Synthesis, Characterization, Molecular Docking, and Preliminary Biological Evaluation of 2-((4-Morpholino-1,2,5-thiadiazol-3-yl)oxy)benzaldehyde
Abstract
1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Nuclear Magnetic Resonance Spectroscopy
2.3. Single Crystal XRD (SC-XRD) Analysis
2.4. Biological Study
2.5. Molecular Docking Studies
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Instrumentation
3.3. AI-Enabled Molecular Generation
3.4. Synthesis of 2-((4-Morpholino-1,2,5-thiadiazol-3-yl)oxy)benzaldehyde
3.5. Single Crystal X-Ray Diffraction Analysis
3.6. Biological Study
3.6.1. Cell Culture
3.6.2. Cell Viability Assay
3.6.3. Statistical Analysis
3.7. Molecular Docking Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dias, D.A.; Urban, S.; Roessner, U. A historical overview of natural products in drug discovery. Metabolites 2012, 2, 303–336. [Google Scholar] [CrossRef] [PubMed]
- Strmel, L.A.; Hainsworth, D.; Gillespie, M.; Kappers, S.; Dworkin, M. Leveraging Delaware’s Public Health Resources to Mitigate Spread of Communicable Diseases in Congregate Settings. Dela. J. Public Health 2023, 30, 52–53. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Coley, C.W. The Synthesizability of Molecules Proposed by Generative Models. J. Chem. Inf. Model. 2020, 60, 5714–5723. [Google Scholar] [CrossRef] [PubMed]
- Ertl, P.; Schuffenhauer, A. Estimation of Synthetic Accessibility Score of Drug-Like Molecules Based on Molecular Complexity and Fragment Contributions. J. Cheminform. 2009, 1, 8. [Google Scholar] [CrossRef]
- Anand, U.; Dey, A.; Chandel, A.K.S.; Sanyal, R.; Mishra, A.; Pandey, D.K.; De Falco, V.; Upadhyay, A.; Kandimalla, R.; Chaudhary, A.; et al. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 2022, 10, 1367–1401. [Google Scholar] [CrossRef]
- Aggarwal, S. Targeted cancer therapies. Nat. Rev. 2010, 9, 427–428. [Google Scholar] [CrossRef]
- Hanif, M.; Shoaib, K.; Saleem, S.; Hasan, R.; Zaib, S.; Iqbal, J. Synthesis, urease inhibition, antioxidant, antibacterial, and molecular docking studies of 1,3,4-oxadiazole derivatives. ISRN Pharmacol. 2012, 2012, 928901. [Google Scholar] [CrossRef]
- Wang, X.L.; Wan, K.; Zhou, C.H. Synthesis of novel sulfanilamide-derived 1,2,3-triazoles and their evaluation for antibacterial and antifungal activities. Eur. J. Med. Chem. 2010, 45, 4631–4639. [Google Scholar] [CrossRef]
- Martel, A. Preludin (phenmetrazine) in the treatment of obesity. Can. Med. Assoc. J. 1957, 15, 117–120. [Google Scholar]
- Kourounakis, A.P.; Xanthopoulos, D.; Tzara, A. Morpholine as a privileged structure: A review on the medicinal chemistry and pharmacological activity of morpholine-containing bioactive molecules. Med. Res. Rev. 2020, 40, 709–752. [Google Scholar] [CrossRef]
- Swathi, G. UGC-SERO—Sponsored National Conference on “Biodiversity, Environment Hazards—Therapeutic Approaches and Drug Design”; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Mohr, S.J.; Chirigos, M.A.; Fuhrman, F.S.; Pryor, J.W. Pyran copolymer as an effective adjuvant to chemotherapy against a murine leukemia and solid tumor. Cancer Res. 1975, 35, 3750–3754. [Google Scholar] [PubMed]
- Shosha, M.I.; El-Ablack, F.Z.; Saad, E.A. New thiazole derivative as a potential anticancer and topoisomerase II inhibitor. Sci. Rep. 2025, 15, 710. [Google Scholar] [CrossRef] [PubMed]
- Yıldırım, A.; Özbilgin, A.; Yereli, K. Evaluation of the Ex Vivo Cultivation Potential of Trypanosoma cruzi, Leishmania tropica, and Toxoplasma gondii Parasites in J774, Vero, and HeLa Cell Lines. Mikrobiyol. Bul. 2023, 57, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Yıldırım, A.; Özbilgin, A.; Yereli, K. Antiprotozoal activity of auranofin on Trypanosoma cruzi, Leishmania tropica and Toxoplasma gondii in vitro and ex vivo study. Trans. R. Soc. Trop. Med. Hyg. 2023, 3, 733–740. [Google Scholar] [CrossRef]
- Chmovzh, T.N.; Kudryashev, T.A.; Alekhina, D.A.; Rakitin, O.A. Palladium-Catalyzed Direct (Het)arylation Reactions of Benzo [1,2-d:4,5-d′]bis([1,2,3]thiadiazole) and 4,8-Dibromobenzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole). Molecules 2023, 28, 3977. [Google Scholar] [CrossRef]
