Mitochondrial Peroxiredoxin III is a Potential Target for Cancer Therapy
Abstract
:1. Mitochondria and Cancer
2. Mitochondrion-Targeting Cancer Therapy
3. Regulation of the Mitochondrial Antioxidant System
4. Peroxiredoxin III: A Potential Mitochondrial Target for Cancer Therapy
5. Outlook and Future Perspectives
Acknowledgments
- Conflict of InterestThe authors declare no conflict of interest.
References
- Kroemer, G; Galluzzi, L; Brenner, C. Mitochondrial membrane permeabilization in cell death. Physiol. Rev 2007, 87, 99–163. [Google Scholar]
- Galluzzi, L; Joza, N; Tasdemir, E; Maiuri, MC; Hengartner, M; Abrams, JM; Tavernarakis, N; Penninger, J; Madeo, F; Kroemer, G. No death without life: vital functions of apoptotic effectors. Cell Death Differ 2008, 15, 1113–1123. [Google Scholar]
- Galluzzi, L; Kroemer, G. Necroptosis: a specialized pathway of programmed necrosis. Cell 2008, 135, 1161–1163. [Google Scholar]
- Gogvadze, V; Orrenius, S; Zhivotovsky, B. Mitochondria in cancer cells: what is so special about them? Trends Cell Biol 2008, 18, 165–173. [Google Scholar]
- Modica-Napolitano, JS; Singh, KK. Mitochondrial dysfunction in cancer. Mitochondrion 2004, 4, 755–762. [Google Scholar]
- Warburg, O. On the origin of cancer cells. Science 1956, 123, 309–314. [Google Scholar]
- Weinhouse, S. On respiratory impairment in cancer cells. Science 1956, 124, 267–269. [Google Scholar]
- Weinberg, F; Hamanaka, R; Wheaton, WW; Weinberg, S; Joseph, J; Lopez, M; Kalyanaraman, B; Mutlu, GM; Budinger, GR; Chandel, NS. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc. Natl. Acad. Sci. USA 2010, 107, 8788–8793. [Google Scholar]
- Reed, DJ. Glutathione: toxicological implications. Annu. Rev. Pharmacol. Toxicol 1990, 30, 603–631. [Google Scholar]
- Kinnula, VL; Lehtonen, S; Sormunen, R; Kaarteenaho-Wiik, R; Kang, SW; Rhee, SG; Soini, Y. Overexpression of peroxiredoxins I, II, III, V, and VI in malignant mesothelioma. J. Pathol 2002, 196, 316–323. [Google Scholar]
- Noh, DY; Ahn, SJ; Lee, RA; Kim, SW; Park, IA; Chae, HZ. Overexpression of peroxiredoxin in human breast cancer. Anticancer Res 2001, 21, 2085–2090. [Google Scholar]
- Choi, JH; Kim, TN; Kim, S; Baek, SH; Kim, JH; Lee, SR; Kim, JR. Overexpression of mitochondrial thioredoxin reductase and peroxiredoxin III in hepatocellular carcinomas. Anticancer Res 2002, 22, 3331–3335. [Google Scholar]
- Nonn, L; Berggren, M; Powis, G. Increased expression of mitochondrial peroxiredoxin-3 (thioredoxin peroxidase-2) protects cancer cells against hypoxia and drug-induced hydrogen peroxide-dependent apoptosis. Mol. Cancer Res 2003, 1, 682–689. [Google Scholar]
- Kropotov, A; Gogvadze, V; Shupliakov, O; Tomilin, N; Serikov, VB; Tomilin, NV; Zhivotovsky, B. Peroxiredoxin V is essential for protection against apoptosis in human lung carcinoma cells. Exp. Cell Res 2006, 312, 2806–2815. [Google Scholar]
- Knoops, B; Clippe, A; Bogard, C; Arsalane, K; Wattiez, R; Hermans, C; Duconseille, E; Falmagne, P; Bernard, A. Cloning and characterization of AOEB166, a novel mammalian antioxidant enzyme of the peroxiredoxin family. J. Biol. Chem 1999, 274, 30451–30458. [Google Scholar]
- Seo, MS; Kang, SW; Kim, K; Baines, IC; Lee, TH; Rhee, SG. Identification of a new type of mammalian peroxiredoxin that forms an intramolecular disulfide as a reaction intermediate. J. Biol. Chem 2000, 275, 20346–20354. [Google Scholar]
- Kropotov, A; Usmanova, N; Serikov, V; Zhivotovsky, B; Tomilin, N. Mitochondrial targeting of human peroxiredoxin V protein and regulation of PRDX5 gene expression by nuclear transcription factors controlling biogenesis of mitochondria. FEBS J 2007, 274, 5804–5814. [Google Scholar]
- Murphy, MP. How mitochondria produce reactive oxygen species. Biochem. J 2009, 417, 1–13. [Google Scholar]
- Cao, Z; Bhella, D; Lindsay, JG. Reconstitution of the mitochondrial PrxIII antioxidant defence pathway: general properties and factors affecting PrxIII activity and oligomeric state. J. Mol. Biol 2007, 372, 1022–1033. [Google Scholar]
- Manta, B; Hugo, M; Ortiz, C; Ferrer-Sueta, G; Trujillo, M; Denicola, A. The peroxidase and peroxynitrite reductase activity of human erythrocyte peroxiredoxin 2. Arch. Biochem. Biophys 2009, 484, 146–154. [Google Scholar]
