Molecular Dynamics Simulation of Texture Contact Friction Between Crystalline Silicon Layers for Application in Micro-Nano System Devices
Abstract
1. Introduction
2. Results and Discussion
2.1. Effects of Applied Normal Load
2.2. Effects of Friction Velocity
2.3. Roughness Effects of Contact Interface
3. Models and Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- He, S.; Zhang, W.; Li, Z. Application of dry friction contact in vibration reduction in engineering—A short review. Coatings 2023, 13, 910. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, B.; Ma, S.; Ma, Y.; Zhang, G.; Hu, K.; Ma, Z.; Sheng, W.; Li, B.; Zhou, F. Engineering surface-grafted polymers for adhesion and friction control. Prog. Polym. Sci. 2024, 157, 101888. [Google Scholar] [CrossRef]
- Stoyanov, P.; Chromik, R.R. Scaling effects on materials tribology: From Macro to Micro Scale. Materials 2017, 10, 550. [Google Scholar] [CrossRef] [PubMed]
- Ain, Q.U.; Wani, M.F.; Sehgal, R.; Singh, M.K. Tribological and mechanical characterization of carbon-nanostructures based PEEK nanocomposites under extreme conditions for advanced bearings: A molecular dynamics study. Tribol. Int. 2024, 196, 109702. [Google Scholar] [CrossRef]
- Hussain, A.; Podgursky, V.; Antonov, M.; Viljus, M.; Goljandin, D. TiCN coating tribology for the circular economy of textile industries. J. Ind. Text. 2022, 51, 8947S–8959S. [Google Scholar] [CrossRef]
- Bhushan, B.; Li, X. Micromechanical and tribological characterization of doped single-crystal silicon and polysilicon films for microelectromechanical systems devices. J. Mater. Res. 1997, 12, 54–63. [Google Scholar] [CrossRef]
- Liu, Z.; Vähänissi, V.; Chekurov, N.; Tittonen, I.; Savin, H. Cast monocrystalline silicon: New alternative for Micro- and Nano-Electromechanical systems? J. Microelectromech. Syst. 2019, 28, 695–699. [Google Scholar] [CrossRef]
- Gao, M.; Bie, X.; Wang, Y.; Li, Y.; Zhai, Z.; Lyu, H.; Zou, X. Accurate deep potential model of temperature-dependent elastic constants for phosphorus-doped silicon. Nanomaterials 2025, 15, 769. [Google Scholar] [CrossRef]
- Fu, M.; Shi, Z.; Bošnjak, B.; Blick, R.H.; Scheer, E.; Yang, F. Silicon-based MEMS/NEMS empowered by graphene: A scheme for large tunability and functionality. Microsyst. Nanoeng. 2025, 11, 116. [Google Scholar] [CrossRef]
- Barnette, A.L.; Asay, D.B.; Ohlhausen, J.A.; Dugger, M.T.; Kim, S.H. Tribochemical polymerization of adsorbed n-pentanol on SiO2 during rubbing: When does it occur and is it responsible for effective vapor phase lubrication? Langmuir 2010, 26, 16299–16304. [Google Scholar] [CrossRef]
- Johnson, R.S.; Washburn, C.M.; Staton, A.W.; Moorman, M.W.; Manginell, R.P.; Dugger, M.T.; Dirk, S.M. Thermally-activated pentanol delivery from precursor poly(p-phenylenevinylene)s for MEMS lubrication. Macromol. Rapid Commun. 2012, 33, 1346–1350. [Google Scholar] [CrossRef] [PubMed]
- Guerra-Gonzalez, R.; Bastida-Silva, V.M.; Rivera, J.L.; Ramirez-Zavaleta, F.I.; Lima, E. n-Pentanol lubrication of silica layers passivated with hydroxyl groups under constant shear stress and load and isothermal conditions. Tribol. Lett. 2023, 71, 59. [Google Scholar] [CrossRef]
- Amorim, P.M.; Ferraria, A.M.; Colaço, R.; Branco, L.C.; Saramago, B. Imidazolium-based ionic liquids used as additives in the nanolubrication of silicon surface. Beilstein J. Nanotechnol. 2017, 8, 1961–1971. [Google Scholar] [CrossRef]
- Antunes, M.; Donato, M.T.; Paz, V.; Caetano, F.; Santos, L.; Colaço, R.; Branco, L.C.; Saramago, B. Improving the lubrication of silicon surfaces using ionic liquids as oil additives: The effect of sulfur-based functional groups. Tribol. Lett. 2020, 68, 70. [Google Scholar] [CrossRef]