- Broumidis, E.; Thomson, G.C.; Gallagher, B.; Sotorríos, L.; McKendrick, K.G.; Macgregor, S.A.; Paterson, M.J.; Lovett, J.E.; Lloyd, G.O.; Rosair, G.M.; et al. The Photochemical Mediated Ring Contraction of 4H-1,2,6- Thiadiazines To Afford 1,2,5Thiadiazol-3(2H)-one 1-Oxides. Org. Lett. 2023, 25, 6907–6912. [Google Scholar] [CrossRef]
- Sharma, P.C.; Bansal, K.K.; Sharma, A.; Sharma, D.; Deep, A. Thiazole-containing compounds as therapeutic targets for cancer therapy. Eur. J. Med. Chem. 2020, 188, 112016. [Google Scholar] [CrossRef]
- El-Subbagh, H.I.; Al-Obaid, A.M. 2,4-Disubstituted thiazoles II. A novel class of antitumor agents, synthesis and biological evaluation. Eur. J. Med. Chem. 1996, 31, 1017–1021. [Google Scholar] [CrossRef]
- Derabli, C.; Rahim, N.; Djaba, R.; Aouidi, S.; Bensouici, C.; Hesse, S.; Boulebd, H. Rapid access to novel 2-alkylthiopyrimidine derivatives and attempt of their Tacrine analogs synthesis. Synth. Commun. 2019, 49, 395–403. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, W.; Yu, Q.; Huang, F.P.; Bian, H.D.; Liang, H. Ni(II) Complexes with Schiff Base Ligands: Preparation, Characterization, DNA/Protein Interaction and Cytotoxicity Studies. Molecules 2017, 22, 1772. [Google Scholar] [CrossRef]
- Nikolova-Mladenova, B.; Halachev, N.; Iankova, R.; Momekov, G.; Ivanov, D. Synthesis, characterization and cytotoxic activity of new salicylaldehyde benzoylhydrazone derivatives as potential anti-proliferative agents. Arzneimittelforschung 2011, 61, 714–718. [Google Scholar] [CrossRef]
- Nikolova-Mladenova, B.; Momekov, G.; Ivanov, D.; Bakalova, A. Salicylaldehyde Benzoylhydrazones with Anticancer Activity and Selectivity: Design, Synthesis, and In Vitro Evaluation. J. Appl. Biomed. 2017, 15, 233–240. [Google Scholar] [CrossRef]
- Motente, M.A.; Chude-Okonkwo, U.A.K.; Zinyemba, O.; Kama, D.V. Crystal structure of 2-((4-morpholino-1,2,5-thiadiazol-3-yl)oxy)benzaldehyde, C13H13O3N3S. Z. Kristallogr.—N. Cryst. Struct. 2025, 241, 27–28. [Google Scholar] [CrossRef]
- Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro-Wolff, A.; et al. Feasibility of a High-Flux Anticancer Drug Screen Using a Diverse Panel of Cultured Human Tumor Cell Lines. J. Natl. Cancer Inst. 1991, 83, 757–766. [Google Scholar] [CrossRef] [PubMed]
- Tzara, A.; Xanthopoulos, D.; Kourounakis, A.P. Morpholine as a Scaffold in Medicinal Chemistry: An Update on Synthetic Strategies. Chem. Med. Chem. 2020, 15, 392–403. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zou, X.; Shi, W.; Ma, C.; Chen, F.; Li, J.; Jiao, S.; Pan, G.; Lan, L.; Huang, W.; et al. A facile method for vancomycin C-terminus functionalization and derivatization through hydrazide. Bioorg. Med. Chem. Lett. 2021, 41, 128027. [Google Scholar] [CrossRef]
- Varna, D.; Geromichalou, E.; Hatzidimitriou, A.G.; Papi, R.; Psomas, G.; Dalezis, P.; Aslanidis, P.; Choli-Papadopoulou, T.; Trafalis, D.T.; Angaridis, P.A. Silver(I) Complexes Bearing Heterocyclic Thioamide Ligands with NH2 and CF3 Substituents: Effect of Ligand Group Substitution on Antibacterial and Anticancer Properties. Dalton Trans. 2022, 51, 9412–9431. [Google Scholar] [CrossRef]
- Alarcón-Espósito, J.; Mallea, M.; Rodríguez-Lavado, J. From Hybrids to New Scaffolds: The Latest Medicinal Chemistry Goals in Multi-Target Directed Ligands for Alzheimer’s Disease. Curr. Neuropharmacol. 2021, 19, 832–867. [Google Scholar] [CrossRef]
- Indelicato, S.; Bongiorno, D.; Mauro, M.; Cascioferro, S. Recent Developments of 1,3,4-Thiadiazole Compounds as Anticancer Agents. Pharmaceuticals 2025, 18, 580. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, X.; Lu, D.; Luo, H.; Zhou, Z.; Qin, X.; Wu, W.; Zhang, G. Synthesis and Bioactivities of Novel Galactoside Derivatives Containing 1,3,4-Thiadiazole Moiety. Front. Chem. 2021, 9, 645876. [Google Scholar] [CrossRef]
- Bruker. Bruker SAINT-Plus (Version 7.12) and SADABS (Version 2004/1); Bruker AXS Inc.: Madison, WI, USA, 2004. [Google Scholar]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Brandenburg, K. DIAMOND. Visual Crystal Structure Information System, Version 3.0c; Crystal Impact: Bonn, Germany, 2005.