- Trujillo, M; Clippe, A; Manta, B; Ferrer-Sueta, G; Smeets, A; Declercq, JP; Knoops, B; Radi, R. Pre-steady state kinetic characterization of human peroxiredoxin 5: taking advantage of Trp84 fluorescence increase upon oxidation. Arch. Biochem. Biophys 2007, 467, 95–106. [Google Scholar]
- Dubuisson, M; Vander Stricht, D; Clippe, A; Etienne, F; Nauser, T; Kissner, R; Koppenol, WH; Rees, JF; Knoops, B. Human peroxiredoxin 5 is a peroxynitrite reductase. FEBS Lett 2004, 571, 161–165. [Google Scholar]
- Gulbins, E; Dreschers, S; Bock, J. Role of mitochondria in apoptosis. Exp. Physiol 2003, 88, 85–90. [Google Scholar]
- Hiendleder, S; Schmutz, SM; Erhardt, G; Green, RD; Plante, Y. Transmitochondrial differences and varying levels of heteroplasmy in nuclear transfer cloned cattle. Mol. Reprod. Dev 1999, 54, 24–31. [Google Scholar]
- Waterhouse, NJ; Goldstein, JC; Kluck, RM; Newmeyer, DD; Green, DR. The (Holey) study of mitochondria in apoptosis. Methods Cell Biol 2001, 66, 365–391. [Google Scholar]
- Orrenius, S; Zhivotovsky, B; Nicotera, P. Regulation of cell death: the calcium-apoptosis link. Nat. Rev. Mol. Cell Biol 2003, 4, 552–565. [Google Scholar]
- Zamzami, N; Kroemer, G. The mitochondrion in apoptosis: how Pandora's box opens. Nat. Rev. Mol. Cell Biol 2001, 2, 67–71. [Google Scholar]
- Murphy, E; Steenbergen, C. Mechanisms underlying acute protection from cardiac ischemiareperfusion injury. Physiol. Rev 2008, 88, 581–609. [Google Scholar]
- Tan, W; Colombini, M. VDAC closure increases calcium ion flux. Biochim. Biophys. Acta 2007, 1768, 2510–2515. [Google Scholar]
- Baines, CP; Kaiser, RA; Purcell, NH; Blair, NS; Osinska, H; Hambleton, MA; Brunskill, EW; Sayen, MR; Gottlieb, RA; Dorn, GW; Robbins, J; Molkentin, JD. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 2005, 434, 658–662. [Google Scholar]
- Schinzel, AC; Takeuchi, O; Huang, Z; Fisher, JK; Zhou, Z; Rubens, J; Hetz, C; Danial, NN; Moskowitz, MA; Korsmeyer, SJ. Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc. Natl. Acad. Sci. USA 2005, 102, 12005–12010. [Google Scholar]
- Kokoszka, JE; Waymire, KG; Levy, SE; Sligh, JE; Cai, J; Jones, DP; MacGregor, GR; Wallace, DC. The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 2004, 427, 461–465. [Google Scholar]
- Baines, CP; Kaiser, RA; Sheiko, T; Craigen, WJ; Molkentin, JD. Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat. Cell Biol 2007, 9, 550–555. [Google Scholar]
- Costantini, P; Belzacq, AS; Vieira, HL; Larochette, N; de Pablo, MA; Zamzami, N; Susin, SA; Brenner, C; Kroemer, G. Oxidation of a critical thiol residue of the adenine nucleotide translocator enforces Bcl-2-independent permeability transition pore opening and apoptosis. Oncogene 2000, 19, 307–314. [Google Scholar]
- Fantin, VR; Leder, P. Mitochondriotoxic compounds for cancer therapy. Oncogene 2006, 25, 4787–4797. [Google Scholar]
- Fulda, S; Galluzzi, L; Kroemer, G. Targeting mitochondria for cancer therapy. Nat. Rev. Drug Discov 2010, 9, 447–464. [Google Scholar]
- Pathania, D; Millard, M; Neamati, N. Opportunities in discovery and delivery of anticancer drugs targeting mitochondria and cancer cell metabolism. Adv. Drug Deliv. Rev 2009, 61, 1250–1275. [Google Scholar]
- Robertson, JD; Gogvadze, V; Zhivotovsky, B; Orrenius, S. Distinct pathways for stimulation of cytochrome c release by etoposide. J. Biol. Chem 2000, 275, 32438–32443. [Google Scholar]
- Kidd, JF; Pilkington, MF; Schell, MJ; Fogarty, KE; Skepper, JN; Taylor, CW; Thorn, P. Paclitaxel affects cytosolic calcium signals by opening the mitochondrial permeability transition pore. J. Biol. Chem 2002, 277, 6504–6510. [Google Scholar]
- Chinnery, PF; Taylor, GA; Howell, N; Andrews, RM; Morris, CM; Taylor, RW; McKeith, IG; Perry, RH; Edwardson, JA; Turnbull, DM. Mitochondrial DNA haplogroups and susceptibility to AD and dementia with Lewy bodies. Neurology 2000, 55, 302–304. [Google Scholar]
- Stover, TC; Sharma, A; Robertson, GP; Kester, M. Systemic delivery of liposomal short-chain ceramide limits solid tumor growth in murine models of breast adenocarcinoma. Clin. Cancer Res 2005, 11, 3465–3474. [Google Scholar]
- Propper, DJ; Braybrooke, JP; Taylor, DJ; Lodi, R; Styles, P; Cramer, JA; Collins, WC; Levitt, NC; Talbot, DC; Ganesan, TS; Harris, AL. Phase I trial of the selective mitochondrial toxin MKT077 in chemo-resistant solid tumours. Ann. Oncol 1999, 10, 923–927. [Google Scholar]
