Albizia amara: A Potential Plant-Derived Surfactant for Cosmetic and Food Applications
Abstract
1. Introduction
2. Surfactants, Biosurfactants and Plant Saponins: A Concise Overview
2.1. Surfactants and Biosurfactants in Cosmetics and Foods
2.2. Plant-Derived Saponins as Natural Surfactants
2.3. Performance Snapshot: CMC and Surface-Tension Ranges of Representative Plant Saponins Versus Sodium Lauryl Sulphate
| Saponin Source | Part Used | CMC (g cm−3) | Reduced Surface Tension (mN m−1) | Temperature (°C) |
|---|---|---|---|---|
| Acacia concinna [28] | Pods | 7.00 × 10−2 | ≈32.5 at 1.00 × 10−2 g cm−3 | 20 ± 2 |
| Agave sisalana [37] | Leaves | 6.84 × 10−4 | 33.57–45.13 at (1.5–4.5) × 10−4 g cm−3 | 25 |
| Albizia procera [36] | NA | NA | 46.6 ± 0.2 mN m−1 | 25 |
| Bellis perennis [6] | Flowers | 7.60 × 10−5 | 36.8 at 7.60 × 10−5 g cm−3 | 20 |
| Betula pendula [35] | Leaves | 2.4 × 10−4 | 45.7 at 2.4 × 10−4 g cm−3 | 20 |
| Camellia oleifera [29] | Seeds | NA | 50 at 5 × 10−3 g cm−3 | NA |
| Equisetum arvense [6] | Haulm | 3.30 × 10−5 | 37.9 at 3.30 × 10−5 g cm−3 | 20 |
| Genipa americana [34] | Fruits | 6.50 × 10−4 | 31.39 ± 0.15 at 6.50 × 10−4 g cm−3 | 25 ± 1 |
| Hedera algeriensis [31] | Leaves | 5.00 × 10−4 | 40 at 5.00 × 10−4 g cm−3 | 20 |
| Ilex paraguariensis [6] | Fruits | 1.4946 × 10−1 | 52.8 at 1.4946 × 10−1 g cm−3 | 20 ± 2 |
| Juglans regia [6] | Bark | 8.80 × 10−3 | ≈45.00 at 1.00 × 10−2 g cm−3 | 20 ± 2 |
| Panax ginseng [30] | Roots | 6.27 × 10−4 | NA | 25 |
| Quillaja saponaria [20] | Inner bark | 2.84 × 10−4 | NA | 25 |
| Tamarindus indica [34] | Fruits | 8.70 × 10−4 | 30.02 ± 0.17 at 8.70 × 10−4 g cm−3 | 25 ± 1 |
| Sapindus laurifolia [34] | Fruits | 1.70 × 10−2 | 38.00 at 1.70 × 10−2 g cm−3 | NA |
| Sapindus mukorossi [33] | Pericarp | 4.50 × 10−3 | ≈39 at 4.50 × 10−3 g cm−3 | 25 |
| Verbascum densiflorum [6] | Flowers | 3.55 × 10−4 | 41.5 at 3.55 × 10−4 g cm−3 | 20 |
| Zephyranthes carinata [6] | Bulbs | 6.40 × 10−4 | ≈41.25 at 1.00 × 10−2 g cm−3 | 20 ± 2 |
| Ziziphus joazeiro [34] | Barks | 1.064 × 10−3 | 33.94–46.52 at (0.8–5.5) × 10−4 g cm−3 | 25 |
| SLS | Synthetic | 2.004 × 10−3 | ≈39.2 | Room temperature |
3. The Genus Albizia as a Source of Saponins
3.1. Ethnopharmacology and Traditional Uses
3.2. Distribution of Triterpenoid Saponins and Other Metabolites in Albizia
3.3. Cleansing and Surface-Active Properties Within the Genus
4. Phytochemistry of Albizia amara and Related Albizia Species
4.1. A. amara Botany and Distribution
4.2. Phytochemical Profile of Albizia amara
4.3. Insights from Other Albizia Saponins Relevant to A. amara
5. Surface-Active Properties of Albizia-Derived Saponins
5.1. Qualitative Foaming, Emulsifying and Detergency Evidence
5.2. Quantitative Surface Tension and CMC Data for Albizia Saponins
5.3. Comparative Performance and Limitations of the Current Evidence
6. Cosmetic Applications of Albizia amara and Other Albizia Species
6.1. Traditional and Current Use of A. amara (“Arappu”) in Hair Care
6.2. Evidence from Formulated Products and Performance Tests
6.3. Alignment with Trends in Plant-Derived Saponins for Cosmetics
6.4. Practical Formulation Considerations and Evidence Gaps
7. Prospective Food Applications of Albizia-Derived Saponins
7.1. Plant Saponins as Foaming and Emulsifying Agents in Foods
7.2. How Albizia Saponins Relate to Food-Use Systems
7.3. Opportunities and Constraints for Future Food Applications of A. amara
8. Toxicity, Safety and Regulatory Considerations
8.1. General Toxicity Profile of Plant Saponins
8.2. Toxicity and Safety of Albizia Species and A. amara
8.3. Implications for Cosmetic Versus Food Use
8.4. Regulatory Pathways for Plant-Derived Surfactants
9. Research Gaps and Future Directions for Albizia amara as a Biosurfactant Source
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rios, A.M.; Teuta, J.P.; Palomeque, L.A.; Vera, R.E.; Marquez, R.; García, J. Statistical simplex centroid experimental design and formulation maps to predict the stability in cosmetic emulsions containing commercial emulsifiers. J. Surfactants Deterg. 2025, 28, 1031–1045. [Google Scholar] [CrossRef]
- Chauhan, M.; Mazumder, R.; Rani, A.; Mishra, R.; Pal, R.S. Preparations, applications, patents, and marketed formulations of nanoemulsions—A comprehensive review. Pharm. Nanotechnol. 2024, 13, 78–93. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, S.; Muniswamy, J.R.; Zoysa, A.S.I.D.; Bettaswamy, P.G.; Prasanna, K.L.; Patil, A. The impact of sodium lauryl sulfate on human health and environment. Asian J. Biol. Life Sci. 2025, 14, 472–477. [Google Scholar] [CrossRef]
- Nagtode, V.S.; Cardoza, C.; Yasin, H.; Mali, S.N.; Tambe, S.; Roy, P.; Singh, K.; Goel, A.; Amin, P.D.; Thorat, B.R.; et al. Green surfactants (biosurfactants): A petroleum-free substitute for sustainability—Comparison, applications, market, and future prospects. Am. Chem. Soc. 2023, 8, 11674–11699. [Google Scholar] [CrossRef]
- Chander, M.; Paul, M. Therapeutic & diagnostic applications of biosurfactants of microbial origin. Int. J. Multidiscip. Res. 2025, 7. [Google Scholar] [CrossRef]
- Rai, S.; Siwakoti, E.A.; Kafle, A.; Devkota, H.; Bhattarai, A. Plant-derived saponins: A review of their surfactant properties and applications. Scientist 2021, 3, 44. [Google Scholar] [CrossRef]
- Timilsena, Y.P.; Phosanam, A.; Stockmann, R. Perspectives on saponins: Food functionality and applications. Int. J. Mol. Sci. 2023, 24, 13538. [Google Scholar] [CrossRef]
