Cycloruthenated Imines: A Step into the Nanomolar Region
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Crystallography
2.3. UV-Vis Examination
2.4. Electrochemistry
2.5. Biological Study
3. Experimental Section
3.1. General Procedure for Compounds 2a–2o
3.2. General Procedure for Compounds 3a–3o
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oun, R.; Moussa, Y.E.; Wheate, N.J. The Side Effects of Platinum-Based Chemotherapy Drugs: A Review for Chemists. Dalt. Trans. 2018, 47, 6645–6653. [Google Scholar] [CrossRef] [PubMed]
- Barabas, K.; Milner, R.; Lurie, D.; Adin, C. Cisplatin: A Review of Toxicities and Therapeutic Applications. Vet. Comp. Oncol. 2008, 6, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Deo, K.; Pages, B.; Ang, D.; Gordon, C.; Aldrich-Wright, J. Transition Metal Intercalators as Anticancer Agents—Recent Advances. Int. J. Mol. Sci. 2016, 17, 1818. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, S.; Nath, P.; Das, A.; Datta, A.; Baildya, N.; Duttaroy, A.K.; Pathak, S. A Review on Metal Complexes and Its Anti-Cancer Activities: Recent Updates from in Vivo Studies. Biomed. Pharmacother. 2024, 171, 116211. [Google Scholar] [CrossRef]
- Alessio, E.; Messori, L. NAMI-A and KP1019/1339, Two Iconic Ruthenium Anticancer Drug Candidates Face-to-Face: A Case Story in Medicinal Inorganic Chemistry. Molecules 2019, 24, 1995. [Google Scholar] [CrossRef]
- Weiss, A.; Berndsen, R.H.; Dubois, M.; Müller, C.; Schibli, R.; Griffioen, A.W.; Dyson, P.J.; Nowak-Sliwinska, P. In Vivo Anti-Tumor Activity of the Organometallic Ruthenium(Ii)-Arene Complex [Ru(η6–p-Cymene)Cl2(Pta)] (RAPTA-C) in Human Ovarian and Colorectal Carcinomas. Chem. Sci. 2014, 5, 4742–4748. [Google Scholar] [CrossRef]
- McKenzie, L.K.; Bryant, H.E.; Weinstein, J.A. Transition Metal Complexes as Photosensitisers in One- and Two-Photon Photodynamic Therapy. Coord. Chem. Rev. 2019, 379, 2–29. [Google Scholar] [CrossRef]
- Shi, G.; Monro, S.; Hennigar, R.; Colpitts, J.; Fong, J.; Kasimova, K.; Yin, H.; DeCoste, R.; Spencer, C.; Chamberlain, L.; et al. Ru(II) Dyads Derived from α-Oligothiophenes: A New Class of Potent and Versatile Photosensitizers for PDT. Coord. Chem. Rev. 2015, 282–283, 127–138. [Google Scholar] [CrossRef]
- Green, M.A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E.D. Solar Cell Efficiency Tables (Version 46). Prog. Photovolt. Res. Appl. 2015, 23, 805–812. [Google Scholar] [CrossRef]
- Chang, X.; Chuan, L.W.; Yongxin, L.; Pullarkat, S.A. One-Pot β-Alkylation of Secondary Alcohols with Primary Alcohols Catalyzed by Ruthenacycles. Tetrahedron Lett. 2012, 53, 1450–1455. [Google Scholar] [CrossRef]
- Findlay, M.T.; Domingo-Legarda, P.; McArthur, G.; Yen, A.; Larrosa, I. Catalysis with Cycloruthenated Complexes. Chem. Sci. 2022, 13, 3335–3362. [Google Scholar] [CrossRef]