- Holmes, WF; Soprano, DR; Soprano, KJ. Elucidation of molecular events mediating induction of apoptosis by synthetic retinoids using a CD437-resistant ovarian carcinoma cell line. J. Biol. Chem 2002, 277, 45408–45419. [Google Scholar]
- Loschen, G; Flohe, L; Chance, B. Respiratory chain linked H(2)O(2) production in pigeon heart mitochondria. FEBS Lett 1971, 18, 261–264. [Google Scholar]
- Rabilloud, T; Heller, M; Rigobello, MP; Bindoli, A; Aebersold, R; Lunardi, J. The mitochondrial antioxidant defence system and its response to oxidative stress. Proteomics 2001, 1, 1105–1110. [Google Scholar]
- Banmeyer, I; Marchand, C; Clippe, A; Knoops, B. Human mitochondrial peroxiredoxin 5 protects from mitochondrial DNA damages induced by hydrogen peroxide. FEBS Lett 2005, 579, 2327–2333. [Google Scholar]
- Huh, JY; Kim, Y; Jeong, J; Park, J; Kim, I; Huh, KH; Kim, YS; Woo, HA; Rhee, SG; Lee, KJ; Ha, H. Peroxiredoxin 3 Is a Key Molecule Regulating Adipocyte Oxidative Stress, Mitochondrial Biogenesis, and Adipokine Expression. Antioxid Redox Signal 2011. In Press. [Google Scholar]
- Nonn, L; Williams, RR; Erickson, RP; Powis, G. The absence of mitochondrial thioredoxin 2 causes massive apoptosis, exencephaly, and early embryonic lethality in homozygous mice. Mol. Cell Biol 2003, 23, 916–922. [Google Scholar]
- Lebovitz, RM; Zhang, H; Vogel, H; Cartwright, J, Jr; Dionne, L; Lu, N; Huang, S; Matzuk, MM. Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc. Natl. Acad. Sci USA 1996, 93, 9782–9787. [Google Scholar]
- Hinerfeld, D; Traini, MD; Weinberger, RP; Cochran, B; Doctrow, SR; Harry, J; Melov, S. Endogenous mitochondrial oxidative stress: neurodegeneration, proteomic analysis, specific respiratory chain defects, and efficacious antioxidant therapy in superoxide dismutase 2 null mice. J. Neurochem 2004, 88, 657–667. [Google Scholar]
- Ho, YS; Magnenat, JL; Bronson, RT; Cao, J; Gargano, M; Sugawara, M; Funk, CD. Mice deficient in cellular glutathione peroxidase develop normally and show no increased sensitivity to hyperoxia. J. Biol. Chem 1997, 272, 16644–16651. [Google Scholar]
- de Haan, JB; Bladier, C; Griffiths, P; Kelner, M; O'Shea, RD; Cheung, NS; Bronson, RT; Silvestro, MJ; Wild, S; Zheng, SS; Beart, PM; Hertzog, PJ; Kola, I. Mice with a homozygous null mutation for the most abundant glutathione peroxidase, Gpx1, show increased susceptibility to the oxidative stress-inducing agents paraquat and hydrogen peroxide. J. Biol. Chem 1998, 273, 22528–22536. [Google Scholar]
- Crack, PJ; Taylor, JM; Flentjar, NJ; de Haan, J; Hertzog, P; Iannello, RC; Kola, I. Increased infarct size and exacerbated apoptosis in the glutathione peroxidase-1 (Gpx-1) knockout mouse brain in response to ischemia/reperfusion injury. J. Neurochem 2001, 78, 1389–1399. [Google Scholar]
- Esworthy, RS; Ho, YS; Chu, FF. The Gpx1 gene encodes mitochondrial glutathione peroxidase in the mouse liver. Arch. Biochem. Biophys 1997, 340, 59–63. [Google Scholar]
- Panfili, E; Sandri, G; Ernster, L. Distribution of glutathione peroxidases and glutathione reductase in rat brain mitochondria. FEBS Lett 1991, 290, 35–37. [Google Scholar]
- Heerdt, BG; Houston, MA; Wilson, AJ; Augenlicht, LH. The intrinsic mitochondrial membrane potential (Deltapsim) is associated with steady-state mitochondrial activity and the extent to which colonic epithelial cells undergo butyrate-mediated growth arrest and apoptosis. Cancer Res 2003, 63, 6311–6319. [Google Scholar]
- Cleveland, JL; Kastan, MB. Cancer. A radical approach to treatment. Nature 2000, 407, 309–311. [Google Scholar]
- Matei, D; Schilder, J; Sutton, G; Perkins, S; Breen, T; Quon, C; Sidor, C. Activity of 2 methoxyestradiol (Panzem NCD) in advanced, platinum-resistant ovarian cancer and primary peritoneal carcinomatosis: a Hoosier Oncology Group trial. Gynecol. Oncol 2009, 115, 90–96. [Google Scholar]
- Tevaarwerk, AJ; Holen, KD; Alberti, DB; Sidor, C; Arnott, J; Quon, C; Wilding, G; Liu, G. Phase I trial of 2-methoxyestradiol NanoCrystal dispersion in advanced solid malignancies. Clin. Cancer Res 2009, 15, 1460–1465. [Google Scholar]
- Rajkumar, SV; Richardson, PG; Lacy, MQ; Dispenzieri, A; Greipp, PR; Witzig, TE; Schlossman, R; Sidor, CF; Anderson, KC; Gertz, MA. Novel therapy with 2- methoxyestradiol for the treatment of relapsed and plateau phase multiple myeloma. Clin. Cancer Res 2007, 13, 6162–6167. [Google Scholar]