- Santos, D.; Rufino, R.D.; Luna, J.M.; dos Santos, V.A.; Sarubbo, L.A. Biosurfactants: Multifunctional biomolecules of the 21st century. Int. J. Mol. Sci. 2016, 17, 401. [Google Scholar] [CrossRef]
- Schreiner, T.B.; Santamaria-Echart, A.; Ribeiro, A.; Peres, A.M.; Dias, M.; Pinho, S.; Barreiro, M. Formulation and optimization of nanoemulsions using the natural surfactant saponin from Quillaja bark. Molecules 2020, 25, 1538. [Google Scholar] [CrossRef]
- Bagheri, A.M.; Mirzahashemi, M.; Salarpour, S.; Dehghnnoudeh, Y.; Banat, I.; Ohadi, M.; Dehghannoudeh, G. Potential anti-aging applications of microbial-derived surfactants in cosmetic formulations. Crit. Rev. Biotechnol. 2024, 45, 766–787. [Google Scholar] [CrossRef]
- Moldes, A.B.; Rodríguez-López, L.; Rincón-Fontán, M.; López-Prieto, A.; Vecino, X.; Cruz, J.M. Synthetic and bio-derived surfactants versus microbial biosurfactants in the cosmetic industry: An overview. Int. J. Mol. Sci. 2021, 22, 2371. [Google Scholar] [CrossRef] [PubMed]
- Saek, K.; Euston, S.; Janek, T. Phase behaviour, functionality, and physicochemical characteristics of glycolipid surfactants of microbial origin. Front. Bioeng. Biotechnol. 2022, 10, 816613. [Google Scholar] [CrossRef] [PubMed]
- Vega, G.R.; Stampino, P.G. Bio-based surfactants and biosurfactants: An overview and main characteristics. Molecules 2025, 30, 863. [Google Scholar] [CrossRef] [PubMed]
- Sarubbo, L.A.; Silva, M.d.G.C.; Durval, I.J.B.; Bezerra, K.G.O.; Ribeiro, B.G.; Silva, I.A.; Twigg, M.S.; Banat, I.M. Biosurfactants: Production, properties, applications, trends, and general perspectives. Biochem. Eng. J. 2022, 181, 108377. [Google Scholar] [CrossRef]
- Pardhi, D.S.; Panchal, R.R.; Raval, V.H.; Joshi, R.; Poczai, P.; Almalki, W.H.; Rajput, K.N. Microbial surfactants: A journey from fundamentals to recent advances. Front. Microbiol. 2022, 13, 982603. [Google Scholar] [CrossRef]
- Karnwal, A.; Shrivastava, S.; Al-Tawaha, A.R.; Kumar, G.; Singh, R.; Kumar, A.; Mohan, A.; Yogita; Malik, T. Microbial biosurfactant as an alternate to chemical surfactants for application in cosmetics industries in personal and skin care products: A critical review. BioMed Res. Int. 2023, 2023, 2375223. [Google Scholar] [CrossRef]
- Ceresa, C.; Fracchia, L.; Sansotera, A.C.; Rienzo, M.A.D.D.; Banat, I.M. Harnessing the potential of biosurfactants for biomedical and pharmaceutical applications. Pharmaceutics 2023, 15, 2156. [Google Scholar] [CrossRef]
- Reichert, C.; Salminen, H.; Weiss, J. Quillaja saponin characteristics and functional properties. Annu. Rev. Food Sci. Technol. 2019, 10, 43–73. [Google Scholar] [CrossRef]
- Moses, T.; Papadopoulou, K.; Osbourn, A. Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives. Crit. Rev. Biochem. Mol. Biol. 2014, 49, 439–462. [Google Scholar] [CrossRef]
- Jarzbski, M.; Siejak, P.; Smuek, W.; Fathordoobady, F.; Guo, Y.; Pawlicz, J.; Trzeciak, T.; Kowalczewski, P.U.; Kitts, D.D.; Singh, A.; et al. Plant extracts containing saponins affects the stability and biological activity of hempseed oil emulsion system. Molecules 2020, 25, 2696. [Google Scholar] [CrossRef]
- Penfold, J.; Penfold, J.; Thomas, R.K.; Tucker, I.; Petkov, J.; Stoyanov, S.D.; Denkov, N.; Golemanov, K.; Tcholakova, S.; Webster, J. Saponin adsorption at the air-water interface—Neutron reflectivity and surface tension study. Langmuir 2018, 34, 9540–9547. [Google Scholar] [CrossRef]
- Tucker, I.; Burley, A.; Petkova, R.; Hosking, S.; Penfold, J.; Thomas, R.; Li, P.; Webster, J.; Welbourn, R. Mixing natural and synthetic surfactants: Co-adsorption of triterpenoid saponins and sodium dodecyl sulfate at the air-water interface. Langmuir 2020, 36, 5997–6006. [Google Scholar] [CrossRef] [PubMed]
- Hellweg, T.; Sottmann, T.; Oberdisse, J. Recent advances in biosurfactant-based association colloids—Self-assembly in water. Front. Soft Matter 2023, 2, 1081877. [Google Scholar] [CrossRef]
- Francis, G.; Kerem, Z.; Makkar, H.P.S.; Becker, K. The biological action of saponins in animal systems: A review. Br. J. Nutr. 2002, 88, 587–605. [Google Scholar] [CrossRef] [PubMed]
- Juang, Y.-P.; Liang, P. Biological and pharmacological effects of synthetic saponins. Molecules 2020, 25, 4974. [Google Scholar] [CrossRef]
- Paarvanova, B.; Tacheva, B.; Savova, G.; Karabaliev, M.; Georgieva, R. Hemolysis by saponin is accelerated at hypertonic conditions. Molecules 2023, 28, 7096. [Google Scholar] [CrossRef]
- Podolak, I.; Galanty, A.; Sobolewska, D. Saponins as cytotoxic agents: A review. Phytochem. Rev. 2010, 9, 425–474. [Google Scholar] [CrossRef]
- Gupta, C.; Kumar, S.; Pradhan, A.R. Role of nonionic natural dispersing agent Acacia concinna on the slurryability and stability of concentrated iron ore suspension. Chem. Eng. Commun. 2024, 211, 1043–1060. [Google Scholar] [CrossRef]
- Zhang, N.; Ebrahim, Z.M.S.; Tao, L.; Shi, W.; Li, W.; Lu, W. Optimized extraction of saponins from camelia oleifera using ultrasonic-assisted enzymes and their surface performance evaluation. Processes 2025, 13, 1063. [Google Scholar] [CrossRef]
- Razgonova, M.P. Supercritical fluid technology and supercritical fluid chromatography for application in ginseng extracts. Farmacia 2019, 67, 202–212. [Google Scholar] [CrossRef]
