-associated genotypes and risk for pancreatic cancer. Cancer Epidemiol. Biomark. Prev 2011, 20, 779–792. [Google Scholar]
- Cazzaniga, M.; Varricchio, C.; Montefrancesco, C.; Feroce, I.; Guerrieri-Gonzaga, A. Fenretinide (4-HPR): A preventive chance for women at genetic and familial risk? J. Biomed. Biotechnol 2012, 2012, 172897. [Google Scholar]
- Ockenga, J. A Further Piece of the Puzzle: Positive FOBT, Colonoscopy, Aspirin and the Prevention of Colorectal Cancer. Digestion 2012, 85, 276–277. [Google Scholar]
- Jasperson, K.W.; Tuohy, T.M.; Neklason, D.W.; Burt, R.W. Hereditary and familial colon cancer. Gastroenterology 2010, 138, 2044–2058. [Google Scholar]
- Chen, L.; Xu, B.; Liu, L.; Luo, Y.; Zhou, H.; Chen, W.; Shen, T.; Han, X.; Kontos, C.D.; Huang, S. Cadmium induction of reactive oxygen species activates the mTOR pathway, leading to neuronal cell death. Free Radic. Biol. Med 2011, 50, 624–632. [Google Scholar]
- Fogg, V.C.; Lanning, N.J.; Mackeigan, J.P. Mitochondria in cancer: At the crossroads of life and death. Chin J. Cancer 2011, 30, 526–539. [Google Scholar]
- Xu, B.; Chen, S.; Luo, Y.; Chen, Z.; Liu, L.; Zhou, H.; Chen, W.; Shen, T.; Han, X.; Chen, L.; Huang, S. Calcium signaling is involved in cadmium-induced neuronal apoptosis via induction of reactive oxygen species and activation of MAPK/mTOR network. PLoS One 2011, 6, e19052. [Google Scholar]
- Tanaka, T. Development of an inflammation-associated colorectal cancer model and its application for research on carcinogenesis and chemoprevention. Int. J. Inflam 2012, 201–2, 658786. [Google Scholar]
- Cooper, K.; Squires, H.; Carroll, C.; Papaioannou, D.; Booth, A.; Logan, R.F.; Maguire, C.; Hind, D.; Tappenden, P. Chemoprevention of colorectal cancer: Systematic review and economic evaluation. Health Technol. Assess 2010, 14, 1–206. [Google Scholar]
- Ali, R.; Toh, H.C.; Chia, W.K. The utility of Aspirin in Dukes C and High Risk Dukes B Colorectal cancer—The ASCOLT study: Study protocol for a randomized controlled trial. Trials 2011, 12, 261. [Google Scholar]
- Stolfi, C.; Pallone, F.; Monteleone, G. Colorectal cancer chemoprevention by mesalazine and its derivatives. J. Biomed. Biotechnol 2012, 2012, 980458. [Google Scholar]
- Williams, C.; Panaccione, R.; Ghosh, S.; Rioux, K. Optimizing clinical use of mesalazine (5-aminosalicylic acid) in inflammatory bowel disease. Therap. Adv. Gastroenterol 2011, 4, 237–248. [Google Scholar]
- Lin, Y.W.; Wang, J.L.; Chen, H.M.; Zhang, Y.J.; Lu, R.; Ren, L.L.; Hong, J.; Fang, J.Y. Folic Acid supplementary reduce the incidence of adenocarcinoma in a mouse model of colorectal cancer: Microarray gene expression profile. J. Exp. Clin. Cancer Res 2011, 30, 116. [Google Scholar]
- Reddy, B.S. Dietary fibre and colon cancer: Epidemiologic and experimental evidence. Can. Med. Assoc. J 1980, 123, 850–856. [Google Scholar]
- Sanchez, N.F.; Stierman, B.; Saab, S.; Mahajan, D.; Yeung, H.; Francois, F. Physical activity reduces risk for colon polyps in a multiethnic colorectal cancer screening population. BMC Res. Notes 2012, 5, 312. [Google Scholar]
- Zandonai, A.P.; Sonobe, H.M.; Sawada, N.O. The dietary risk factors for colorectal cancer related to meat consumption. Rev. Esc. Enferm. USP 2012, 46, 234–239. [Google Scholar]
- Ogino, S.; Stampfer, M. Lifestyle factors and microsatellite instability in colorectal cancer: The evolving field of molecular pathological epidemiology. J. Natl. Cancer Inst 2010, 102, 365–367. [Google Scholar]
- Stoffel, E.M.; Mercado, R.C.; Kohlmann, W.; Ford, B.; Grover, S.; Conrad, P.; Blanco, A.; Shannon, K.M.; Powell, M.; Chung, D.C.; et al. Prevalence and predictors of appropriate colorectal cancer surveillance in Lynch syndrome. Am. J. Gastroenterol 2010, 105, 1851–1860. [Google Scholar]
- Half, E.; Bercovich, D.; Rozen, P. Familial adenomatous polyposis. Orphanet. J. Rare. Dis 2009, 4, 22. [Google Scholar]
- Grover, S.; Syngal, S. Hereditary pancreatic cancer. Gastroenterology 2010, 139. [Google Scholar]
- Li, D.; Abbruzzese, J.L. New strategies in pancreatic cancer: emerging epidemiologic and therapeutic concepts. Clin. Cancer Res 2010, 16, 4313–4318. [Google Scholar]
- Efthimiou, E.; Crnogorac-Jurcevic, T.; Lemoine, N.R.; Brentnall, T.A. Inherited predisposition to pancreatic cancer. Gut 2001, 48, 143–147. [Google Scholar]
- Cancer risks in BRCA2 mutation carriers. The Breast Cancer Linkage Consortium. J. Natl. Cancer Inst 1999, 91, 1310–1316.