- Lin, K.; Zhao, Z.Z.; Bo, H.-B.; Hao, X.J.; Wang, J.Q. Applications of Ruthenium Complex in Tumor Diagnosis and Therapy. Front. Pharmacol. 2018, 9, 1323. [Google Scholar] [CrossRef] [PubMed]
- Parveen, S. Recent Advances in Anticancer Ruthenium Schiff Base Complexes. Appl. Organomet. Chem. 2020, 34, e5687. [Google Scholar] [CrossRef]
- Gaiddon, C.; Pfeffer, M. The Fate of Cycloruthenated Compounds: From C–H Activation to Innovative Anticancer Therapy. Eur. J. Inorg. Chem. 2017, 2017, 1639–1654. [Google Scholar] [CrossRef]
- Li, J.; Zeng, L.; Wang, Z.; Chen, H.; Fang, S.; Wang, J.; Cai, C.Y.; Xing, E.; Liao, X.; Li, Z.W.; et al. Cycloruthenated Self-Assembly with Metabolic Inhibition to Efficiently Overcome Multidrug Resistance in Cancers. Adv. Mater. 2022, 34, 2100245. [Google Scholar] [CrossRef]
- Sui, L.Z.; Yang, W.W.; Yao, C.J.; Xie, H.Y.; Zhong, Y.W. Charge Delocalization of 1,4-Benzenedicyclometalated Ruthenium: A Comparison between Tris-Bidentate and Bis-Tridentate Complexes. Inorg. Chem. 2012, 51, 1590–1598. [Google Scholar] [CrossRef]
- Cuesta, L.; Maluenda, I.; Soler, T.; Navarro, R.; Urriolabeitia, E.P. Novel Thiophene-Based Cycloruthenated Compounds: Synthesis, Characterization, and Reactivity. Inorg. Chem. 2011, 50, 37–45. [Google Scholar] [CrossRef]
- Gaiddon, C.; Jeannequin, P.; Bischoff, P.; Pfeffer, M.; Sirlin, C.; Loeffler, J.P. Ruthenium (II)-Derived Organometallic Compounds Induce Cytostatic and Cytotoxic Effects on Mammalian Cancer Cell Lines through P53-Dependent and P53-Independent Mechanisms. J. Pharmacol. Exp. Ther. 2005, 315, 1403–1411. [Google Scholar] [CrossRef]
- Matsui, T.; Sugiyama, H.; Nakai, M.; Nakabayashi, Y. DNA Interaction and Cytotoxicity of Cyclometalated Ruthenium(II) Complexes as Potential Anticancer Drugs. Chem. Pharm. Bull. 2016, 64, 282–286. [Google Scholar] [CrossRef][Green Version]
- Peña, B.; David, A.; Pavani, C.; Baptista, M.S.; Pellois, J.P.; Turro, C.; Dunbar, K.R. Cytotoxicity Studies of Cyclometallated Ruthenium(II) Compounds: New Applications for Ruthenium Dyes. Organometallics 2014, 33, 1100–1103. [Google Scholar] [CrossRef]
- Riegel, G.; Orvain, C.; Recberlik, S.; Spaety, M.-E.; Poschet, G.; Venkatasamy, A.; Yamamoto, M.; Nomura, S.; Tsukamoto, T.; Masson, M.; et al. The Unfolded Protein Response-Glutathione Metabolism Axis: A Novel Target of a Cycloruthenated Complexes Bypassing Tumor Resistance Mechanisms. Cancer Lett. 2024, 585, 216671. [Google Scholar] [CrossRef]
- Djukic, J.P.; Sortais, J.B.; Barloy, L.; Pfeffer, M. Cycloruthenated Compounds–Synthesis and Applications. Eur. J. Inorg. Chem. 2009, 2009, 817–853. [Google Scholar] [CrossRef]
