The Approximate Subcutaneous LD50 and Associated Lesions Induced by Ivalin, Extracted and Purified from Geigeria aspera Harv., in Sprague–Dawley Rats
Abstract
1. Introduction
2. Results
2.1. Clinical Signs and Mortality
2.2. Median Lethal Dose (LD50)
2.3. Macroscopic Pathology
2.4. Histopathology
2.4.1. Striated Muscle
2.4.2. Liver
2.5. Transmission Electron Microscopy (TEM)
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Animals
4.3. Ivalin Preparation and Dosing
4.4. Observations and Sampling
4.4.1. Clinical
4.4.2. Necropsy and Tissue Sampling
4.5. Data Analysis
4.5.1. Clinical Signs and Mortality
4.5.2. Median Lethal Dose (LD50) Calculations
4.5.3. Pathology, Desmin Immunohistochemistry and TEM
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| LD50 | Lethal Dose (50) or Median Lethal Dose |
| BW | Body Weight |
| OECD | Organisation for Economic Co-operation and Development |
| OECD TG | OECD Test Guideline |
| OECD UDP | OECD Up-Down-Procedure |
| PEG 400 | Polyethylene Glycol 400 |
| H&E | Haematoxylin and Eosin |
| TEM | Transmission Electron Microscopy |
| P-gp | P-glycoprotein |
References
- Grosskopf, J.F.W. Our Present Knowledge of “Vermeersiekte” (Geigeria Poisoning); Printed by the Government Printer: Pretoria, South Africa, 1964. [Google Scholar]
- Kellerman, T.S.; Coetzer, J.A.; Naudé, T.W.; Botha, C.J. Plant Poisonings and Mycotoxicoses of Livestock in Southern Africa; Oxford University Press: Cape Town, South Africa, 2005. [Google Scholar]
- Pienaar, J.G.; Kriek, N.P.J.; Naudé, T.W.; Adelaar, T.F.; Ellis, S.D. Lesions in sheep skeletal and oesophageal muscle in vermeersiekte (Geigeria ornativa O. Hoffm. poisoning). Onderstepoort J. Vet. Res. 1973, 40, 127–137. [Google Scholar]
- Van Der Lugt, J.J.; van Heerden, J. Experimental vermeersiekte (Geigeria ornativa O. Hoffm. poisoning) in sheep. II: Histological and ultrastructural lesions. J. South Afr. Vet. Assoc. 1993, 64, 82–88. [Google Scholar]
- Botha, C.J.; Mathe, Y.Z.; Ferreira, G.C.H.; Venter, E.A. Cytotoxicity of the Sesquiterpene Lactones, Ivalin and Parthenolide in Murine Muscle Cell Lines and Their Effect on Desmin, a Cytoskeletal Intermediate Filament. Toxins 2020, 12, 459. [Google Scholar] [CrossRef] [PubMed]
- Fouche, G.; Ackerman, L.G.J.; Venter, E.A.; Mathe, Y.Z.; Liles, D.C.; Botha, C.J. Sesquiterpene lactones from Geigeria aspera Harv. and their cytotoxicity. Nat. Prod. Res. 2021, 35, 2353–2359. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, E.; Towers, G.H.; Mitchell, J.C. Biological activities of sesquiterpene lactones. Phytochemistry 1976, 15, 1573–1580. [Google Scholar] [CrossRef]
- Picman, A.K. Biological activities of sesquiterpene lactones. Biochem. Syst. Ecol. 1986, 14, 255–281. [Google Scholar] [CrossRef]
- Botha, C.J.; Venter, E.A.; Ferreira, G.C.H.; Phaswane, R.M.; Clift, S.J. Geigerin-induced disorganization of desmin, an intermediate filament of the cytoskeleton, in a murine myoblast cell line (C2C12). Toxicon 2019, 167, 162–167. [Google Scholar] [CrossRef]
- Locke, S.L. The Subcutaneous LD50 of Ivalin, Extracted and Purified from Geigeria aspera, in Two Murine Models. Master’s Thesis, University of Pretoria, Pretoria, South Africa, 2025. [Google Scholar]
- Organisation for Economic Co-operation and Development (OECD). Test No. 425: Acute Oral Toxicity: Up-and-Down Procedure; OECD Publishing: Paris, France, 2022. [Google Scholar] [CrossRef]
- Kim, H.L. Toxicity of sesquiterpene lactones. Res. Commun. Chem. Pathol. Pharmacol. 1980, 28, 189–192. [Google Scholar]