- Kim, R.; Byer, J.; Saif, M.W. BRCA and pancreatic cancer: Selection of chemotherapy. J. Pancreas 2012, 13, 180–181. [Google Scholar]
- Haddad, A.; Kowdley, G.C.; Pawlik, T.M.; Cunningham, S.C. Hereditary pancreatic and hepatobiliary cancers. Int. J. Surg. Oncol 2011, 2011, 154673. [Google Scholar]
- Jensen, K.; Afroze, S.; Munshi, M.K.; Guerrier, M.; Glaser, S.S. Mechanisms for nicotine in the development and progression of gastrointestinal cancers. Transl. Gastrointest. Cancer 2012, 1, 81–87. [Google Scholar]
- Jiao, L.; de Gonzalez, A.B.; Hartge, P.; Pfeiffer, R.M.; Park, Y.; Freedman, D.M.; Gail, M.H.; Alavanja, M.C.R.; Albanes, D.; Freeman, L.E.B.; et al. Body mass index, effect modifiers, and risk of pancreatic cancer: A pooled study of seven prospective cohorts. Cancer Causes Control 2010, 21, 1305–1314. [Google Scholar]
- Zhang, J.; Dhakal, I.B.; Gross, M.D.; Lang, N.P.; Kadlubar, F.F.; Harnack, L.J.; Anderson, K.E. Physical activity, diet, and pancreatic cancer: A population-based, case-control study in Minnesota. Nutr. Cancer 2009, 61, 457–465. [Google Scholar]
- Stan, S.D.; Singh, S.V.; Brand, R.E. Chemoprevention strategies for pancreatic cancer. Nat. Rev. Gastroenterol. Hepatol 2010, 7, 347–356. [Google Scholar]
- Jiao, L.; Silverman, D.T.; Schairer, C.; Thiebaut, A.C.; Hollenbeck, A.R.; Leitzmann, M.F.; Schatzkin, A.; Stolzenberg-Solomon, R.Z. Alcohol use and risk of pancreatic cancer: The NIH-AARP Diet and Health Study. Am. J. Epidemiol 2009, 169, 1043–1051. [Google Scholar]
- Schneider, A.; Singer, M.V. Alcoholic pancreatitis. Dig. Dis 2005, 23, 222–231. [Google Scholar]
- Oaks, B.M.; Dodd, K.W.; Meinhold, C.L.; Jiao, L.; Church, T.R.; Stolzenberg-Solomon, R.Z. Folate intake, post-folic acid grain fortification, and pancreatic cancer risk in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Am. J. Clin. Nutr 2010, 91, 449–455. [Google Scholar]
- El-Rayes, B.F.; Ali, S.; Ali, I.F.; Philip, P.A.; Abbruzzese, J.; Sarkar, F.H. Potentiation of the effect of erlotinib by genistein in pancreatic cancer: The role of Akt and nuclear factor-kappaB. Cancer Res 2006, 66, 10553–10559. [Google Scholar]
- Solomon, L.A.; Ali, S.; Banerjee, S.; Munkarah, A.R.; Morris, R.T.; Sarkar, F.H. Sensitization of ovarian cancer cells to cisplatin by genistein: The role of NF-kappaB. J. Ovarian. Res 2008, 1, 9. [Google Scholar]
- Patacsil, D.; Osayi, S.; Tran, A.T.; Saenz, F.; Yimer, L.; Shajahan, A.N.; Gokhale, P.C.; Verma, M.; Clarke, R.; Chauhan, S.C.; et al. Vitamin E succinate inhibits survivin and induces apoptosis in pancreatic cancer cells. Genes Nutr 2012, 7, 83–89. [Google Scholar]
- Husain, K.; Francois, R.A.; Hutchinson, S.Z.; Neuger, A.M.; Lush, R.; Coppola, D.; Sebti, S.; Malafa, M.P. Vitamin E delta-tocotrienol levels in tumor and pancreatic tissue of mice after oral administration. Pharmacology 2009, 83, 157–163. [Google Scholar]
- Bulathsinghala, P.; Syrigos, K.N.; Saif, M.W. Role of vitamin d in the prevention of pancreatic cancer. J. Nutr. Metab 2010, 2010, 721365. [Google Scholar]