- Bajcura, M.; Luk, M.; Pisrik, M.; Horváth, B. Study of micelles and surface properties of triterpene saponins with improved isolation method from hedera helix. Chem. Pap. 2023, 78, 1875–1885. [Google Scholar] [CrossRef]
- Samadi, S.; Amani, H.; Najafpour, G.; Kariminezhad, H.; Banaei, A. Development of shampoo formulations using plant/microbial biosurfactants as an alternative to shampoos formulated with harsh synthetic surfactants. J. Surfactants Deterg. 2024, 28, 463–478. [Google Scholar] [CrossRef]
- Wasekar, S.; Ganar, P.; Meghal, S. Development of a natural herbal shampoo: A safer alternative to synthetic products. Int. J. Multidiscip. Res. 2025, 7. [Google Scholar] [CrossRef]
- Kora, A.J. Renewable, natural, traditional dish wash cleaning materials used in India: An overview. Bull. Natl. Res. Cent. 2024, 48, 28. [Google Scholar] [CrossRef]
- Devitskaya, V.A.; Nesterova, O.V.; Dobrokhotov, D.A.; Zhevlakova, A.S. Analysis of the content of triterpene saponins in the buds and leaves of silver birch (Betula pendula Roth.). Med. Pharm. J. Pulse 2023, 25. [Google Scholar] [CrossRef]
- Khatoon, M.; Islam, E.; Islam, R.; Rahman, A.; Alam, A.; Khondkar, P.; Rashid, M.; Parvin, S. Estimation of total phenol and in vitro antioxidant activity of Albizia procera leaves. BMC Res. BMC Res. Notes 2013, 6, 121. [Google Scholar] [CrossRef]
- Fracasso, J.A.R.; Sikina, I.Y.G.; da Costa, L.T.S.; Guarnier, L.P.; RibeiroPaes, J.T.; De Ferreira, F.Y.; de Almeida, L.V.C.; Silva, B.d.C.; Barbosa, D.B.; Ximenes, V.F.; et al. Toxicological profile and anti-inflammatory effect of mucoadhesive gel from residues of Agave sisalana and Punica granatum. Gels 2023, 9, 942. [Google Scholar] [CrossRef]
- Khodary, Y.A.E.; Ayoub, I.M.; Prio, P.; Bourgeade-Delmas, S.; Ibrahim, N.; El-Ahmady, S. A comparative untargeted metabolomic analysis and assessment of antiplasmodial potential of nine Albizia species. Arch. Pharm. 2024, 357, e2300543. [Google Scholar] [CrossRef]
- Sowe, M.S. Secondary metabolite composition and bioactivity of genus Albizia: A review. JSMARTech 2023, 4, 14–24. [Google Scholar] [CrossRef]
- Shah, A.H. An ethnobotanical survey of medicinal plants used for the treatment of snakebite and scorpion sting among the people of Namal Valley, Mianwali District, Punjab, Pakistan. Appl. Ecol. Environ. Res. 2018, 16, 111–143. [Google Scholar] [CrossRef]
- Byamukama, R.; Barbara, G.M.; Namukobe, J.; Heydenreich, M.; Kiremire, B. Bioactive compounds in the stem bark of Albizia coriaria (Welw. ex Oliver). Int. J. Biol. Chem. Sci. 2015, 9, 1013. [Google Scholar] [CrossRef]
- Singab, A.N.B.; Mostafa, N.M.; Fawzy, I.M.; Bhatia, D.S.; Suryawanshi, P.T.; Kabra, A. Herbal arsenal against skin ailments: A review supported by in silico molecular docking studies. Molecules 2022, 27, 6207. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, V.; Verma, S.K.; Panwar, S.; Deep, P.; Verma, S. A brief review on phytopharmacological reports on Albizia procera. Asian J. Pharm. Pharmacol. 2020, 6, 144–149. [Google Scholar] [CrossRef]
- Singha, R.; Kanthal, L.K.; Pattanayak, S.; Gantait, P.; Das, S.; Das, A.; Kundu, A. Evaluation of in-vitro anti-spasmodic activity of methanolic extract of bark part of Albizia odoratissima by using chicken ileum. Res. J. Pharmacol. Pharmacodyn. 2025, 17, 153–155. [Google Scholar] [CrossRef]
- Indravathi, G. Antimicrobial activity of biohardened plant extracts of Albizia amara. Int. J. Multidiscip. Res. 2024, 6. [Google Scholar] [CrossRef]
- Shubhangi, D.C.; Prachi, N.; More, D.B.; Mansi, L. Dhava (Anogeissus latifolia Wall.) botanical, chemical and pharmacological review of an Ayurvedic medicinal plant. Int. J. Pharm. Res. Appl. 2025, 10, 954–963. [Google Scholar] [CrossRef]
- Maroyi, A. Medicinal uses of the Fabaceae family in Zimbabwe: A review. Plants 2023, 12, 1255. [Google Scholar] [CrossRef]
- Waran, A.; Pillai, S.R.; Kulkarni, S.; Chandran, P. Comparing the environmental impacts and toxicity of laundry detergents with soapnuts and other tree-based natural surfactants. Holist. Approach Environ. 2025, 15, 137–149. [Google Scholar] [CrossRef]
- Wink, M. Modes of action of herbal medicines and plant secondary metabolites. Medicines 2015, 2, 251–286. [Google Scholar] [CrossRef]
- Labien, U.; Baranauskaite, J.; Kopustinskiene, D.; Bernatoniene, J. In vitro and clinical safety assessment of the multiple w/o/w emulsion based on the active ingredients from Rosmarinus officinalis L., Avena sativa L. and Linum usitatissimum L. Pharmaceutics 2021, 13, 732. [Google Scholar] [CrossRef]
- Prapula Thejashwini, P.; Madhusudhan, M.C.; Sushma, T.; Gulnaz, A.R.; Arpitha, C.H.G.; Roopa, G.; Pushpalatha, H.G.; Geetha, N. Evaluation of phytochemical composition and in-vitro assessment of antioxidant and antimicrobial activities of various medicinal plant extracts. J. Pharmacogn. Phytochem. 2024, 13, 37–45. [Google Scholar] [CrossRef]
- Khare, A. A study on medicinal plants with reference to traditional medicine: A review. Int. J. Sci. Res. 2024, 13, 471–474. [Google Scholar] [CrossRef]
- Câmara, J.; Albuquerque, B.R.; Aguiar, J.; Corra, R.C.G.; Gonalves, J.; Granato, D.; Pereira, J.A.M.; Barros, L.; Ferreira, I.C.F.R. Food bioactive compounds and emerging techniques for their extraction: Polyphenols as a case study. Foods 2020, 10, 37. [Google Scholar] [CrossRef] [PubMed]
- Praveen, P.; Thippeswamy, S.; Mohana, D.C.; Manjunath, K. Antimicrobial efficacy and phytochemical analysis of Albizia amara (Roxb.) Boiv. An indigenous medicinal plant against some human and plant pathogenic bacteria and fungi. J. Pharm. Res. 2011, 4, 832–835. [Google Scholar]