- Juarez, JC; Manuia, M; Burnett, ME; Betancourt, O; Boivin, B; Shaw, DE; Tonks, NK; Mazar, AP; Donate, F. Superoxide dismutase 1 (SOD1) is essential for H2O2-mediated oxidation and inactivation of phosphatases in growth factor signaling. Proc. Natl. Acad. Sci. USA 2008, 105, 7147–7152. [Google Scholar]
- Alexandre, J; Nicco, C; Chereau, C; Laurent, A; Weill, B; Goldwasser, F; Batteux, F. Improvement of the therapeutic index of anticancer drugs by the superoxide dismutase mimic mangafodipir. J. Natl. Cancer. Inst 2006, 98, 236–244. [Google Scholar]
- Maeda, H; Hori, S; Ohizumi, H; Segawa, T; Kakehi, Y; Ogawa, O; Kakizuka, A. Effective treatment of advanced solid tumors by the combination of arsenic trioxide and l-buthioninesulfoximine. Cell Death Differ 2004, 11, 737–746. [Google Scholar]
- Dragovich, T; Gordon, M; Mendelson, D; Wong, L; Modiano, M; Chow, HH; Samulitis, B; O'Day, S; Grenier, K; Hersh, E; Dorr, R. Phase I trial of imexon in patients with advanced malignancy. J. Clin. Oncol 2007, 25, 1779–1784. [Google Scholar]
- Trachootham, D; Zhou, Y; Zhang, H; Demizu, Y; Chen, Z; Pelicano, H; Chiao, PJ; Achanta, G; Arlinghaus, RB; Liu, J; Huang, P. Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell 2006, 10, 241–252. [Google Scholar]
- Xiao, D; Lew, KL; Zeng, Y; Xiao, H; Marynowski, SW; Dhir, R; Singh, SV. Phenethyl isothiocyanate-induced apoptosis in PC-3 human prostate cancer cells is mediated by reactive oxygen species-dependent disruption of the mitochondrial membrane potential. Carcinogenesis 2006, 27, 2223–2234. [Google Scholar]
- Brown, KK; Eriksson, SE; Arner, ES; Hampton, MB. Mitochondrial peroxiredoxin 3 is rapidly oxidized in cells treated with isothiocyanates. Free Radic. Biol. Med 2008, 45, 494–502. [Google Scholar]
- Huang, P; Feng, L; Oldham, EA; Keating, MJ; Plunkett, W. Superoxide dismutase as a target for the selective killing of cancer cells. Nature 2000, 407, 390–395. [Google Scholar]
- Wood, L; Leese, MR; Leblond, B; Woo, LW; Ganeshapillai, D; Purohit, A; Reed, MJ; Potter, BV; Packham, G. Inhibition of superoxide dismutase by 2-methoxyoestradiol analogues and oestrogen derivatives: structure-activity relationships. Anticancer Drug Des 2001, 16, 209–215. [Google Scholar]
- Magda, D; Miller, RA. Motexafin gadolinium: a novel redox active drug for cancer therapy. Semin. Cancer Biol 2006, 16, 466–476. [Google Scholar]
- Bey, EA; Bentle, MS; Reinicke, KE; Dong, Y; Yang, CR; Girard, L; Minna, JD; Bornmann, WG; Gao, J; Boothman, DA. An NQO1- and PARP-1-mediated cell death pathway induced in non-small-cell lung cancer cells by beta-lapachone. Proc. Natl. Acad. Sci. USA 2007, 104, 11832–11837. [Google Scholar]
- Tuma, RS. Reactive oxygen species may have antitumor activity in metastatic melanoma. J. Natl. Cancer Inst 2008, 100, 11–12. [Google Scholar]
- Kirshner, JR; He, S; Balasubramanyam, V; Kepros, J; Yang, CY; Zhang, M; Du, Z; Barsoum, J; Bertin, J. Elesclomol induces cancer cell apoptosis through oxidative stress. Mol. Cancer Ther 2008, 7, 2319–2327. [Google Scholar]
- Belzacq, AS; El Hamel, C; Vieira, HL; Cohen, I; Haouzi, D; Metivier, D; Marchetti, P; Brenner, C; Kroemer, G. Adenine nucleotide translocator mediates the mitochondrial membrane permeabilization induced by lonidamine, arsenite and CD437. Oncogene 2001, 20, 7579–7587. [Google Scholar]
- Guzman, ML; Rossi, RM; Neelakantan, S; Li, X; Corbett, CA; Hassane, DC; Becker, MW; Bennett, JM; Sullivan, E; Lachowicz, JL; et al. An orally bioavailable parthenolide analog selectively eradicates acute myelogenous leukemia stem and progenitor cells. Blood 2007, 110, 4427–4435. [Google Scholar]
- Guzman, ML; Rossi, RM; Karnischky, L; Li, X; Peterson, DR; Howard, DS; Jordan, CT. The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood 2005, 105, 4163–4169. [Google Scholar]
- Chahboune, N; Barrachina, I; Royo, I; Romero, V; Saez, J; Tormo, JR; De Pedro, N; Estornell, E; Zafra-Polo, MC; Pelaez, F; Cortes, D. Guanaconetins, new antitumoral acetogenins, mitochondrial complex I and tumor cell growth inhibitors. Bioorg. Med. Chem 2006, 14, 1089–1094. [Google Scholar]
- Palmeira, CM; Wallace, KB. Benzoquinone inhibits the voltage-dependent induction of the mitochondrial permeability transition caused by redox-cycling naphthoquinones. Toxicol. Appl. Pharmacol 1997, 143, 338–347. [Google Scholar]