- Donato, M.T.; Deuermeier, J.; Colaço, R.; Branco, L.C.; Saramago, B. New protic ionic liquids as potential additives to lubricate Si-based MEMS/NEMS. Molecules 2023, 28, 2678. [Google Scholar] [CrossRef] [PubMed]
- Donato, M.T.; Colaço, R.; Branco, L.C.; Saramago, B.; Lopes, J.N.C.; Shimizu, K.; Freitas, A.A. Molecular interactions between ionic liquid lubricants and silica surfaces: An MD simulation study. J. Phys. Chem. B 2024, 128, 2559–2568. [Google Scholar] [CrossRef]
- Tong, R.; Wang, Y.; Zhang, T.; Du, J.; Liu, G. Friction properties of the single-crystal Si in collision sliding contacts under different lubrication conditions. Surf. Coat. Tech. 2022, 451, 129039. [Google Scholar] [CrossRef]
- Du, Y.; Gao, X.; Yang, F. Tribological performance of magnetron-sputtered MoS2/SiC composites on silicon substrates: Influence of composition and ambient conditions. Langmuir 2025, 41, 29956–29965. [Google Scholar] [CrossRef]
- Burton, Z.; Bhushan, B. Hydrophobicity, adhesion, and friction properties of nanopatterned polymers and scale dependence for micro- and nanoelectromechanical systems. Nano Lett. 2005, 5, 1607–1613. [Google Scholar] [CrossRef]
- Menezes, P.L.; Kishore; Kailas, S.V. Studies on friction and transfer layer: Role of surface texture. Tribol. Lett. 2006, 24, 265–273. [Google Scholar] [CrossRef]
- Lee, H.; Bhushan, B. Role of surface roughness and lubricant film thickness in nanolubrication of sliding components in adaptive optics. J. Colloid Interf. Sci. 2011, 353, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Nair, P.P.; Zou, M. Surface-nano-texturing by aluminum-induced crystallization of amorphous silicon. Surf. Coat. Technol. 2008, 203, 675–679. [Google Scholar] [CrossRef]
- Zhao, W.J.; Wang, L.P.; Xue, Q.J. Design and fabrication of nanopillar patterned Au textures for improving nanotribological performance. ACS Appl. Mater. Interface 2010, 2, 788–794. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhong, X.; Meng, X.; Yi, G.; Jia, J. Adhesion and friction studies of nano-textured surfaces produced by self-assembling Au nanoparticles on silicon wafers. Tribol. Lett. 2012, 46, 65–73. [Google Scholar] [CrossRef]
- Winkless, L.; Martinot, E.; Gee, M.G.; Cuenat, A. Microtribology friction measurements on microtextured silicon. Tribology 2009, 3, 165–174. [Google Scholar] [CrossRef]
- Singh, R.A.; Yoon, E.-S. Friction of chemically and topographically modified Si (100) surfaces. Wear 2007, 263, 912–919. [Google Scholar] [CrossRef]
- Singh, R.A.; Pham, D.C.; Yoon, E.S. Photolithographic silicon patterns with Z-DOL (perfluoropolyether, PFPE) coating as tribological surfaces for miniaturized devices. KSTLE Int. J. 2008, 9, 10–12. [Google Scholar]
- Wang, Y.; Yin, Z.; Fan, D.; Bai, L. Friction behaviors of DLC films in an oxygen environment: An atomistic understanding from ReaxFF simulations. Tribiol. Int. 2022, 168, 107448. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, P.; Luo, Y.; Zhang, H.; Wang, X.; Liu, L.; Che, B. Probing the tribological behaviors of a-C films in CO2 environment based on ReaxFF molecular dynamics simulation. Comp. Mater. Sci. 2024, 234, 234. [Google Scholar] [CrossRef]
- Zhu, X.; Luo, Y.; Wang, X.; Jiang, Y.; Zhang, H.; Peng, Y.; Liu, Y. Probing friction properties of hydrogen-free DLC films in a nitrogen environment based on ReaxFF molecular dynamics. Langmuir 2022, 38, 13177–13186. [Google Scholar] [CrossRef]
