Preparation and Characterization of Carboxymethyl Hydroxypropyl Cellulose
Abstract
1. Introduction
2. Results and Discussion
2.1. Appearance and Morphologies of CMHPC
2.2. Structure and Properties of CMHPC
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Preparation of CMHPC
3.2.2. Treatments of RCA Using CMHPC
3.2.3. Characterization of CMHPC
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seddiqi, H.; Oliaei, E.; Honarkar, H.; Jin, J.F.; Geonzon, L.C.; Bacabac, R.G.; Klein-Nulend, J. Cellulose and its derivatives: Towards biomedical applications. Cellulose 2021, 28, 1893–1931. [Google Scholar] [CrossRef]
- Kostag, M.; Gericke, M.; Heinze, T.; El Seoud, O.A. Twenty-five years of cellulose chemistry: Innovations in the dissolution of the biopolymer and its transformation into esters and ethers. Cellulose 2019, 26, 139–184. [Google Scholar] [CrossRef]
- Feng, K.; Ma, K.; Yang, H.; Long, G.; Xie, Y.; Zeng, X.; Tang, Z.; Usman, I.U. Influence of cellulose ethers on rheological properties of cementitious materials: A review. J. Build. Eng. 2024, 95, 110347. [Google Scholar] [CrossRef]
- Kim, J.; Rackstraw, N.B.; Weinstein, T.J.; Reiner, B.; Leal, L.; Ogawa, K.; Dauenhauer, P.J.; Reineke, T.M. Cellulose Etherification with Glycidol for Aqueous Rheology Modification. ACS Appl. Polym. Mater. 2024, 6, 6714–6725. [Google Scholar] [CrossRef]
- Song, Y.; Sun, Y.; Zhang, X.; Zhou, J.; Zhang, L. Homogeneous Quaternization of Cellulose in NaOH/Urea Aqueous Solutions as Gene Carriers. Biomacromolecules 2008, 9, 2259–2264. [Google Scholar] [CrossRef]
- Qi, H.; Liebert, T.; Meister, F.; Heinze, T. Homogenous carboxymethylation of cellulose in the NaOH/urea aqueous solution. React. Funct. Polym. 2009, 69, 779–784. [Google Scholar]
- He, M.; Lin, Y.; Huang, Y.; Fang, Y.; Xiong, X. Research Progress of the Preparation of Cellulose Ethers and Their Applications: A Short Review. Molecules 2025, 30, 1610. [Google Scholar] [CrossRef]
- Keldibekova, R.; Suleimenova, S.; Nurgozhina, G.; Kopishev, E. Interpolymer Complexes Based on Cellulose Ethers: Application. Polymers 2023, 15, 3326. [Google Scholar] [CrossRef]
- Dong, Y.; Mosquera-Giraldo, L.I.; Taylor, L.S.; Edgar, K.J. Amphiphilic Cellulose Ethers Designed for Amorphous Solid Dispersion via Olefin Cross-Metathesis. Biomacromolecules 2016, 17, 454–465. [Google Scholar] [CrossRef] [PubMed]
- Hebeish, A.; Higazy, A.; El-Shafei, A.; Sharaf, S. Synthesis of carboxymethyl cellulose (CMC) and starch-based hybrids and their applications in flocculation and sizing. Carbohydr. Polym. 2010, 79, 60–69. [Google Scholar] [CrossRef]
- He, M.; Huang, Y.; Wang, J.; Chen, Z.; Xie, J.; Cui, Z.; Xu, D.; Zhang, X.; Yao, W. Advances in polysaccharide-based antibacterial materials. Int. J. Biol. Macromol. 2025, 308, 142598. [Google Scholar] [CrossRef]
- Jia, Z.; Zuo, C.; Cai, H.; Li, X.; Su, X.; Yin, J.; Zhang, W. A Salt-Resistant Sodium Carboxymethyl Cellulose Modified by the Heterogeneous Process of Oleate Amide Quaternary Ammonium Salt. Polymers 2022, 14, 5012. [Google Scholar] [CrossRef]
- Abdel-Halim, E.S.; Alanazi, H.H.; Al-Deyab, S.S. Utilization of olive tree branch cellulose in synthesis of hydroxypropyl carboxymethyl cellulose. Carbohydr. Polym. 2015, 127, 124–134. [Google Scholar] [CrossRef]
- Sun, R.; Fang, B.; Lu, Y.; Qiu, X.; Du, W.; Han, X.; Zhou, Q.; Qiu, Y. Rheological properties of hexadecyl dimethyl amine modified carboxymethyl hydroxyethyl cellulose solutions and its gelling process. J. Dispers. Sci. Technol. 2018, 39, 138–142. [Google Scholar] [CrossRef]