- Petronilli, V; Costantini, P; Scorrano, L; Colonna, R; Passamonti, S; Bernardi, P. The voltage sensor of the mitochondrial permeability transition pore is tuned by the oxidation-reduction state of vicinal thiols. Increase of the gating potential by oxidants and its reversal by reducing agents. J. Biol. Chem 1994, 269, 16638–16642. [Google Scholar]
- Wang, W; Adachi, M; Kawamura, R; Sakamoto, H; Hayashi, T; Ishida, T; Imai, K; Shinomura, Y. Parthenolide-induced apoptosis in multiple myeloma cells involves reactive oxygen species generation and cell sensitivity depends on catalase activity. Apoptosis 2006, 11, 2225–2235. [Google Scholar]
- Chae, HZ; Robison, K; Poole, LB; Church, G; Storz, G; Rhee, SG. Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc. Natl. Acad. Sci. USA 1994, 91, 7017–7021. [Google Scholar]
- Rhee, SG; Chae, HZ; Kim, K. Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic. Biol. Med 2005, 38, 1543–1552. [Google Scholar]
- Choi, HJ; Kang, SW; Yang, CH; Rhee, SG; Ryu, SE. Crystal structure of a novel human peroxidase enzyme at 2.0 A resolution. Nat. Struct. Biol 1998, 5, 400–406. [Google Scholar]
- Kang, SW; Baines, IC; Rhee, SG. Characterization of a mammalian peroxiredoxin that contains one conserved cysteine. J. Biol. Chem 1998, 273, 6303–6311. [Google Scholar]
- Cerutti, PA. Oxy-radicals and cancer. Lancet 1994, 344, 862–863. [Google Scholar]
- Wood, ZA; Schroder, E; Robin Harris, J; Poole, LB. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci 2003, 28, 32–40. [Google Scholar]
- Fujii, J; Ikeda, Y. Advances in our understanding of peroxiredoxin, a multifunctional, mammalian redox protein. Redox Rep 2002, 7, 123–130. [Google Scholar]
- Kim, JH; Bogner, PN; Baek, SH; Ramnath, N; Liang, P; Kim, HR; Andrews, C; Park, YM. Up-regulation of peroxiredoxin 1 in lung cancer and its implication as a prognostic and therapeutic target. Clin. Cancer Res 2008, 14, 2326–2333. [Google Scholar]
- Chang, JW; Lee, SH; Jeong, JY; Chae, HZ; Kim, YC; Park, ZY; Yoo, YJ. Peroxiredoxin-I is an autoimmunogenic tumor antigen in non-small cell lung cancer. FEBS Lett 2005, 579, 2873–2877. [Google Scholar]
- Yanagawa, T; Iwasa, S; Ishii, T; Tabuchi, K; Yusa, H; Onizawa, K; Omura, K; Harada, H; Suzuki, H; Yoshida, H. Peroxiredoxin I expression in oral cancer: a potential new tumor marker. Cancer Lett 2000, 156, 27–35. [Google Scholar]
- Song, IS; Kim, SU; Oh, NS; Kim, J; Yu, DY; Huang, SM; Kim, JM; Lee, DS; Kim, NS. Peroxiredoxin I contributes to TRAIL resistance through suppression of redox-sensitive caspase activation in human hepatoma cells. Carcinogenesis 2009, 30, 1106–1114. [Google Scholar]
- Karihtala, P; Mantyniemi, A; Kang, SW; Kinnula, VL; Soini, Y. Peroxiredoxins in breast carcinoma. Clin. Cancer Res 2003, 9, 3418–3424. [Google Scholar]
- Chung, YM; Yoo, YD; Park, JK; Kim, YT; Kim, HJ. Increased expression of peroxiredoxin II confers resistance to cisplatin. Anticancer Res 2001, 21, 1129–1133. [Google Scholar]
- Zhang, P; Liu, B; Kang, SW; Seo, MS; Rhee, SG; Obeid, LM. Thioredoxin peroxidase is a novel inhibitor of apoptosis with a mechanism distinct from that of Bcl-2. J. Biol. Chem 1997, 272, 30615–30618. [Google Scholar]
- Park, SH; Chung, YM; Lee, YS; Kim, HJ; Kim, JS; Chae, HZ; Yoo, YD. Antisense of human peroxiredoxin II enhances radiation-induced cell death. Clin. Cancer Res 2000, 6, 4915–4920. [Google Scholar]
- Yo, YD; Chung, YM; Park, JK; Ahn, CM; Kim, SK; Kim, HJ. Synergistic effect of peroxiredoxin II antisense on cisplatin-induced cell death. Exp. Mol. Med 2002, 34, 273–277. [Google Scholar]
- Lee, JY; Jung, HJ; Song, IS; Williams, MS; Choi, C; Rhee, SG; Kim, J; Kang, SW. Protective role of cytosolic 2-cys peroxiredoxin in the TNF-alpha-induced apoptotic death of human cancer cells. Free Radic. Biol. Med 2009, 47, 1162–1171. [Google Scholar]
- Chen, MF; Chen, WC; Wu, CT; Lin, PY; Shau, H; Liao, SK; Yang, CT; Lee, KD. p53 status is a major determinant of effects of decreasing peroxiredoxin I expression on tumor growth and response of lung cancer cells to treatment. Int. J. Radiat. Oncol. Biol. Phys 2006, 66, 1461–1472. [Google Scholar]
- Chen, MF; Keng, PC; Shau, H; Wu, CT; Hu, YC; Liao, SK; Chen, WC. Inhibition of lung tumor growth and augmentation of radiosensitivity by decreasing peroxiredoxin I expression. Int. J. Radiat. Oncol. Biol. Phys 2006, 64, 581–591. [Google Scholar]