- Maroyi, A. Albizia adianthifolia: Botany, medicinal uses, phytochemistry, and pharmacological properties. Sci. World J. 2018, 2018, 7463584. [Google Scholar] [CrossRef]
- Mireku, E.A.; Mensah, A.; Amponsah, I.; Danquah, C.A.; Anokwah, D.; Baah, M.K. Antimicrobial pentacyclic triterpenes and glycosides from the stem bark of Cussonia bancoensis. Nat. Prod. Res. 2018, 34, 859–862. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z.; Wang, C.; Si, H.; Yu, H.; Li, L.; Fu, S.; Tan, L.; Li, P.; Liu, J.; et al. Comprehensive phytochemical analysis and sedative-hypnotic activity of two acanthopanax species leaves. Food Funct. 2021, 12, 2292–2311. [Google Scholar] [CrossRef]
- Kim, P.T.; An, L.; Chung, N.T.; Truong, N.T.; Thu, L.T.A.; Huan, L.; Loc, N. Growth and oleanolic acid accumulation of Polyscias fruticosa cell suspension cultures. Curr. Pharm. Biotechnol. 2020, 22, 1266–1272. [Google Scholar] [CrossRef]
- Careaga, V.P.; Bueno, C.A.; Munian, C.; Alché, L.E.; Maier, M.S. Antiproliferative, cytotoxic and hemolytic activities of a triterpene glycoside from Psolus patagonicus and its desulfated analog. Chemotherapy 2008, 55, 60–68. [Google Scholar] [CrossRef]
- Stefanowicz-Hajduk, J.; Kłęl-Kogus, B.; Sparzak-Stefanowska, B.; Kimel, K.; Ochocka, J.; Krauze-Baranowska, M. Cytotoxic activity of standardized extracts, a fraction, and individual secondary metabolites from fenugreek seeds against SKOV-3, HeLa and MOLT-4 cell lines. Pharm. Biol. 2021, 59, 422–435. [Google Scholar] [CrossRef]
- Colorado-Ros, J.; Muoz-Lasso, D.C.; Montoya, G.; Mrquez, D.; Fernndez, M.E.M.; Lpez, J.A.; Martnez, A.M. HPLC-ESI-IT-MS/MS analysis and biological activity of triterpene glycosides from the Colombian marine sponge Ectyoplasia ferox. Mar. Drugs 2013, 11, 4815–4833. [Google Scholar] [CrossRef] [PubMed]
- Indravathi, G.; Reddy, R.; Pakala, S.B. Albizia amara—A potential medicinal plant: A review. Int. J. Sci. Res. 2016, 5, 621–627. [Google Scholar] [CrossRef]
- Lunga, P.K.; Tamokou, J.; Fodouop, S.P.C.; Kuiate, J.; Tchoumbou, J.; Gatsing, D. Antityphoid and radical scavenging properties of the methanol extracts and compounds from the aerial part of Paullinia pinnata. SpringerPlus 2014, 3, 302. [Google Scholar] [CrossRef] [PubMed]
- Yuldasheva, L.N.; Carvalho, E.B.; Catanho, M.T.J.A.; Krasilnikov, O.V. Cholesterol-dependent hemolytic activity of Passiflora quadrangularis leaves. Braz. J. Med Biol. Res. 2005, 38, 1061–1070. [Google Scholar] [CrossRef]
- de Groot, C.; Müller-Goymann, C.C. Saponin interactions with model membrane systems—Langmuir monolayer studies, hemolysis and formation of ISCOMs. Planta Medica 2016, 82, 1496–1512. [Google Scholar] [CrossRef]
- Cao, X.; Wang, F.-J.; Liew, O.; Lu, Y.-Z.; Zhao, J. Analysis of triterpenoid saponins reveals insights into structural features associated with potent protein drug enhancement effects. Mol. Pharm. 2020, 17, 683–694. [Google Scholar] [CrossRef]
- Fleck, J.D.; Betti, A.H.; Silva, F.P.D.; Troian, E.A.; Olivaro, C.; Ferreira, F.; Verza, S. Saponins from Quillaja saponaria and Quillaja brasiliensis: Particular chemical characteristics and biological activities. Molecules 2019, 24, 171. [Google Scholar] [CrossRef]
- Erelen, Ş.; Bulkurcuoğlu, B.; Öksüz, M.; Nalbantsoy, A.; Sarıkahya, N. Development and characterization of plant-derived aristatoside C and davisianoside B saponin-loaded phytosomes with suppressed hemolytic activity. ChemistryOpen 2024, 13, e202300254. [Google Scholar] [CrossRef]
- Cai, J.; Wu, J.; Yu, X.; Wan, Z.; Yang, X. Interfacial assembly and rheology of multi-responsive glycyrrhizic acid at liquid interfaces. Soft Matter 2024, 20, 1173–1185. [Google Scholar] [CrossRef]
- Yu, X.; Zhao, Z.; Yan, X.; Xie, J.; Yu, Q.; Chen, Y. Extraction optimization of tea saponins from Camellia oleifera seed meal with deep eutectic solvents: Composition identification and properties evaluation. Food Chem. 2023, 427, 136681. [Google Scholar] [CrossRef]
- Sebben, D.A.; Semple, S.; Condina, M.; Dilmetz, B.A.; Hoffmann, P.; Claudie, D.; Krasowska, M.; Beattie, D.A. Extraction and surface activity of Australian native plant extracts: Alphitonia excelsa. Colloids Interfaces 2024, 8, 46. [Google Scholar] [CrossRef]
- Sochacki, M.; Vogt, O. Triterpenoid saponins from washnut (Sapindus mukorossi Gaertn.)—A source of natural surfactants and other active components. Plants 2022, 11, 2355. [Google Scholar] [CrossRef] [PubMed]
- Won, G.; Jung, J.H.; Sohn, E.J.; Park, J.E.; Kim, H.; Lee, H.; Shim, B.S.; Kim, S. Misaponin B induces G2/M arrest, cytokinesis failure and impairs autophagy. BioMed Res. Int. 2020, 2020, 5925094. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.R.; Sharif, S.R.; Bhuiya, M.d.A.M.; Hasan, M.; Sharma, S. In-vitro and in-silico anti-inflammatory activity of a common Bangladeshi fruit: An approach to find selective COX-2 inhibitors. Eur. J. Med. Plants 2024, 35, 373–383. [Google Scholar] [CrossRef]
- Fong, W.; Sadasivam, Y.; Belkhiri-Baines, A.; Pinfield, V.; Trybala, A. Evaluating Raw Albizia amara Plant Powder as a Plant-Derived Surface-Active Material. Colloids Interfaces 2025, 9, 81. [Google Scholar] [CrossRef]
- Narote, S. Formulation and evaluation of herbal shampoo. Int. J. Res. Appl. Sci. Eng. Technol. 2025, 13, 637–643. [Google Scholar] [CrossRef]