- Medved’ko, A.V.; Ivanov, V.K.; Kiskin, M.A.; Sadovnikov, A.A.; Apostolova, E.S.; Grinberg, V.A.; Emets, V.V.; Chizhov, A.O.; Nikitin, O.M.; Magdesieva, T.V.; et al. The Design and Synthesis of Thiophene-Based Ruthenium(II) Complexes as Promising Sensitizers for Dye-Sensitized Solar Cells. Dye. Pigment. 2017, 140, 169–178. [Google Scholar] [CrossRef]
- Medved’ko, A.V.; Vasil’ev, A.A.; Kiskin, M.A.; Syroeshkin, M.A.; Balycheva, V.A.; Melnichuk, N.A.; Nazarov, A.A.; Vatsadze, S.Z. Cycloruthenated Thiophene-Imines: Novel Anticancer Agents. J. Organomet. Chem. 2025, 1038, 123726. [Google Scholar] [CrossRef]
- Su, X.; Zeng, R.; Li, X.; Dang, W.; Yao, K.; Tang, D. Cycloruthenated Complexes: PH-Dependent Reversible Cyclometallation and Reactions with Nitrite at Octahedral Ruthenium Centers. Dalt. Trans. 2016, 45, 7450–7459. [Google Scholar] [CrossRef]
- Brunner, F.; Marinakis, N.; Wobill, C.; Willgert, M.; Ertl, C.D.; Kosmalski, T.; Neuburger, M.; Bozic-Weber, B.; Glatzel, T.; Constable, E.C.; et al. Modular Synthesis of Simple Cycloruthenated Complexes with State-of-the-Art Performance in p-Type DSCs. J. Mater. Chem. C 2016, 4, 9823–9833. [Google Scholar] [CrossRef]
- Soukharev, V.S.; Ryabov, A.D.; Csöregi, E. Synthesis, Properties, and Biosensor Applications of Cycloruthenated 2-Phenylimidazoles. J. Organomet. Chem. 2003, 668, 75–81. [Google Scholar] [CrossRef]
- Novohradsky, V.; Yellol, J.; Stuchlikova, O.; Santana, M.D.; Kostrhunova, H.; Yellol, G.; Kasparkova, J.; Bautista, D.; Ruiz, J.; Brabec, V. Organoruthenium Complexes with C^N Ligands Are Highly Potent Cytotoxic Agents That Act by a New Mechanism of Action. Chem.–A Eur. J. 2017, 23, 15294–15299. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, J.; Shu, L.; Li, T.; Lu, S.; Subarkhan, M.K.M.; Chen, C.; Wang, H. New Organometallic Ruthenium(II) Compounds Synergistically Show Cytotoxic, Antimetastatic and Antiangiogenic Activities for the Treatment of Metastatic Cancer. Chem.–A Eur. J. 2020, 26, 15170–15182. [Google Scholar] [CrossRef]
- Ortega-Forte, E.; Rovira, A.; López-Corrales, M.; Hernández-García, A.; Ballester, F.J.; Izquierdo-García, E.; Jordà-Redondo, M.; Bosch, M.; Nonell, S.; Santana, M.D.; et al. A Near-Infrared Light-Activatable Ru(Ii)-Coumarin Photosensitizer Active under Hypoxic Conditions. Chem. Sci. 2023, 14, 7170–7184. [Google Scholar] [CrossRef]
- Bruker. APEX-III; Bruker AXS Inc.: Madison, WI, USA, 2019. [Google Scholar]
- Krause, L.; Herbst-Irmer, R.; Sheldrick, G.M.; Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Cryst. 2015, 48, 3–10. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst. 2015, A71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 229–341. [Google Scholar] [CrossRef]
- CrysAlisPro, Version 1.171.41; Rigaku Oxford Diffraction: Tokyo, Japan, 2021.