- Park, SY; Yu, X; Ip, C; Mohler, JL; Bogner, PN; Park, YM. Peroxiredoxin 1 interacts with androgen receptor and enhances its transactivation. Cancer Res 2007, 67, 9294–9303. [Google Scholar]
- Jang, JS; Cho, HY; Lee, YJ; Ha, WS; Kim, HW. The differential proteome profile of stomach cancer: identification of the biomarker candidates. Oncol. Res 2004, 14, 491–499. [Google Scholar]
- Park, JJ; Chang, HW; Jeong, EJ; Roh, JL; Choi, SH; Jeon, SY; Ko, GH; Kim, SY. Peroxiredoxin IV protects cells from radiation-induced apoptosis in head-and-neck squamous cell carcinoma. Int. J. Radiat. Oncol. Biol. Phys 2009, 73, 1196–1202. [Google Scholar]
- Wei, Q; Jiang, H; Xiao, Z; Baker, A; Young, MR; Veenstra, TD; Colburn, NH. Sulfiredoxin-Peroxiredoxin IV axis promotes human lung cancer progression through modulation of specific phosphokinase signaling. Proc. Natl. Acad. Sci. USA 2011, 108, 7004–7009. [Google Scholar]
- Kinnula, VL; Lehtonen, S; Kaarteenaho-Wiik, R; Lakari, E; Paakko, P; Kang, SW; Rhee, SG; Soini, Y. Cell specific expression of peroxiredoxins in human lung and pulmonary sarcoidosis. Thorax 2002, 57, 157–164. [Google Scholar]
- Wang, MX; Wei, A; Yuan, J; Trickett, A; Knoops, B; Murrell, GA. Expression and regulation of peroxiredoxin 5 in human osteoarthritis. FEBS Lett 2002, 531, 359–362. [Google Scholar]
- Plaisant, F; Clippe, A; Vander Stricht, D; Knoops, B; Gressens, P. Recombinant peroxiredoxin 5 protects against excitotoxic brain lesions in newborn mice. Free Radic. Biol. Med 2003, 34, 862–872. [Google Scholar]
- Zhou, Y; Kok, KH; Chun, AC; Wong, CM; Wu, HW; Lin, MC; Fung, PC; Kung, H; Jin, DY. Mouse peroxiredoxin V is a thioredoxin peroxidase that inhibits p53-induced apoptosis. Biochem. Biophys. Res. Commun 2000, 268, 921–927. [Google Scholar]
- Mikhailov, VM; Kropotov, AV; Zelenin, AV; Krutilina, RI; Kolesnikov, VA; Zelenina, IA; Baranov, AN; Shtein, GI; Ostapenko, OV; Tomilin, NV; Baranov, VS. The BCL-xL and ACR-1 genes promote differentiation and reduce apoptosis in muscle fibers of mdx mice. Genetika 2002, 38, 1445–1450. [Google Scholar]
- Yuan, J; Murrell, GA; Trickett, A; Landtmeters, M; Knoops, B; Wang, MX. Overexpression of antioxidant enzyme peroxiredoxin 5 protects human tendon cells against apoptosis and loss of cellular function during oxidative stress. Biochim. Biophys. Acta 2004, 1693, 37–45. [Google Scholar]
- Wang, X; Phelan, SA; Petros, C; Taylor, EF; Ledinski, G; Jurgens, G; Forsman-Semb, K; Paigen, B. Peroxiredoxin 6 deficiency and atherosclerosis susceptibility in mice: significance of genetic background for assessing atherosclerosis. Atherosclerosis 2004, 177, 61–70. [Google Scholar]
- Strey, CW; Spellman, D; Stieber, A; Gonatas, JO; Wang, X; Lambris, JD; Gonatas, NK. Dysregulation of stathmin, a microtubule-destabilizing protein, and up-regulation of Hsp25, Hsp27, and the antioxidant peroxiredoxin 6 in a mouse model of familial amyotrophic lateral sclerosis. Am. J. Pathol 2004, 165, 1701–1718. [Google Scholar]
- Power, JH; Shannon, JM; Blumbergs, PC; Gai, WP. Nonselenium glutathione peroxidase in human brain: elevated levels in Parkinson's disease and dementia with lewy bodies. Am. J. Pathol 2002, 161, 885–894. [Google Scholar]
- Krapfenbauer, K; Yoo, BC; Fountoulakis, M; Mitrova, E; Lubec, G. Expression patterns of antioxidant proteins in brains of patients with sporadic Creutzfeldt-Jacob disease. Electrophoresis 2002, 23, 2541–2547. [Google Scholar]
- Krapfenbauer, K; Engidawork, E; Cairns, N; Fountoulakis, M; Lubec, G. Aberrant expression of peroxiredoxin subtypes in neurodegenerative disorders. Brain Res 2003, 967, 152–160. [Google Scholar]
- Munz, B; Frank, S; Hubner, G; Olsen, E; Werner, S. A novel type of glutathione peroxidase: expression and regulation during wound repair. Biochem. J 1997, 326, 579–585. [Google Scholar]
- Dierick, JF; Kalume, DE; Wenders, F; Salmon, M; Dieu, M; Raes, M; Roepstorff, P; Toussaint, O. Identification of 30 protein species involved in replicative senescence and stress-induced premature senescence. FEBS Lett 2002, 531, 499–504. [Google Scholar]
- Lehtonen, ST; Svensk, AM; Soini, Y; Paakko, P; Hirvikoski, P; Kang, SW; Saily, M; Kinnula, VL. Peroxiredoxins, a novel protein family in lung cancer. Int. J. Cancer 2004, 111, 514–521. [Google Scholar]
- Hattori, F; Murayama, N; Noshita, T; Oikawa, S. Mitochondrial peroxiredoxin-3 protects hippocampal neurons from excitotoxic injury in vivo. J. Neurochem 2003, 86, 860–868. [Google Scholar]