- Kotomenkova, O.; Koscheeva, E.; Anna, V. Analysis of the ingredient composition and investigation of the quality and safety of solid shampoos based on plant macerate. Russ. J. Resour. Conserv. Recycl. 2023, 10. [Google Scholar] [CrossRef]
- Yang, Z.; Li, W. Extraction and surface activity of tea saponin from puer tea seeds. IOP Conf. Ser. Earth Environ. Sci. 2020, 585, 012149. [Google Scholar] [CrossRef]
- Chen, Y.-F.; Yang, C.-H.; Chang, M.; Ciou, Y.-P.; Huang, Y.-C. Foam properties and detergent abilities of the saponins from Camellia oleifera. Int. J. Mol. Sci. 2010, 11, 4417–4425. [Google Scholar] [CrossRef]
- Tongbram, A.; Bhattacharyya, A. Surface properties and coffee drop formation of natural surfactant: A case study of Albizia procera. Tenside Surfactants Deterg. 2022, 60, 82–94. [Google Scholar] [CrossRef]
- Lin, F. Adsorption and dilational viscoelasticity of saponin at the α-pinene/water and air/water interfaces. Colloids Interfaces 2025, 9, 68. [Google Scholar] [CrossRef]
- Bochynek, M.; Lewiska, A.; Witwicki, M.; Dbczak, A.; Łukaszewicz, M. Formation and structural features of micelles formed by surfactin homologues. Front. Bioeng. Biotechnol. 2023, 11, 1211319. [Google Scholar] [CrossRef] [PubMed]
- Saxena, N.; Pal, N.; Ojha, K.; Dey, S.; Mandal, A. Synthesis, characterization, physical and thermodynamic properties of a novel anionic surfactant derived from Sapindus laurifolius. RSC Adv. 2018, 8, 24485–24499. [Google Scholar] [CrossRef] [PubMed]
- Ghagi, R. Study of functional properties of Sapindus mukorossi as a potential bio-surfactant. Indian J. Sci. Technol. 2011, 4, 530–533. [Google Scholar] [CrossRef]
- Wojto, P.; Szaniawska, M.; Hoysz, L.; Miller, R.; Szcze, A. Surface activity of natural surfactants extracted from Sapindus mukorossi and Sapindus trifoliatus soapnuts. Colloids Interfaces 2021, 5, 7. [Google Scholar] [CrossRef]
- Bustos, K.A.G.; Muñoz, S.S.; da Silva, S.S.; Alarcon, M.A.F.; Dos Santos, J.C.; Andrade, G.J.C.; Hilares, P.T. Saponin molecules from quinoa residues: Exploring their surfactant, emulsifying, and detergent properties. Molecules 2024, 29, 4928. [Google Scholar] [CrossRef]
- Rocha, V.A.; Muoz, S.S.; da Silva, S.S.; Alarcon, M.A.D.F.; dos Santos, J.C.; Andrade, G.C.; Hilares, R.T. Comparison of mono-rhamnolipids and di-rhamnolipids on microbial enhanced oil recovery (MEOR) applications. Biotechnol. Prog. 2020, 36, e2981. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, B.; Wang, Y.; Yang, Y.; Zhao, F. Increase proportion of dirhamnolipids biosynthesized from pseudomonas aeruginosa and evaluation of relationship between activity and dirhamnolipids proportion. J. Surfactants Deterg. 2024, 27, 813–821. [Google Scholar] [CrossRef]
- Nguyen, V.A.; Nguyen, T.T.; Hoang, H.H.; Cao, H.H. Improvement of detergency properties and anti-microbial action of biosoaps using saponin-rich extract and α-bisabolol essential oil. JST Eng. Technol. Sustain. Dev. 2023, 33, 9–17. [Google Scholar] [CrossRef]
- Hamed, R.; Alnadi, S.; Awadallah, A. The effect of enzymes and sodium lauryl sulfate on the surface tension of dissolution media: Toward understanding the solubility and dissolution of carvedilol. AAPS PharmSciTech 2020, 21, 146. [Google Scholar] [CrossRef]
- Rico, F.; Mazabel, A.P.; Egurrola, G.; Pulido, J.H.; Barrios, N.; Mrquez, R.; Garca, J. Meta-analysis and analytical methods in cosmetics formulation: A review. Cosmetics 2023, 11, 1. [Google Scholar] [CrossRef]
- Ricardo, F.; Pradilla, D.; Cruz, J.C.; Álvarez, Ó. Emerging emulsifiers: Conceptual basis for the identification and rational design of peptides with surface activity. Int. J. Mol. Sci. 2021, 22, 4615. [Google Scholar] [CrossRef] [PubMed]
- Adu, S.A.; Twigg, M.S.; Naughton, P.; Marchant, R.; Banat, I.M. Glycolipid biosurfactants in skincare applications: Challenges and recommendations for future exploitation. Molecules 2023, 28, 4463. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi-Ashtiani, H.-R.; Baldisserotto, A.; Cesa, E.; Manfredini, S.; Sedghi Zadeh, H.; Ghafori Gorab, M.; Khanahmadi, M.; Zakizadeh, S.; Buso, P.; Vertuani, S. Microbial biosurfactants as key multifunctional ingredients for sustainable cosmetics. Cosmetics 2020, 7, 46. [Google Scholar] [CrossRef]
- Dini, S.; Bekhit, A.E.A.; Roohinejad, S.; Vale, J.M.; Agyei, D. The physicochemical and functional properties of biosurfactants: A review. Molecules 2024, 29, 2544. [Google Scholar] [CrossRef]
- Nivetha, S.; Padmini, S.; Tamilselvi, S. A review on phytopharmacological properties of arappu. Int. Res. J. Pharm. 2017, 8, 28–32. [Google Scholar] [CrossRef]
- Waghole, V.; Divekar, V.; Gawai, N. A review: Formulation and evaluation of herbal shampoo. Int. J. Res. Appl. Sci. Eng. Technol. 2025, 13, 1154–1158. [Google Scholar] [CrossRef]
- Bhatt, T.; Solanki, V.; Barad, K.; Vaghela, J. Formulation and evaluation of herbal dry powder shampoo. Int. J. Multidiscip. Res. 2025, 8, 112–117. [Google Scholar] [CrossRef]
- Meshram, S.A.; Pardhi, S. Review on formulation and evaluation of herbal shampoo. World J. Biol. Pharm. Health Sci. 2025, 21, 565–571. [Google Scholar] [CrossRef]
- Kutlehria, A.; Surya, S.; Verma, D.K. Preparation and evaluation of herbal shampoo for dandruff and hairfall. Int. J. Pharm. Res. Appl. 2024, 9, 186–194. [Google Scholar] [CrossRef]
- Gupta, L. Formulation and evaluation of herbal shampoo from Spinacia oleracea leaves, Ipomoea batatas extracts. Int. J. Res. Appl. Sci. Eng. Technol. 2023, 11, 1088–1092. [Google Scholar] [CrossRef]