- Spek, A.L. PLATON SQUEEZE: A tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Cryst. 2015, C71, 9–18. [Google Scholar] [CrossRef]
- Nosova, Y.N.; Foteeva, L.S.; Zenin, I.V.; Fetisov, T.I.; Kirsanov, K.I.; Yakubovskaya, M.G.; Antonenko, T.A.; Tafeenko, V.A.; Aslanov, L.A.; Lobas, A.A.; et al. Enhancing the Cytotoxic Activity of Anticancer Pt IV Complexes by Introduction of Lonidamine as an Axial Ligand. Eur. J. Inorg. Chem. 2017, 2017, 1785–1791. [Google Scholar] [CrossRef]



| Aniline-(Ru–N) Dihedral Angle, ° | Py-Py Dihedral Angle, ° | Ru–N(Aniline), Å | Ru–N, Å a | Ru–C, Å | |
|---|---|---|---|---|---|
| 2a (H) | +65.66 | 2.071 | 2.151 | 2.026 | |
| 2b (F) | +58.36 | 2.065 | 2.155 | 2.035 | |
| 2d (Et) | −52.43 | 2.069 | 2.142 | 2.027 | |
| 2e (tBu) | −57.51 | 2.069 | 2.155 | 2.025 | |
| 2f (OMe) | −61.74 | 2.066 | 2.152 | 2.019 | |
| 2g (CO2Et) b | −51.97 | 2.062 | 2.158 | 2.023 | |
| +40.65 | 2.079 | 2.159 | 2.017 | ||
| 2h (NO2) b | +42.47 | 2.096 | 2.157 | 2.019 | |
| +41.62 | 2.071 | 2.172 | 2.008 | ||
| 2i (CF3) | −51.20 | 2.063 | 2.153 | 2.022 | |
| 2j (F) | −47.59 | 2.102 | 2.139 | 2.019 | |
| 2k (Me) | −49.30 | 2.096 | 2.136 | 2.022 | |
| 2l (OMe) b | +52.94 | 2.093 | 2.132 | 2.018 | |
| +41.76 | 2.114 | 2.139 | 2.015 | ||
| 2n (NO2) | −47.17 | 2.105 | 2.140 | 2.020 | |
| 3a (H) | +45.61 | 4.22 | 2.111 | 2.146 | 2.031 |
| 3b (F) | +49.65 | 1.85 | 2.104 | 2.136 | 2.030 |
| 3c (Me) | +39.77 | 5.01 | 2.117 | 2.152 | 2.031 |
| 3e (tBu) | +48.29 | 7.07 | 2.085 | 2.146 | 2.029 |
| 3f (OMe) | −55.21 | 3.52 | 2.063 | 2.155 | 2.036 |
| 3h (NO2) | −52.22 | 3.96 | 2.091 | 2.156 | 2.031 |
| 3j (F) | +43.78 | 8.91 | 2.123 | 2.137 | 2.025 |
| 3l (OMe) | +48.94 | 10.77 | 2.117 | 2.148 | 2.010 |
| 3m (CO2Et) | −58.58 | 5.47 | 2.110 | 2.137 | 2.018 |
| 3o (CF3) | +55.99 | 3.79 | 2.106 | 2.127 | 2.019 |
| Additional Peaks | |||||
|---|---|---|---|---|---|
| 3a (H) | −2277 (−2234) | −2022 (−1981) | 139 (95) | 1565 | |
| 3b (F) | −2264 (−2219) | −2010 (−1969) | 155 (111) | 1607 | −2828 |
| 3c (Me) | −2015 (−1973) | −2268 (−2226) | 144 (99) | 1570 | |
| 3d (Et) | −2278 (−2233) | −2020 (−1981) | 136 (92) | 1551 | −2905 |
| 3e (tBu) | −2280 (−2236) | −2026 (−1984) | 128 (88) | 1556 | −2864 |
| 3f (OMe) | −2277 (−2235) | −2022 (−1984) | 117 (78) | 1352 | |
| 3g a (CO2Et) | −2242 | −2009 (−1961) | 189 (135) | 1635 | −2551 (C=O reduction) |
| 3h b (NO2) | - | - | 200 (161) | 1679 | −1507 (−1467) –NO2 reduction −1970 |
| 3i (CF3) | −2245 (−2198) | −1996 (−1959) | 181 (139) | 1611 | −2640 (C–F cleavage) |
| 3j (F) | −2245 (−2202) | −1997 (−1956) | 145 (102) | 1422 | |