- Chang, TS; Cho, CS; Park, S; Yu, S; Kang, SW; Rhee, SG. Peroxiredoxin III, a mitochondrion-specific peroxidase, regulates apoptotic signaling by mitochondria. J. Biol. Chem 2004, 279, 41975–41984. [Google Scholar]
- Kim, SH; Fountoulakis, M; Cairns, N; Lubec, G. Protein levels of human peroxiredoxin subtypes in brains of patients with Alzheimer's disease and Down syndrome. J Neural Transm Suppl 2001, 223–235. [Google Scholar]
- Wonsey, DR; Zeller, KI; Dang, CV. The c-Myc target gene PRDX3 is required for mitochondrial homeostasis and neoplastic transformation. Proc. Natl. Acad. Sci. USA 2002, 99, 6649–6654. [Google Scholar]
- Chae, HZ; Kim, HJ; Kang, SW; Rhee, SG. Characterization of three isoforms of mammalian peroxiredoxin that reduce peroxides in the presence of thioredoxin. Diabetes Res. Clin. Pract 1999, 45, 101–112. [Google Scholar]
- Araki, M; Nanri, H; Ejima, K; Murasato, Y; Fujiwara, T; Nakashima, Y; Ikeda, M. Antioxidant function of the mitochondrial protein SP-22 in the cardiovascular system. J. Biol. Chem 1999, 274, 2271–2278. [Google Scholar]
- Spyrou, G; Enmark, E; Miranda-Vizuete, A; Gustafsson, J. Cloning and expression of a novel mammalian thioredoxin. J. Biol. Chem 1997, 272, 2936–2941. [Google Scholar]
- Lee, SR; Kim, JR; Kwon, KS; Yoon, HW; Levine, RL; Ginsburg, A; Rhee, SG. Molecular cloning and characterization of a mitochondrial selenocysteine-containing thioredoxin reductase from rat liver. J. Biol. Chem 1999, 274, 4722–4734. [Google Scholar]
- Miranda-Vizuete, A; Damdimopoulos, AE; Spyrou, G. The mitochondrial thioredoxin system. Antioxid. Redox Signal 2000, 2, 801–810. [Google Scholar]
- Pedrajas, JR; Miranda-Vizuete, A; Javanmardy, N; Gustafsson, JA; Spyrou, G. Mitochondria of Saccharomyces cerevisiae contain one-conserved cysteine type peroxiredoxin with thioredoxin peroxidase activity. J. Biol. Chem 2000, 275, 16296–16301. [Google Scholar]
- Rabilloud, T; Heller, M; Gasnier, F; Luche, S; Rey, C; Aebersold, R; Benahmed, M; Louisot, P; Lunardi, J. Proteomics analysis of cellular response to oxidative stress. Evidence for in vivo overoxidation of peroxiredoxins at their active site. J. Biol. Chem 2002, 277, 19396–19401. [Google Scholar]
- Woo, HA; Kang, SW; Kim, HK; Yang, KS; Chae, HZ; Rhee, SG. Reversible oxidation of the active site cysteine of peroxiredoxins to cysteine sulfinic acid. Immunoblot detection with antibodies specific for the hyperoxidized cysteine-containing sequence. J. Biol. Chem 2003, 278, 47361–47364. [Google Scholar]
- Saito, Y; Nishio, K; Ogawa, Y; Kinumi, T; Yoshida, Y; Masuo, Y; Niki, E. Molecular mechanisms of 6-hydroxydopamine-induced cytotoxicity in PC12 cells: involvement of hydrogen peroxide-dependent and -independent action. Free Radic. Biol. Med 2007, 42, 675–685. [Google Scholar]
- Noh, YH; Baek, JY; Jeong, W; Rhee, SG; Chang, TS. Sulfiredoxin Translocation into Mitochondria Plays a Crucial Role in Reducing Hyperoxidized Peroxiredoxin III. J. Biol. Chem 2009, 284, 8470–8477. [Google Scholar]
- Tanaka, T; Hosoi, F; Yamaguchi-Iwai, Y; Nakamura, H; Masutani, H; Ueda, S; Nishiyama, A; Takeda, S; Wada, H; Spyrou, G; Yodoi, J. Thioredoxin-2 (TRX-2) is an essential gene regulating mitochondria-dependent apoptosis. EMBO J 2002, 21, 1695–1703. [Google Scholar]
- Nathanson, L; Hall, TC; Schilling, A; Miller, S. Concurrent combination chemotherapy of human solid tumors: experience with a three-drug regimen and review of the literature. Cancer Res 1969, 29, 419–425. [Google Scholar]
- DeVita, VT; Schein, PS. The use of drugs in combination for the treatment of cancer: rationale and results. N. Engl. J. Med 1973, 288, 998–1006. [Google Scholar]
Class | Compound | Action(s)/targets |
---|---|---|
Modulators of the BCL-2 protein family | A-385358 | BCL-XL |
ABT-263, ABT-737 | BCL-2, BCL-XL, BCL-W | |
AT-101 | BCL-2, BCL-XL, BCL-W, MCL1 | |
GX15-070 (Obatoclax) | BCL-2, BCL-XL, BCL-W, MCL1 | |
HA14-1 | BCL-2 | |
Metabolic inhibitors | 3-bromopyruvate | HK2–VDAC interaction |
Dichloroacetate | PDK inhibition | |
HK2 peptide | HK2–VDAC interaction | |
LDH-A shRNA | LDH-A | |
Methyl jasmonate | HK2–VDAC interaction | |
SB-204990 | ATP citrate lyase | |
Orlistat | Fatty acid synthase | |
Soraphen A | Acetyl-CoA carboxylase inhibition | |
2-deoxy-D-glucose | HK2 | |
VDAC- and/or ANT-targeting agents | Clodronate | ANT inhibition |