- Sajikumar, S.; Rajeshkumar, A.S.; Sundaram, M.; Ramasamy, K.M.S. Effectiveness, safety and tolerability of dheedhi herbal shampoo against alopecia and seborrheic dermatitis—A clinical perspective. J. Ayurvedic Herb. Med. 2020, 6, 145–148. [Google Scholar] [CrossRef]
- Sang, S.-H.; Liew, K.B.; Lee, S.-K.; Keng, J.-W.; Lee, S.-K.; Akowuah, G.A.; Tan, C.S.; Chew, Y.-L. Formulation of botanical shampoo infused with standardised mangosteen peel extract for healthy hair and scalp. Cosmetics 2023, 10, 109. [Google Scholar] [CrossRef]
- Khan, Y.H.; Imam, S.; Tasleem, F.; Abbas, T.; Perveen, R.; Siddiqui, N.; Abidi, S.; Azhar, I. Sustainable use of traditional plant extracts for the formulation of herbal shampoos. J. Hunan Univ. Nat. Sci. 2023, 50. [Google Scholar] [CrossRef]
- Oliveira, C.; Coelho, C.; Teixeira, J.A.; Ferreira-Santos, P.; Botelho, C. Nanocarriers as active ingredients enhancers in the cosmetic industry—The European and North America regulation challenges. Molecules 2022, 27, 1669. [Google Scholar] [CrossRef]
- Knight, J. Continuing animal tests on cosmetic ingredients for REACH in the EU. Altex 2021, 38, 653–668. [Google Scholar] [CrossRef]
- Gubitosa, J.; Rizzi, V.; Fini, P.; Cosma, P. Hair care cosmetics: From traditional shampoo to solid clay and herbal shampoo, a review. Cosmetics 2019, 6, 13. [Google Scholar] [CrossRef]
- Azmi, N.A.N.; Elgharbawy, A.A.M.; Motlagh, S.R.; Samsudin, N.; Salleh, H.M. Nanoemulsions: Factory for food, pharmaceutical and cosmetics. Processes 2019, 7, 617. [Google Scholar] [CrossRef]
- Pereira, T.F.; Borchardt, H.; Wanderley, W.F.; Vasconcelos, U.; Leite, I.F. Pequi pulp (Caryocar brasiliense) oil-loaded emulsions as cosmetic products for topical use. Polymers 2025, 17, 226. [Google Scholar] [CrossRef]
- Halla, N.; Fernandes, I.P.; Heleno, S.A.; Costa, P.; Boucherit-Otmani, Z.; Boucherit, K.; Rodrigues, A.E.; Ferreira, I.C.F.R.; Barreiro, M.F. Cosmetics preservation: A review on present strategies. Molecules 2018, 23, 1571. [Google Scholar] [CrossRef]
- Poddębniak, P.; Kalinowska-Lis, U. A survey of preservatives used in cosmetic products. Appl. Sci. 2024, 14, 1581. [Google Scholar] [CrossRef]
- Espinosa-Leal, C.A.; García-Lara, S. Current methods for the discovery of new active ingredients from natural products for cosmeceutical applications. Planta Medica 2019, 85, 535–551. [Google Scholar] [CrossRef] [PubMed]
- Michalak, M. Plant extracts as skin care and therapeutic agents. Int. J. Mol. Sci. 2023, 24, 15444. [Google Scholar] [CrossRef] [PubMed]
- Čiškaitė, U.; Bernatoniene, J. Innovative natural ingredients-based multiple emulsions: The effect on human skin moisture, sebum content, pore size and pigmentation. Molecules 2018, 23, 1428. [Google Scholar] [CrossRef]
- Ta, G.H.; Weng, C.; Leong, M.K. In silico prediction of skin sensitization: Quo vadis? Front. Pharmacol. 2021, 12, 655771. [Google Scholar] [CrossRef]
- Martín, R.S.; Briones, R. Quality control of commercial Quillaja (Quillaja saponaria Molina) extracts by reverse phase HPLC. Agriculture 2000, 80, 2063–2068. [Google Scholar] [CrossRef]
- Salminen, H.; Bischoff, S.; Weiss, J. Formation and stability of emulsions stabilized by Quillaja saponin-egg lecithin mixtures. J. Food Sci. 2020, 85, 1213–1222. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, Z.; Wang, X.; Kong, B.; Liu, Q.; Xia, X.; Liu, H. Characterization of nanoemulsions stabilized with different emulsifiers and their encapsulation efficiency for oregano essential oil: Tween 80, soybean protein isolate, tea saponin, and soy lecithin. Foods 2023, 12, 3183. [Google Scholar] [CrossRef]
- Dahlawi, S.M.A.; Nazir, W.; Iqbal, R.; Asghar, W.; Khalid, N. Formulation and characterization of oil-in-water nanoemulsions stabilized by crude saponins isolated from onion skin waste. RSC Adv. 2020, 10, 39700–39707. [Google Scholar] [CrossRef]
- Li, R.; Tan, Y.; Dai, T.; Zhang, R.; Fu, G.; Wan, Y.; Liu, C.; Mcclements, D. Bioaccessibility and stability of β-carotene encapsulated in plant-based emulsions: Impact of emulsifier type and tannic acid. Food Funct. 2019, 10, 7239–7252. [Google Scholar] [CrossRef]
- Najda, A.; Bains, A.; Klepacka, J.; Chawla, P. Woodfordia fruticosa extract nanoemulsion: Influence of processing treatment on droplet size and its assessment for in vitro antimicrobial and anti-inflammatory activity. Front. Nutr. 2022, 9, 944856. [Google Scholar] [CrossRef]
- Wang, Y.; Ai, C.; Wang, H.; Chen, C.; Teng, H.; Xiao, J.; Chen, L. Emulsion and its application in the food field: An update review. EFood 2023, 4, e102. [Google Scholar] [CrossRef]
- Cao, H.; Sarolu, O.; Karada, A.; Diaconeasa, Z.; Zoccatelli, G.; ConteJnior, C.A.; Gonzlez-Aguilar, G.A.; Ou, J.; Bai, W.; Zamarioli, C.M.; et al. Available technologies on improving the stability of polyphenols in food processing. Food Front. 2021, 2, 109–139. [Google Scholar] [CrossRef]
- McClements, D.J.; Bai, L.; Chung, C. Recent advances in the utilization of natural emulsifiers to form and stabilize emulsions. Annu. Rev. Food Sci. Technol. 2017, 8, 205–236. [Google Scholar] [CrossRef] [PubMed]
- Vatansever, S.; Chen, B.; Hall, C. Plant protein flavor chemistry fundamentals and techniques to mitigate undesirable flavors. Food Proteins 2024, 2, 33–57. [Google Scholar] [CrossRef]