- Stolzenberg-Solomon, R.Z.; Jacobs, E.J.; Arslan, A.A.; Qi, D.; Patel, A.V.; Helzlsouer, K.J.; Weinstein, S.J.; McCullough, M.L.; Purdue, M.P.; Shu, X.O.; et al. Circulating 25-hydroxyvitamin D and risk of pancreatic cancer: Cohort Consortium Vitamin D Pooling Project of Rarer Cancers. Am. J. Epidemiol 2010, 172, 81–93. [Google Scholar]
- Zhou, H.; Shen, T.; Luo, Y.; Liu, L.; Chen, W.; Xu, B.; Han, X.; Pang, J.; Rivera, C.A.; Huang, S. The antitumor activity of the fungicide ciclopirox. Int. J. Cancer 2010, 127, 2467–2477. [Google Scholar]
- Chen, W.; Luo, Y.; Liu, L.; Zhou, H.; Xu, B.; Han, X.; Shen, T.; Liu, Z.; Lu, Y.; Huang, S. Cryptotanshinone inhibits cancer cell proliferation by suppressing Mammalian target of rapamycin-mediated cyclin D1 expression and Rb phosphorylation. Cancer Prev. Res (Phila) 2010, 3, 1015–1025. [Google Scholar]
- Ali, S.; Ahmad, A.; Banerjee, S.; Padhye, S.; Dominiak, K.; Schaffert, J.M.; Wang, Z.; Philip, P.A.; Sarkar, F.H. Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Res 2010, 70, 3606–3617. [Google Scholar]
- Chauhan, D.P. Chemotherapeutic potential of curcumin for colorectal cancer. Curr. Pharm. Des 2002, 8, 1695–1706. [Google Scholar]
- Han, X.; Xu, B.; Beevers, C.S.; Odaka, Y.; Chen, L.; Liu, L.; Luo, Y.; Zhou, H.; Chen, W.; Shen, T.; Huang, S. Curcumin inhibits protein phosphatases 2A and 5, leading to activation of mitogen-activated protein kinases and death in tumor cells. Carcinogenesis 2012, 33, 868–875. [Google Scholar]
- Liu, L.; Chen, L.; Luo, Y.; Chen, W.; Zhou, H.; Xu, B.; Han, X.; Shen, T.; Huang, S. Rapamycin inhibits IGF-1 stimulated cell motility through PP2A pathway. PLoS One 2010, 5, e10578. [Google Scholar]
- Kong, D.; Banerjee, S.; Huang, W.; Li, Y.; Wang, Z.; Kim, H.R.; Sarkar, F.H. Mammalian target of rapamycin repression by 3,3′-diindolylmethane inhibits invasion and angiogenesis in platelet-derived growth factor-D-overexpressing PC3 cells. Cancer Res 2008, 68, 1927–1934. [Google Scholar]
- Ali, S.; Varghese, L.; Pereira, L.; Tulunay-Ugur, O.E.; Kucuk, O.; Carey, T.E.; Wolf, G.T.; Sarkar, F.H. Sensitization of squamous cell carcinoma to cisplatin induced killing by natural agents. Cancer Lett 2009, 278, 201–209. [Google Scholar]
- Bao, B.; Wang, Z.; Ali, S.; Kong, D.; Banerjee, S.; Ahmad, A.; Li, Y.; Azmi, A.S.; Miele, L.; Sarkar, F.H. Over-expression of FoxM1 leads to epithelial-mesenchymal transition and cancer stem cell phenotype in pancreatic cancer cells. J. Cell Biochem 2011, 112, 2296–2306. [Google Scholar]
- Bao, B.; Wang, Z.; Ali, S.; Kong, D.; Li, Y.; Ahmad, A.; Banerjee, S.; Azmi, A.S.; Miele, L.; Sarkar, F.H. Notch-1 induces epithelial-mesenchymal transition consistent with cancer stem cell phenotype in pancreatic cancer cells. Cancer Lett 2011, 307, 26–36. [Google Scholar]
- Gadgeel, S.M.; Ali, S.; Philip, P.A.; Wozniak, A.; Sarkar, F.H. Genistein enhances the effect of epidermal growth factor receptor tyrosine kinase inhibitors and inhibits nuclear factor kappa B in nonsmall cell lung cancer cell lines. Cancer 2009, 115, 2165–2176. [Google Scholar]
- Sarkar, F.H.; Li, Y.; Wang, Z.; Kong, D.; Ali, S. Implication of microRNAs in drug resistance for designing novel cancer therapy. Drug Resist. Updat 2010, 13, 57–66. [Google Scholar]