GSAO | ANT cross linker | |
Lonidamine | ANT ligand | |
PK11195 | PBR ligand | |
Arsenic trioxide | ANT ligand, ROS production | |
Retinoids | All-trans-retinoic acid | ANT ligand |
CD437 | Permeability transition pore complex | |
ST1926 | Perturbation of Ca2+ homeostasis | |
HSP90 inhibitors | Gamitrinibs | Mitochondrial HSP90 ATPase inhibition |
PU24FCI, PU-H58, PU-H71 | HSP90 inhibition | |
Shepherdin | Inhibition of the HSP90–survivin interaction | |
Natural compounds and derivatives | α-tocopheryl succinate | Ubiquinone-binding sites in respiratory complex II |
Betulinic acid | Permeability transition pore complex | |
Resveratrol | F1-ATPase |
Target | Compound | Action(s)/target(s) | Development status ( ClinicalTrials.gov) | Ref. |
---|---|---|---|---|
SOD | 2-methoxyestradiol | SOD inhibition | Completed: Phase I in solid tumors | [68,69] |
ATN-224 | SOD inhibition | Closed: Phase II in combination with temozolomide in advanced melanoma Closed: Phase II in prostate cancer | [61] | |
Mangafodipir | SOD mimic | Active: Phase II in patients who have moderate oxaliplatin neuropathy Completed: Phase II in colon cancer | [62] | |
GPx | Buthionine sulfoximine (BSO) | GSH synthesis inhibition | Active: Phase I in resistant or recurrent neuroblastoma Completed: Phase II in combination with melphalan in metastatic melanoma and relapsed or refractory ovarian cancer | [63] |
Imexon (Amplimexon) | GSH depletion | Active: Phase II in follicular and aggressive lymphomas Completed: Phase II in multiple myeloma and in combination with gemcitabine in pancreatic cancer Closed : Phase I/II in combination with dacarbazine in stage III and stage IV metastatic melanoma | [64] | |
PEITC | GSH depletion, GPx inhibition | Active: Phase II in preventing lung cancer in smokers Phase I in lymphoproliferative disorders Completed: Phase I in preventing lung cancer in smokers | [65] | |
ROS over-production | Menadione | ROS production | Closed: Phase I in patients treated with EGFR inhibitors | [34] |
Motexafin gadolinium | ROS production | Not yet open (active): Phase IV to determine the efficacy of biennial screening with MRI in breast cancer Active: Phase II in diffuse pontine gliomas, malignant brain tumors, and stage IV renal cell carcinoma etc. Closed or completed: 35 clinical trials | [70] | |
β-lapachone (ARQ 501) | ROS production | Completed: Phase II in pancreatic cancer (in combination with gemcitabine), metastatic leiomyosarcoma and metastatic squamous cell cancer of the head and neck; Phase I in combination with docetaxel in carcinoma | [71] | |
STA-4783 (Elesclomol sodium) | ROS production | Active: Phase I in relapsed or refractory acute myeloid leukemia; Phase II in ovarian epithelial, fallopian tube, and primary peritoneal cancers Closed (temporarily): Phase I/II in metastatic prostate cancer (solid tumors) | [72,73] | |
Arsenic trioxide (Trisenox) | ROS production, ANT ligand | Active: Phase IV in relapsed promyelocytic leukemia etc. (13 ongoing clinical trials) Closed or completed: 60 clinical trials | [74] | |
DMAPT | ROS production | Discovery | [75] | |
Parthenolide | ROS production | Discovery | [76] | |
Bistetrahydrofuranic acetogenins | ROS production | Discovery | [77] |
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Song, I.-S.; Kim, H.-K.; Jeong, S.-H.; Lee, S.-R.; Kim, N.; Rhee, B.D.; Ko, K.S.; Han, J. Mitochondrial Peroxiredoxin III is a Potential Target for Cancer Therapy. Int. J. Mol. Sci. 2011, 12, 7163-7185. https://doi.org/10.3390/ijms12107163
Song I-S, Kim H-K, Jeong S-H, Lee S-R, Kim N, Rhee BD, Ko KS, Han J. Mitochondrial Peroxiredoxin III is a Potential Target for Cancer Therapy. International Journal of Molecular Sciences. 2011; 12(10):7163-7185. https://doi.org/10.3390/ijms12107163
Chicago/Turabian StyleSong, In-Sung, Hyoung-Kyu Kim, Seung-Hun Jeong, Sung-Ryul Lee, Nari Kim, Byoung Doo Rhee, Kyung Soo Ko, and Jin Han. 2011. "Mitochondrial Peroxiredoxin III is a Potential Target for Cancer Therapy" International Journal of Molecular Sciences 12, no. 10: 7163-7185. https://doi.org/10.3390/ijms12107163
APA StyleSong, I.-S., Kim, H.-K., Jeong, S.-H., Lee, S.-R., Kim, N., Rhee, B. D., Ko, K. S., & Han, J. (2011). Mitochondrial Peroxiredoxin III is a Potential Target for Cancer Therapy. International Journal of Molecular Sciences, 12(10), 7163-7185. https://doi.org/10.3390/ijms12107163