- Pooja, S.; Prashanth, S.; Suchetha, K.; Vidya, V.; Krishna, B. Evaluation of acute and sub-acute toxicity of the leaf extract of Tanacetum parthenium (Asteraceae) and synthetic parthenolide. World J. Pharm. Pharm. Sci. 2016, 5, 703–713. [Google Scholar] [CrossRef]
- Yu, Z.; Chen, Z.; Li, Q.; Yang, K.; Huang, Z.; Wang, W.; Hu, H. What dominates the changeable pharmacokinetics of natural sesquiterpene lactones and diterpene lactones: A review focusing on absorption and metabolism. Drug Metab. Rev. 2021, 53, 122–140. [Google Scholar] [CrossRef]
- Freund, R.R.; Gobrecht, P.; Fischer, D.; Arndt, H.D. Advances in chemistry and bioactivity of parthenolide. Nat. Prod. Rep. 2020, 37, 541–565. [Google Scholar] [CrossRef] [PubMed]
- Paulin, D.; Li, Z. Desmin: A major intermediate filament protein essential for the structural integrity and function of muscle. Exp. Cell Res. 2004, 301, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.L.S. Cytoskeleton and Adhesion in Myogenesis. ISRN Dev. Biol. 2014, 2014, 713631. [Google Scholar] [CrossRef]
- Cohen, S.; Zhai, B.; Gygi, S.P.; Goldberg, A.L. Ubiquitylation by Trim32 causes coupled loss of desmin, Z-bands, and thin filaments in muscle atrophy. J. Cell Biol. 2012, 198, 575–589. [Google Scholar] [CrossRef]
- Aweida, D.; Rudesky, I.; Volodin, A.; Shimko, E.; Cohen, S. GSK3-beta promotes calpain-1-mediated desmin filament depolymerization and myofibril loss in atrophy. J. Cell Biol. 2018, 217, 3698–3714. [Google Scholar] [CrossRef]
- Agnetti, G.; Herrmann, H.; Cohen, S. New roles for desmin in the maintenance of muscle homeostasis. FEBS J. 2022, 289, 2755–2770. [Google Scholar] [CrossRef]
- Capetanaki, Y.; Bloch, R.J.; Kouloumenta, A.; Mavroidis, M.; Psarras, S. Muscle intermediate filaments and their links to membranes and membranous organelles. Exp. Cell Res. 2007, 313, 2063–2076. [Google Scholar] [CrossRef]
- Milner, D.J.; Mavroidis, M.; Weisleder, N.; Capetanaki, Y. Desmin cytoskeleton linked to muscle mitochondrial distribution and respiratory function. J. Cell Biol. 2000, 150, 1283–1298. [Google Scholar] [CrossRef]
- Van Aswegen, C.H.; Vermeulen, N.M.; Potgieter, D. Inhibition of oxidative phosphorylation by sesquiterpene lactones from Geigeria aspera. S. Afr. J. Sci. 1979, 75, 84–85. [Google Scholar]
- Van Aswegen, C.H.; Vermeulen, N.M.; Potgieter, D. Site of respiratory inhibition by sesquiterpene lactones from Geigeria. South Afr. J. Sci. 1982, 78, 125–127. [Google Scholar]
- Narasimham, T.R.; Kim, H.L.; Safe, S.H. Effects of sesquiterpene lactones on mitochondrial oxidative phosphorylation. Gen. Pharmacol. 1989, 20, 681–687. [Google Scholar] [CrossRef] [PubMed]
- Caspar, A.R.; Potgieter, D.J.; Vermeulen, N.M. The effect of the sesquiterpene lactones from Geigeria on glycolytic enzymes. Biochem. Pharmacol. 1986, 35, 493–497. [Google Scholar] [CrossRef] [PubMed]
- Coleman, P.C.; Potgieter, D.J.; Aswegen, C.H.; Vermeulent, N.M.J. Flavonoids of Geigeria. Phytochemistry 1984, 23, 1202–1203. [Google Scholar] [CrossRef]
- Chen, Z. Sesquiterpene Drugs as Potential Treatment for Hepatocellular Carcinoma (HCC): Preclinical Evaluation of Parthenolide Administered Via Transarterial Chemoembolization in a Rat HCC Tumour Model. Ph.D. Thesis, University of Arkansas for Medical Sciences, Little Rock, AR, USA, 2015. [Google Scholar]
- Gach, K.; Długosz, A.; Janecka, A. The role of oxidative stress in anticancer activity of sesquiterpene lactones. Naunyn Schmiedebergs Arch. Pharmacol. 2015, 388, 477–486. [Google Scholar] [CrossRef]