- Kalin, M.; Jan, P. Understanding the friction laws of amontons and coulomb by evaluating the real contact area. Friction 2025, 13, 9440986. [Google Scholar] [CrossRef]
- Li, X.; Wang, A.; Lee, K.R. Insights on low-friction mechanism of amorphous carbon films from reactive molecular dynamics study. Tribiol. Int. 2019, 131, 567–578. [Google Scholar] [CrossRef]
- Marchetto, D.; Rota, A.; Calabri, L.; Gazzadi, G.C.; Menozzi, C.; Valeri, S. Hydrophobic effect of surface patterning on Si surface. Wear 2010, 268, 488–492. [Google Scholar] [CrossRef]
- Plimpton, S. Fast parallel algorithms for short-rang molecular dynamics. J. Comput. Phys. 1995, 117, 1. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO—The Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 2010, 18, 015012. [Google Scholar] [CrossRef]
- Narayanan, B.; van Duin, A.C.T.; Kappes, B.B.; Reimanis, I.E.; Ciobanu, C.V. Reactive force field for lithium-aluminum silicates with applications to eucryptite phases. Modell. Simul. Mater. Sci. Eng. 2012, 20, 015002. [Google Scholar] [CrossRef]
- Van Duin, A.C.T.; Strachan, A.; Stewman, S.; Zhang, O.; Xu, X.; Goddard, W.A. ReaxFFSiO reactive force field for silicon and silicon oxide systems. J. Phys. Chem. A 2003, 107, 3803–3811. [Google Scholar] [CrossRef]
- Zhang, Q.; Çağın, T.; van Duin, A.; Goddard, W.A. Adhesion and nonwetting-wetting transition in the Al/α-Al2O3 interface. Phys. Rev. B 2004, 69, 045423. [Google Scholar] [CrossRef]
- Chen, L.; Wen, J.; Zhang, P.; Yu, B.; Chen, C.; Ma, T.; Lu, X.; Kim, S.H.; Qian, L. Nanomanufacturing of silicon surface with a single atomic layer precision via mechanochemical reactions. Nat. Commun. 2018, 9, 1542. [Google Scholar] [CrossRef]
- Zhang, S.; Zhong, M.; Li, X.; Yi, M.; Chen, J.; Xu, W. Tribo-chemical atom removal in sapphire chemical mechanical polishing: Insight from ReaxFF MD and experiments. Tribiol. Int. 2026, 213, 111088. [Google Scholar] [CrossRef]










| Models | Load/GPa | Vx/Åps−1 | |||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| A5T32 | 5 | 0.05 | 0.1 | 0.2 | 0.5 | 0.8 | 1 | 1.2 | 1.5 | 2 | |||||||||
| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 10 | 15 | 20 | 0.2 | |||||||||
| A10T32 | 5 | 0.2 | 0.5 | 0.8 | 1 | ||||||||||||||
| 10 | 15 | 20 | 0.2 | ||||||||||||||||
| A5T16 | 5 | 0.2 | 0.5 | 0.8 | 1 | ||||||||||||||
| 10 | 15 | 20 | 0.2 | ||||||||||||||||
| A10T16 | 5 | 0.2 | 0.5 | 0.8 | 1 | ||||||||||||||
| 10 | 15 | 20 | 0.2 | ||||||||||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhang, J.; Tan, M.; Yuan, S.; Wang, F.; Jia, Y.; Wang, X. Molecular Dynamics Simulation of Texture Contact Friction Between Crystalline Silicon Layers for Application in Micro-Nano System Devices. Molecules 2026, 31, 91. https://doi.org/10.3390/molecules31010091
Zhang J, Tan M, Yuan S, Wang F, Jia Y, Wang X. Molecular Dynamics Simulation of Texture Contact Friction Between Crystalline Silicon Layers for Application in Micro-Nano System Devices. Molecules. 2026; 31(1):91. https://doi.org/10.3390/molecules31010091
Chicago/Turabian StyleZhang, Jinping, Minghui Tan, Shan Yuan, Fei Wang, Yu Jia, and Xiaolei Wang. 2026. "Molecular Dynamics Simulation of Texture Contact Friction Between Crystalline Silicon Layers for Application in Micro-Nano System Devices" Molecules 31, no. 1: 91. https://doi.org/10.3390/molecules31010091
APA StyleZhang, J., Tan, M., Yuan, S., Wang, F., Jia, Y., & Wang, X. (2026). Molecular Dynamics Simulation of Texture Contact Friction Between Crystalline Silicon Layers for Application in Micro-Nano System Devices. Molecules, 31(1), 91. https://doi.org/10.3390/molecules31010091