- Banerjee, S.; Zhang, Y.; Ali, S.; Bhuiyan, M.; Wang, Z.; Chiao, P.J.; Philip, P.A.; Abbruzzese, J.; Sarkar, F.H. Molecular evidence for increased antitumor activity of gemcitabine by genistein in vitro and in vivo using an orthotopic model of pancreatic cancer. Cancer Res 2005, 65, 9064–9072. [Google Scholar]
- Li, Y.; Ellis, K.L.; Ali, S.; El-Rayes, B.F.; Nedeljkovic-Kurepa, A.; Kucuk, O.; Philip, P.A.; Sarkar, F.H. Apoptosis-inducing effect of chemotherapeutic agents is potentiated by soy isoflavone genistein, a natural inhibitor of NF-kappaB in BxPC-3 pancreatic cancer cell line. Pancreas 2004, 28, e90–e95. [Google Scholar]
- Li, Y.; Ahmed, F.; Ali, S.; Philip, P.A.; Kucuk, O.; Sarkar, F.H. Inactivation of nuclear factor kappaB by soy isoflavone genistein contributes to increased apoptosis induced by chemotherapeutic agents in human cancer cells. Cancer Res 2005, 65, 6934–6942. [Google Scholar]
- Hardy, T.M.; Tollefsbol, T.O. Epigenetic diet: Impact on the epigenome and cancer. Epigenomics 2011, 3, 503–518. [Google Scholar]
- Murata, M.; Thanan, R.; Ma, N.; Kawanishi, S. Role of nitrative and oxidative DNA damage in inflammation-related carcinogenesis. J. Biomed. Biotechnol 2012, 2012, 623019. [Google Scholar]
Abbreviated Genes | Full name of Genes |
---|---|
hMSH2 | human mutS homolog 2 |
hMLH1 | human mutL homolog 1 |
hMSH6 | human mutS homolog 6 |
hPMS2 | postmeiotic segregation increased 2 |
APC | adenomatous polyposis coli |
RUNX2 | Runt-related transcription factor 2 |
MINT1 | munc-18 interacting protein |
BRCA1/2 | Breast cancer 1/2 |
PPARγ | Peroxisome proliferator-activated receptor gamma |
Screening Initiation (age) | Screening Interval | |
---|---|---|
General Population | 50 | 5–10 years |
Family History of Colon Cancer | 10 years before age family member was diagnosed or 50, whichever comes earlier | |
Lynch Syndrome | 20–25 | 1–2 years |
Familial Adenomatous Polyposis | 10–12 | 1–2 years |
Patients with Inflammatory Bowel Disease | Begin after 8 years of disease | Yearly |
Inherited Syndrome | Mutated Gene |
---|---|
Lynch Syndrome | Mismatch Repair Genes (MMR): MLH1, MSH2, MSH6 and PMS2 |
Peutz-Jeghers Syndrome | STK11/LKB1 |
Hereditary Breast Cancer | BRCA1/BRCA2 |
Familial Atypical Multiple Mole Melanoma | CDKN2A mutation |
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Haq, S.; Ali, S.; Mohammad, R.; Sarkar, F.H. The Complexities of Epidemiology and Prevention of Gastrointestinal Cancers. Int. J. Mol. Sci. 2012, 13, 12556-12572. https://doi.org/10.3390/ijms131012556
Haq S, Ali S, Mohammad R, Sarkar FH. The Complexities of Epidemiology and Prevention of Gastrointestinal Cancers. International Journal of Molecular Sciences. 2012; 13(10):12556-12572. https://doi.org/10.3390/ijms131012556
Chicago/Turabian StyleHaq, Saba, Shadan Ali, Ramzi Mohammad, and Fazlul H. Sarkar. 2012. "The Complexities of Epidemiology and Prevention of Gastrointestinal Cancers" International Journal of Molecular Sciences 13, no. 10: 12556-12572. https://doi.org/10.3390/ijms131012556
APA StyleHaq, S., Ali, S., Mohammad, R., & Sarkar, F. H. (2012). The Complexities of Epidemiology and Prevention of Gastrointestinal Cancers. International Journal of Molecular Sciences, 13(10), 12556-12572. https://doi.org/10.3390/ijms131012556