- Woynarowski, J.W.; Beerman, T.A.; Konopa, J. Induction of deoxyribonucleic acid damage in HeLa S3 cells by cytotoxic and antitumor sesquiterpene lactones. Biochem. Pharmacol. 1981, 30, 3005–3007. [Google Scholar] [CrossRef]
- Hall, I.H.; Lee, K.H.; Williams, W.L., Jr.; Kimura, T.; Hirayama, T. Antitumor agents XLI: Effects of eupaformosanin on nucleic acid, protein, and anaerobic and aerobic glycolytic metabolism of Ehrlich ascites cells. J. Pharm. Sci. 1980, 69, 294–297. [Google Scholar] [CrossRef]
- Kupchan, S.M. Selective alkylation: A mechanism of tumor inhibition. Intra Sci. Chem. Rep. 1974, 8, 57–66. [Google Scholar]
- Sotocinal, S.G.; Sorge, R.E.; Zaloum, A.; Tuttle, A.H.; Martin, L.J.; Wieskopf, J.S.; Mapplebeck, J.C.S.; Wei, P.; Zhan, S.; Zhang, S.; et al. The Rat Grimace Scale: A partially automated method for quantifying pain in the laboratory rat via facial expressions. Mol. Pain. 2011, 7, 1–10. [Google Scholar] [CrossRef]
- Dixon, W.J. Staircase bioassay: The up-and-down method. Neurosci. Biobehav. Rev. 1991, 15, 47–50. [Google Scholar] [CrossRef]
- Environmental Protection Agency (EPA). Acute Oral Toxicity Up-And-Down-Procedure [Online]. Available online: https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/acute-oral-toxicity-and-down-procedure (accessed on 3 November 2023).




| Rat | Group | Weight at Dosing (g) | Dose of Ivalin (mg/kg BW) | Outcome | Time to Mortality (h) |
|---|---|---|---|---|---|
| 1 | Exposed | 235 | 123 | Died | 96 |
| 2 | Exposed | 229 | 164 | Died | <24 |
| 3 | Exposed | 213 | 123 | Survived | - |
| 4 | Exposed | 225 | 164 | Survived | - |
| 6 | Exposed | 239 | 219 | Died | <24 |
| 11 | Control | 210 | * | Survived | - |
| 12 | Control | 231 | * | Survived | - |
| 13 | Control | 234 | * | Survived | - |
| 14 | Control | 225 | * | Survived | - |
| 15 | Control | 235 | * | Survived | - |
| Study Group | Rat Numbers | Treatment |
|---|---|---|
| Exposed animals | 1–10 | Ivalin in PEG 400, according to OECD TG 425 |
| Control animals | 11–15 | PEG 400 |
| Dose Step Number from Starting Dose | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| −5 | −4 | −3 | −2 | −1 | Starting dose | +1 | +2 | +3 | +4 | +5 |
| Dose in mg/kg BW | ||||||||||
| 29 | 39 | 52 | 69 | 92 | 123 | 164 | 219 | 290 | 390 | 520 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Locke, S.; Botha, C.; Clift, S.; Lensink, A. The Approximate Subcutaneous LD50 and Associated Lesions Induced by Ivalin, Extracted and Purified from Geigeria aspera Harv., in Sprague–Dawley Rats. Molecules 2026, 31, 478. https://doi.org/10.3390/molecules31030478
Locke S, Botha C, Clift S, Lensink A. The Approximate Subcutaneous LD50 and Associated Lesions Induced by Ivalin, Extracted and Purified from Geigeria aspera Harv., in Sprague–Dawley Rats. Molecules. 2026; 31(3):478. https://doi.org/10.3390/molecules31030478
Chicago/Turabian StyleLocke, Sara, Christo Botha, Sarah Clift, and Antoinette Lensink. 2026. "The Approximate Subcutaneous LD50 and Associated Lesions Induced by Ivalin, Extracted and Purified from Geigeria aspera Harv., in Sprague–Dawley Rats" Molecules 31, no. 3: 478. https://doi.org/10.3390/molecules31030478
APA StyleLocke, S., Botha, C., Clift, S., & Lensink, A. (2026). The Approximate Subcutaneous LD50 and Associated Lesions Induced by Ivalin, Extracted and Purified from Geigeria aspera Harv., in Sprague–Dawley Rats. Molecules, 31(3), 478. https://doi.org/10.3390/molecules31030478