- Lippolis, A.; Roland, W.S.U.; Bocova, O.; Pouvreau, L.; Trindade, L.M. The challenge of breeding for reduced off-flavor in faba bean ingredients. Front. Plant Sci. 2023, 14, 1286803. [Google Scholar] [CrossRef]
- Hodgins, C.L.; Salama, E.M.; Kumar, R.; Zhao, Y.; Roth, S.A.; Cheung, I.Z.; Chen, J.; Arganosa, G.; Warkentin, T.D.; Bhowmik, P.; et al. Creating saponin-free yellow pea seeds by CRISPR/Cas9-enabled mutagenesis on amyrin synthase. Plant Direct 2024, 8, e563. [Google Scholar] [CrossRef]
- Karolkowski, A.; Meudec, E.; Bruguire, A.; MitaineOffer, A.; Bouzidi, E.; Levavasseur, L.; Sommerer, N.; Briand, L.; Salles, C. Faba bean (Vicia faba L. Minor) bitterness: An untargeted metabolomic approach to highlight the impact of the non-volatile fraction. Metabolites 2023, 13, 964. [Google Scholar] [CrossRef]
- Tuccillo, F.; Kantanen, K.; Wang, Y.; Ramos-Daz, J.M.; Pulkkinen, M.; Edelmann, M.; Knaapila, A.; Jouppila, K.; Piironen, V.; Lampi, A.; et al. The flavor of faba bean ingredients and extrudates: Chemical and sensory properties. Food Res. Int. 2022, 162, 112036. [Google Scholar] [CrossRef]
- Gao, W.; Jiang, Z.; Du, X.; Zhang, F.; Liu, Y.; Bai, X.; Sun, G. Impact of surfactants on nanoemulsions based on fractionated coconut oil: Emulsification stability and in vitro digestion. J. Oleo Sci. 2020, 69, 227–239. [Google Scholar] [CrossRef]
- Ghallab, D.S.; Mustafa, R.; Mostafa, S.R.; ElShiekh, R.A.; Newehy, N.M.E. Yucca schidigera Roezl ex Ortgies (Mojave yucca): An updated review of its phytochemistry, ethnopharmacological, and pharmacological properties. Nat. Prod. Res. 2025, 1–12. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Y.; Ke, C.; Gao, X.; Liu, Z.; Chen, J. Comparison of structural and physicochemical characteristics of skin collagen from chum salmon (cold-water fish) and Nile tilapia (warm-water fish). Foods 2024, 13, 1213. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Huang, H.; Chen, H.; Lin, J.; Wang, Q. Food-grade nanoemulsions: Preparation, stability and application in encapsulation of bioactive compounds. Molecules 2019, 24, 4242. [Google Scholar] [CrossRef] [PubMed]
- McClements, D.J.; Das, A.K.; Dhar, P.; Nanda, P.K.; Chatterjee, N. Nanoemulsion-based technologies for delivering natural plant-based antimicrobials in foods. Front. Sustain. Food Syst. 2021, 5, 643208. [Google Scholar] [CrossRef]
- Awad, A.M.; Kumar, P.; Ismail-Fitry, M.R.; Jusoh, S.; Aziz, M.F.A.; Sazili, A.Q. Green extraction of bioactive compounds from plant biomass and their application in meat as natural antioxidant. Antioxidants 2021, 10, 1465. [Google Scholar] [CrossRef]
- Suba, B.G.; Forghani, B.; Abdollahi, M. Exploring Swedish pea varieties suitable for protein isolation, focusing on antinutrients and off-flavors. J. Food Compos. Anal. 2024, 128, 105988. [Google Scholar] [CrossRef]
- Pai, S.; Hebbar, A.; Selvaraj, S. A critical look at challenges and future scopes of bioactive compounds and their incorporations in the food, energy, and pharmaceutical sector. Environ. Sci. Pollut. Res. 2022, 29, 35518–35541. [Google Scholar] [CrossRef]
- Adamkiewicz, Ł.; Szeleszczuk, Ł. Review of applications of cyclodextrins as taste-masking excipients for pharmaceutical purposes. Molecules 2023, 28, 6964. [Google Scholar] [CrossRef]
- Hernández-Cruz, A.C.; LizardiMendoza, J.; Morales-Figueroa, G.; Lpez-Mata, M.A.; Guerrero-Encinas, I.; Gonzlez-Gonzlez, J.N.; Ayala-Zavala, J.F.; Tapia-Rodrguez, M.R.; Quihui-Cota, L. Extraction of Yucca schidigera with deep eutectic solvents: Bromatological, antioxidant, and antibacterial analysis. Int. J. Environ. Health Res. 2025, 1–15. [Google Scholar] [CrossRef]
- Suhag, R. Egg yolk, a multifunctional emulsifier: New insights on factors influencing and mechanistic pathways in egg yolk emulsification. Appl. Sci. 2024, 14, 9692. [Google Scholar] [CrossRef]
- Rashwan, A.K.; Osman, A.I.; Abdelshafy, A.M.; Mo, J.; Chen, W. Plant-based proteins: Advanced extraction technologies, interactions, physicochemical and functional properties, food and related applications, and health benefits. Crit. Rev. Food Sci. Nutr. 2023, 65, 667–694. [Google Scholar] [CrossRef] [PubMed]
- Berry, S.C.; Triplett, O.A.; Yu, L.-R.; Hart, M.E.; Jackson, L.; Tolleson, W. Microcalorimetric investigations of reversible staphylococcal enterotoxin unfolding. Toxins 2022, 14, 554. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.V.; Sunil, C.K.; Rawson, A.; Chidanand, D.V.; Venkatachlapathy, N.; Rawson, A. Modifying the plant proteins techno-functionalities by novel physical processing technologies: A review. Crit. Rev. Food Sci. Nutr. 2021, 63, 4070–4091. [Google Scholar] [CrossRef] [PubMed]
- Hamdi, A.; Viera, I.; Jiménez-Araujo, A.; Rodríguez-Arcos, R.; Guillén, R. Applications of saponin extract from asparagus roots as functional ingredient. Foods 2024, 13, 274. [Google Scholar] [CrossRef]
- Quezada, C.; Urra, M.; Mella, C.; Zúñiga, R.; Troncoso, E. Plant-based oil-in-water food emulsions: Exploring the influence of different formulations on their physicochemical properties. Foods 2024, 13, 513. [Google Scholar] [CrossRef]
- Kanlayavattanakul, M.; Mersni, D.; Lourith, N. Plant-derived saponins and their prospective for cosmetic and personal care products. Bot. Stud. 2024, 65, 32. [Google Scholar] [CrossRef]
- Nepal, B.; Stine, K.J. Glycoalkaloids: Structure, properties, and interactions with model membrane systems. Processes 2019, 7, 513. [Google Scholar] [CrossRef]