| 3k (Me) | −2253 (−2213) | −2002 (−1962) | 117 (77) | 1364 | −2909 |
| 3l (OMe) | −2256 (−2216) | −2003 (−1962) | 107 (70) | 1183 (1129) | −2874 (shoulder) |
| 3m c (CO2Et) | −2226 (−2167) | −1989 (−1931) | 78 (127) | 1517 | −2582 (C=O reduction) |
| 3n d (NO2) | - | - | 215 (165) | 1545 | −1534 (−1488) (–NO2 reduction) |
| 3o (CF3) | −2213 (−2175) | −1976 (−1936) | 181 (143) | 1460 | −2582 (C–F cleavage) |
| IC50 (72 h)/nМ | |||||
|---|---|---|---|---|---|
| Compound | А2780 | A2780Cis | Rf | HEK293 | Selectivity Index, SI |
| Cisplatin | 2640 ± 350 | 1560 ± 210 | 5.9 | 22,000 ± 4000 | 8.3 |
| 3a (H) | 33 ± 7 | 30 ± 10 | 0.9 | 53 ± 4 | 1.6 |
| 3b (F) | 90 ± 30 | 250 ± 60 | 2.8 | 100 ± 30 | 1.1 |
| 3c (Me) | 70 ± 6 | 120 ± 10 | 1.7 | 70 ± 10 | 1.0 |
| 3d (Et) | 45 ± 5 | 150 ± 10 | 3.3 | 80 ± 10 | 1.8 |
| 3e (tBu) | 70 ± 30 | 170 ± 30 | 2.4 | 68 ± 6 | 1.0 |
| 3f (OMe) | 65 ± 4 | 120 ± 40 | 1.8 | 64 ± 7 | 1.0 |
| 3g (CO2Et) | 100 ± 20 | 230 ± 20 | 2.3 | 140 ± 20 | 1.4 |
| 3h (NO2) | 250 ± 30 | 760 ± 80 | 3.0 | 370 ± 80 | 1.5 |
| 3i (CF3) | 80 ± 10 | 240 ± 20 | 3.0 | 107 ± 8 | 1.3 |
| 3j (F) | 43 ± 3 | 91 ± 9 | 2.1 | 60 ± 10 | 1.4 |
| 3k (Me) | 30 ± 2 | 10 ± 0.4 | 0.3 | 70 ± 30 | 2.3 |
| 3l (OMe) | 39 ± 3 | 39 ± 10 | 1.0 | 40 ± 10 | 1.0 |
| 3m (CO2Et) | 57 ± 20 | 84 ± 12 | 1.5 | 140 ± 10 | 2.5 |
| 3n (NO2) | 270 ± 4 | 960 ± 100 | 3.6 | 530 ± 30 | 2.0 |
| 3o (CF3) | 96 ± 3 | 150 ± 5 | 6.4 | 160 ± 30 | 1.7 |
| 1b (F) | >200,000 | >100,000 | - | 21,610 | - |
| 1f (OMe) | >200,000 | >100,000 | - | >200,000 | - |
| 1g (CO2Et) | 42,090 | >100,000 | - | 25,430 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Vasil’ev, A.A.; Troshin, I.I.; Shangin, P.G.; Voroshilkina, K.M.; Shutkov, I.A.; Nazarov, A.A.; Medved’ko, A.V. Cycloruthenated Imines: A Step into the Nanomolar Region. Molecules 2026, 31, 315. https://doi.org/10.3390/molecules31020315
Vasil’ev AA, Troshin II, Shangin PG, Voroshilkina KM, Shutkov IA, Nazarov AA, Medved’ko AV. Cycloruthenated Imines: A Step into the Nanomolar Region. Molecules. 2026; 31(2):315. https://doi.org/10.3390/molecules31020315
Chicago/Turabian StyleVasil’ev, Arsenii A., Ivan I. Troshin, Pavel G. Shangin, Ksenia M. Voroshilkina, Ilya A. Shutkov, Alexey A. Nazarov, and Aleksei V. Medved’ko. 2026. "Cycloruthenated Imines: A Step into the Nanomolar Region" Molecules 31, no. 2: 315. https://doi.org/10.3390/molecules31020315
APA StyleVasil’ev, A. A., Troshin, I. I., Shangin, P. G., Voroshilkina, K. M., Shutkov, I. A., Nazarov, A. A., & Medved’ko, A. V. (2026). Cycloruthenated Imines: A Step into the Nanomolar Region. Molecules, 31(2), 315. https://doi.org/10.3390/molecules31020315