- O’Brien, C.T.; Virtanen, T.; Donets, S.; Jennings, J.; Guskova, O.; Morrell, A.H.; Rymaruk, M.; Ruusuvirta, L.; Salmela, J.; Setala, H.; et al. Control of the aqueous solubility of cellulose by hydroxyl group substitution and its effect on processing. Polymer 2021, 223, 123681. [Google Scholar] [CrossRef]
- Zhou, J.; Na, N.; Deng, Q.; Wu, X. Synthesis and characterization of cellulose derivatives prepared in NaOH/urea aqueous solutions. J. Polym. Sci. Part A Polym. Chem. 2004, 42, 5911–5920. [Google Scholar] [CrossRef]
- Pan, P.; Liu, Y.; Zhu, Z.; Liu, Y.; Wei, R.; Wang, Q.; Miao, Q.; Lei, Y.; Guo, C.; Zhang, H.; et al. Sustainable, super-stable thermochromic material by coupling hydroxypropyl cellulose and sodium carboxymethyl cellulose. Int. J. Biol. Macromol. 2024, 268, 131945. [Google Scholar] [CrossRef]
- Wang, S.; Cheng, X.; Ma, T.; Wang, S.; Yang, S.; Zhu, W.; Song, J.; Han, J.; Jin, Y.; Guo, J. High-substituted hydroxypropyl cellulose prepared by homogeneous method and its clouding and self-assembly behaviors. Carbohydr. Polym. 2024, 330, 121822. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Feng, C.; Deng, Z. Shear behavior of three types of recycled aggregate concrete. Constr. Build. Mater. 2019, 217, 557–572. [Google Scholar] [CrossRef]
- Shi, C.; Li, Y.; Zhang, J.; Li, W.; Chong, L.; Xie, Z. Performance enhancement of recycled concrete aggregate—A review. J. Clean. Prod. 2016, 112, 466–472. [Google Scholar] [CrossRef]
- Zhang, H.; Xiao, J.; Tang, Y.; Duan, Z.; Poon, C.s. Long-term shrinkage and mechanical properties of fully recycled aggregate concrete: Testing and modelling. Cem. Concr. Compos. 2022, 130, 104527. [Google Scholar] [CrossRef]
- Gao, C.; Luo, C.; Zhang, B.; Hu, Z.; Tang, J.; Wang, L.; Liu, J. Creep behavior evaluation of recycled aggregate concrete using machine learning technology. J. Build. Eng. 2025, 99, 111538. [Google Scholar] [CrossRef]
- Lu, B.; Shi, C.; Cao, Z.; Guo, M.; Zheng, J. Effect of carbonated coarse recycled concrete aggregate on the properties and microstructure of recycled concrete. J. Clean. Prod. 2019, 233, 421–428. [Google Scholar] [CrossRef]
- Seara-Paz, S.; González-Fonteboa, B.; Martínez-Abella, F.; Eiras-López, J. Deformation recovery of reinforced concrete beams made with recycled coarse aggregates. Eng. Struct. 2022, 251, 113482. [Google Scholar] [CrossRef]
- Etxeberria, M.; Konoiko, M.; Garcia, C.; Perez, M.Á. Water-Washed Fine and Coarse Recycled Aggregates for Real Scale Concretes Production in Barcelona. Sustainability 2022, 14, 708. [Google Scholar] [CrossRef]
- Huang, Y.; He, X.; Sun, H.; Sun, Y.; Wang, Q. Effects of coral, recycled and natural coarse aggregates on the mechanical properties of concrete. Constr. Build. Mater. 2018, 192, 330–347. [Google Scholar] [CrossRef]
- Li, T.; Xiao, J.; Sui, T.; Liang, C.; Li, L. Effect of recycled coarse aggregate to damping variation of concrete. Constr. Build. Mater. 2018, 178, 445–452. [Google Scholar] [CrossRef]
- Chinzorigt, G.; Lim, M.K.; Yu, M.; Lee, H.; Enkbold, O.; Choi, D. Strength, shrinkage and creep and durability aspects of concrete including CO2 treated recycled fine aggregate. Cem. Concr. Res. 2020, 136, 106062. [Google Scholar] [CrossRef]
- Luo, S.; Ye, S.; Xiao, J.; Zheng, J.; Zhu, Y. Carbonated recycled coarse aggregate and uniaxial compressive stress-strain relation of recycled aggregate concrete. Constr. Build. Mater. 2018, 188, 956–965. [Google Scholar] [CrossRef]