- Knudsen, D.L.; Jutfelt, F.; Sundh, H.; Sundell, K.; Koppe, W.; Frkiär, H. Dietary soya saponins increase gut permeability and play a key role in the onset of soyabean-induced enteritis in Atlantic salmon (Salmo salar L.). Br. J. Nutr. 2008, 100, 120–129. [Google Scholar] [CrossRef]
- Ohanenye, I.C.; Ekezie, F.-G.C.; Sarteshnizi, R.A.; Boachie, R.T.; Emenike, C.; Sun, X.; Nwachukwu, I.D.; Udenigwe, C.C. Legume seed protein digestibility as influenced by traditional and emerging physical processing technologies. Foods 2022, 11, 2299. [Google Scholar] [CrossRef]
- Salim, R.; Nehvi, I.B.; Mir, R.A.; Tyagi, A.; Ali, S.; Bhat, O.M. A review on anti-nutritional factors: Unraveling the natural gateways to human health. Front. Nutr. 2023, 10, 1215873. [Google Scholar] [CrossRef]
- Admassu, S. Potential health benefits and problems associated with phytochemicals in food legumes. East Afr. J. Sci. 2010, 3, 116–133. [Google Scholar] [CrossRef]
- Jiang, M.; Hong, C.; Zou, W.; Zheng, Y.; Lu, L.; Liu, Y.; Zhang, T.; Ding, Y. Recent advances in the anti-tumor activities of saponins through cholesterol regulation. Front. Pharmacol. 2025, 15, 1469392. [Google Scholar] [CrossRef] [PubMed]
- Das, T.; Banerjee, D.; Chakraborty, D.; Pakhira, M.C.; Shrivastava, B.; Kuhad, R.C. Saponin: Role in animal system. Veter. World 2012, 5, 248. [Google Scholar] [CrossRef]
- Vieira, E.D.F.; Gomes, A.; Gil, A.M.; Vasconcelos, M.W. Pulses benefits in children’s diets: A narrative review. J. Obes. Chronic Dis. 2021, 5, 13–22. [Google Scholar] [CrossRef]
- Younes, M.; Aquilina, G.; Castle, L.; Engel, K.; Fowler, P.; Fernndez, M.J.F.; Furst, P.; Grtler, R.; Gundert-Remy, U.; Husy, T.; et al. Reevaluation of quillaia extract (E 999) as a food additive and safety of the proposed extension of use. EFSA J. 2019, 17, e05622. [Google Scholar] [CrossRef]
- Younes, M.; Aquilina, G.; Castle, L.; Degen, G.H.; Engel, K.; Fowler, P.; Fernndez, M.J.F.; GundertRemy, U.; Grtler, R.; Husy, T.; et al. Follow-up of the reevaluation of quillaia extract (E 999) as a food additive and safety of the proposed extension of uses. EFSA J. 2024, 22, e8563. [Google Scholar] [CrossRef]
- Adu, S.A.; Naughton, P.; Marchant, R.; Banat, I.M. Microbial biosurfactants in cosmetic and personal skincare pharmaceutical formulations. Pharmaceutics 2020, 12, 1099. [Google Scholar] [CrossRef]
- Precup, G.; Marini, E.; Zakidou, P.; Beneventi, E.; Consuelo, C.; Fernndez, C.; Ruiz, E.G.; Laganaro, M.; Magani, M.; Mech, A.; et al. Novel foods, food enzymes, and food additives derived from food by-products of plant or animal origin: Principles and overview of the EFSA safety assessment. Front. Nutr. 2024, 11, 1390734. [Google Scholar] [CrossRef]
- Omara, T.; Kiprop, A.; Kosgei, V.J. Intraspecific variation of phytochemicals, antioxidant, and antibacterial activities of different solvent extracts of Albizia coriaria leaves from some agroecological zones of Uganda. Altern. Med. 2021, 2021, 2335454. [Google Scholar] [CrossRef]
- Kumar, A.P.N.; Nirmal, P.; Kumar, M.; Jose, A.; Tomer, V.; Oz, E.; Proestos, C.; Zeng, M.; Elobeid, T.; Sneha, K.; et al. Major phytochemicals: Recent advances in health benefits and extraction method. Molecules 2023, 28, 887. [Google Scholar] [CrossRef]
- Oyedoh, E.; Balogun, G.D.; Atapia, M.I.; Ossai, J.E.; Joseph, E.S. Optimization of saponin-based biosurfactants from banana and lemon peels. J. Appl. Sci. Environ. Manag. 2025, 29, 1633–1639. [Google Scholar] [CrossRef]
- Singh, R.D.; Kapila, S.; Ganesan, N.G.; Rangarajan, V. A review on green nanoemulsions for cosmetic applications with special emphasis on microbial surfactants as impending emulsifying agents. J. Surfactants Deterg. 2022, 25, 303–319. [Google Scholar] [CrossRef]
- Majnooni, M.B.; Fakhri, S.; Ghanadian, S.; Bahrami, G.; Mansouri, K.; Iranpanah, A.; Farzaei, M.; Mojarrab, M. Inhibiting angiogenesis by anti-cancer saponins: From phytochemistry to cellular signaling pathways. Metabolites 2023, 13, 323. [Google Scholar] [CrossRef]
- Kaggwa, B.; Kyeyune, H.; Munanura, E.; Anywar, G.U.; Lutoti, S.; Aber, J.; Bagoloire, L.K.; Weisheit, A.; Tolo, C.; Kamba, P.F.; et al. Safety and efficacy of medicinal plants used to manufacture herbal products with regulatory approval in Uganda: A cross-sectional study. Evid.-Based Complement. Altern. Med. 2022, 2022, 1304839. [Google Scholar] [CrossRef]
- Kumari, R.; Singha, L.P.; Shukla, P. Biotechnological potential of microbial bio-surfactants, their significance, and diverse applications. FEMS Microbes 2023, 4, xtad015. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Sadasivam, Y.; Pinfield, V.J.; Trybala, A. Albizia amara: A Potential Plant-Derived Surfactant for Cosmetic and Food Applications. Molecules 2026, 31, 81. https://doi.org/10.3390/molecules31010081
Sadasivam Y, Pinfield VJ, Trybala A. Albizia amara: A Potential Plant-Derived Surfactant for Cosmetic and Food Applications. Molecules. 2026; 31(1):81. https://doi.org/10.3390/molecules31010081
Chicago/Turabian StyleSadasivam, Yalini, Valerie J. Pinfield, and Anna Trybala. 2026. "Albizia amara: A Potential Plant-Derived Surfactant for Cosmetic and Food Applications" Molecules 31, no. 1: 81. https://doi.org/10.3390/molecules31010081
APA StyleSadasivam, Y., Pinfield, V. J., & Trybala, A. (2026). Albizia amara: A Potential Plant-Derived Surfactant for Cosmetic and Food Applications. Molecules, 31(1), 81. https://doi.org/10.3390/molecules31010081