- ATCC. Cell Lines by Tissue/Organ: American Type Culture Collection. Available online: https://www.atcc.org (accessed on 10 December 2025).
- Soule, H.D.; Vazguez, J.; Long, A.; Albert, S.; Brennan, M. A human cell line from a pleural effusion derived from a breast carcinoma. J. Natl. Cancer Inst. 1973, 51, 1409–1416. [Google Scholar] [CrossRef] [PubMed]
- Kaighn, M.E.; Narayan, K.S.; Ohnuki, Y.; Lechner, J.F.; Jones, L.W. Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Investig. Urol. 1979, 17, 16–23. [Google Scholar]
- Jacobs, J.P.; Jones, C.M.; Baille, J.P. Characteristics of a Human Diploid Cell Designated MRC-5. Nature 1970, 227, 168–170. [Google Scholar] [CrossRef]
- Freshney, R.I. Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications, 8th ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2021. [Google Scholar]
- Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival. J. Immunol. Method 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Motulsky, H.J.; Christopoulos, A. Fitting Models to Biological Data Using Linear and Nonlinear Regression: A Practical Guide to Curve Fitting; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- GraphPad Software. GraphPad Prism Version 8.0 for Windows, Version 8.0; GraphPad Software: San Diego, CA, USA, 2018. Available online: https://www.graphpad.com (accessed on 18 October 2025).
- Schrödinger LLC. Schrödinger Suite Release 2025-3, Schrödinger LLC: New York, NY, USA, 2025.
- Burley, S.K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chen, L.; Crichlow, G.V.; Christie, C.H.; Dalenberg, K.; Di Costanzo, L.; Duarte, J.M.; et al. RCSB Protein Data Bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res. 2021, 49, D437–D451. [Google Scholar] [CrossRef]
- Sastry, G.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Comput.-Aided Mol. Des. 2013, 27, 221–234. [Google Scholar] [CrossRef]
- Harder, E.; Lu, C.; Wu, C.; Ghoreishi, D.; Chen, W.; Wang, L.; Damm, W.; Ross, G.A.; Dahlgren, M.K.; Russell, E.; et al. OPLS4: Improving Force Field Accuracy on Challenging Regimes of Chemical Space. J. Chem. Theory Comput. 2021, 17, 4291–4300. [Google Scholar] [CrossRef]
- Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra Precision Glide: Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein−Ligand Complexes. J. Med. Chem. 2006, 49, 6177–6196. [Google Scholar] [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Motente, M.; Chude-Okonkwo, U.A.K. Synthesis, Characterization, Molecular Docking, and Preliminary Biological Evaluation of 2-((4-Morpholino-1,2,5-thiadiazol-3-yl)oxy)benzaldehyde. Molecules 2026, 31, 574. https://doi.org/10.3390/molecules31030574
Motente M, Chude-Okonkwo UAK. Synthesis, Characterization, Molecular Docking, and Preliminary Biological Evaluation of 2-((4-Morpholino-1,2,5-thiadiazol-3-yl)oxy)benzaldehyde. Molecules. 2026; 31(3):574. https://doi.org/10.3390/molecules31030574
Chicago/Turabian StyleMotente, Mokete, and Uche A. K. Chude-Okonkwo. 2026. "Synthesis, Characterization, Molecular Docking, and Preliminary Biological Evaluation of 2-((4-Morpholino-1,2,5-thiadiazol-3-yl)oxy)benzaldehyde" Molecules 31, no. 3: 574. https://doi.org/10.3390/molecules31030574
APA StyleMotente, M., & Chude-Okonkwo, U. A. K. (2026). Synthesis, Characterization, Molecular Docking, and Preliminary Biological Evaluation of 2-((4-Morpholino-1,2,5-thiadiazol-3-yl)oxy)benzaldehyde. Molecules, 31(3), 574. https://doi.org/10.3390/molecules31030574