- Song, Y.; Zhou, W.; Zhang, C.; Yang, C. Frost Resistance and Microscopic Properties of Recycled Coarse Aggregate Concrete Containing Chemical Admixtures. Materials 2024, 17, 4687. [Google Scholar] [CrossRef]
- Yin, J.; Kang, A.; Kou, C. Influences of Combined Treatment by Cement Slurry and Methyl Sodium Silicate Solution on Recycled Coarse Aggregate and Recycled Aggregate Concrete. Materials 2025, 18, 3832. [Google Scholar] [CrossRef]
- Zhou, Y.; Hu, J.; Li, M.; Sui, L.; Xing, F. FRP-Confined Recycled Coarse Aggregate Concrete: Experimental Investigation and Model Comparison. Polymers 2016, 8, 375. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Huang, Y.; Cui, Z.; Yao, W.; Xu, J.; Li, Q.; Chen, L. Flexible and exceptional hemostatic chitin sponges with controllable structure and their properties. Eur. Polym. J. 2025, 241, 114405. [Google Scholar] [CrossRef]
- Chen, C.; Huang, Y.; Zhu, C.; Nie, Y.; Yang, J.; Sun, D. Synthesis and characterization of hydroxypropyl cellulose from bacterial cellulose. Chin. J. Polym. Sci. 2014, 32, 439–448. [Google Scholar] [CrossRef]
- Reis, D.T.; de Aguiar Filho, S.Q.; Grotto, C.G.L.; Bihain, M.F.R.; Pereira, D.H. Carboxymethylcellulose and cellulose xanthate matrices as potential adsorbent material for potentially toxic Cr3+, Cu2+ and Cd2+ metal ions: A theoretical study. Theor. Chem. Acc. 2020, 139, 96. [Google Scholar] [CrossRef]
- French, A.D. Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 2014, 21, 885–896. [Google Scholar] [CrossRef]
- Ferro, M.; Mannu, A.; Panzeri, W.; Theeuwen, C.H.J.; Mele, A. An Integrated Approach to Optimizing Cellulose Mercerization. Polymers 2020, 12, 1559. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Huang, Y.; Cui, Z.; Cheng, Z.; Cao, W.; Wang, G.; Yao, W.; Feng, M. Construction of Flexible Kaolin/Chitin Composite Aerogels and Their Properties. Gels 2026, 12, 76. [Google Scholar] [CrossRef]







| Solutions | NaCl | CaCl2 | ZnCl2 | MgCl2 | HCl | |
|---|---|---|---|---|---|---|
| Samples | ||||||
| CMC | + | - | - | - | - | |
| CMHPC-2 | + | + | + | + | + | |
| Samples | Reaction Time (h) | Molar Ratios of Propylene Oxide/AGU |
|---|---|---|
| CMHPC-1 | 1 | 2.23 |
| CMHPC-2 | 2 | 2.23 |
| CMHPC-3 | 3 | 2.23 |
| CMHPC-4 | 2 | 1.12 |
| CMHPC-5 | 2 | 4.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
He, M.; Lin, Y.; Huang, Y.; Ma, X.; Guo, Y.; Ke, Y.; Lai, H.; Wang, Z.; Chen, Z.; Zhang, X.; et al. Preparation and Characterization of Carboxymethyl Hydroxypropyl Cellulose. Molecules 2026, 31, 387. https://doi.org/10.3390/molecules31020387
He M, Lin Y, Huang Y, Ma X, Guo Y, Ke Y, Lai H, Wang Z, Chen Z, Zhang X, et al. Preparation and Characterization of Carboxymethyl Hydroxypropyl Cellulose. Molecules. 2026; 31(2):387. https://doi.org/10.3390/molecules31020387
Chicago/Turabian StyleHe, Meng, Yanmei Lin, Yujia Huang, Xiuxing Ma, Yuanqiang Guo, Yuliang Ke, Huazhen Lai, Zhaopeng Wang, Zhanhua Chen, Xiaofang Zhang, and et al. 2026. "Preparation and Characterization of Carboxymethyl Hydroxypropyl Cellulose" Molecules 31, no. 2: 387. https://doi.org/10.3390/molecules31020387
APA StyleHe, M., Lin, Y., Huang, Y., Ma, X., Guo, Y., Ke, Y., Lai, H., Wang, Z., Chen, Z., Zhang, X., Dai, H., Feng, M., Fang, Y., & Xiong, X. (2026). Preparation and Characterization of Carboxymethyl Hydroxypropyl Cellulose. Molecules, 31(2), 387. https://doi.org/10.3390/molecules31020387

