Synthesis, Structure and Dye Adsorption Properties of Wine-Rack-Type Supramolecular Macrocycles Based on Polyoxovanadate
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis and Structure of Crystals
2.2. Dye Adsorption Study
3. Materials and Methods
3.1. Materials and Physical Techniques
3.2. X-Ray Crystallography
3.3. Dyes Adsorption Study
3.4. Synthesis of WR-VMOP-1
3.5. Synthesis of WR-VMOP-2
3.6. Synthesis of WR-VMOP-3
3.7. Synthesis of WR-VMOP-4
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, Y.B.; Lu, Y.F.; Liu, A.; Zhang, Z.-Y.; Li, C.J.; Sue, A.C.-H. Macrocycle with Equatorial Coordination Sites Provides New Opportunity for Structure-Diverse Metallacages. Molecules 2023, 28, 2537. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.-W.; Huang, Z.-J.; Li, Y.-X.; Wu, X.M.; Shi, W.; Zhang, Y.-B.; Ma, X.M.; Ouyang, G.F.; Ye, B.-H.; Liu, G.-F.; et al. An Ultrastable, Easily Scalable and Regenerable Macrocycle-Based Hydrogen-Bonded Organic Framework. CCS Chem. 2025, 7, 293–306. [Google Scholar] [CrossRef]
- Yang, M.; Qiu, F.; El-Sayed, M.E.-S.; Wang, W.; Du, S.; Su, K.; Yuan, D. Water-stable hydrazone-linked porous organic cages. Chem. Sci. 2021, 12, 13307–13315. [Google Scholar] [CrossRef] [PubMed]
- Ilic, S.; May, A.M.; Usov, P.M.; Cornell, H.D.; Gibbons, B.; Celis-Salazar, P.; Cairnie, D.R.; Alatis, J.; Slebodnick, C.; Morris, A.J. An Aluminum-Based Metal–Organic Cage for Cesium Capture. Inorg. Chem. 2022, 61, 6604–6611. [Google Scholar] [CrossRef]
- Sundar, A.; Bhattacharya, S.; Oberstein, J.; Ma, X.; Bassil, B.S.; Nisar, T.; Taffa, D.H.; Wark, M.; Wagner, V.; Kortz, U. Organically Functionalized Mixed-Valent Polyoxo-30-molybdate Wheel and Neutral Tetramolybdenum(V) Oxo Cluster. Inorg. Chem. 2022, 61, 11524–11528. [Google Scholar] [CrossRef]
- Øien-Ødegaard, S.; Bazioti, C.; Redekop, E.A.; Prytz, Ø.; Lillerud, K.P.; Olsbye, U. A toroidal Zr70 oxysulfate cluster and its diverse packing structures. Angew. Chem. Int. Ed. 2020, 59, 21397–21402. [Google Scholar] [CrossRef]
- Tian, Y.-Q.; Dai, L.-F.; Mu, W.-L.; Yu, W.-D.; Yan, J.; Liu, C. Atomically accurate site-specific ligand tailoring of highly acid- and alkali-resistant Ti(IV)-based metallamacrocycle for enhanced CO2 photoreduction. Chem. Sci. 2023, 14, 14280–14289. [Google Scholar] [CrossRef]
- Li, Z.; Yang, Z.Q.; Zhang, Y.N.; Yang, B.; Yang, Y.-W. Synthesis of an Acidochromic and Nitroaromatic Responsive Hydrazone-Linked Pillararene Framework by a Macrocycle-To-Framework Strategy. Angew. Chem. Int. Ed. 2022, 61, e202206144. [Google Scholar] [CrossRef]
- Li, P.F.; Jia, Y.W.; Chen, P.K. Design and Synthesis of New Type of Macrocyclic Architectures Used for Optoelectronic Materials and Supramolecular Chemistry. Chem. Eur. J. 2023, 29, e202300300. [Google Scholar] [CrossRef]
- Abdurakhmanova, E.R.; Mondal, D.; Jędrzejewska, H.; Cmoch, P.; Danylyuk, O.; Chmielewski, M.J.; Szumna, A. Supramolecular umpolung: Converting electron-rich resorcin[4]arenes into potent CH-bonding anion receptors and transporters. Chem 2024, 10, 1910–1924. [Google Scholar] [CrossRef]
- Zeng, Q.X.; Wang, K.; Zou, B. Negative Linear Compressibility Response to Pressure in Multitype Wine-Rack Metal–Organic Frameworks. ACS Mater. Lett. 2020, 2, 291–295. [Google Scholar] [CrossRef]
- Auras, F.; Ascherl, L.; Bon, V.; Vornholt, S.M.; Krause, S.; Döblinger, M.; Bessinger, D.; Reuter, S.; Chapman, K.W.; Kaskel, S.; et al. Dynamic two-dimensional covalent organic frameworks. Nat. Chem. 2024, 16, 1373–1380. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-C.; Zhao, J.-W.; Streb, C.; Song, Y.-F. Recent advances on high-nuclear polyoxometalate clusters. Coord. Chem. Rev. 2022, 471, 214734. [Google Scholar] [CrossRef]
- Kondinski, A.; Rasmussen, M.; Mangelsen, S.; Pienack, N.; Simjanoski, V.; Nather, C.; Stares, D.L.; Schalley, C.A.; Bensch, W. Composition-driven archetype dynamics in polyoxovanadates. Chem. Sci. 2022, 13, 6397–6412. [Google Scholar] [CrossRef] [PubMed]
- Fang, R.B.; Zhang, D.; Dong, J.; Feng, Y.Q.; Liu, C.P.; Yao, L.Y.; Chi, Y.N.; Hu, C.W. Open Hollow Polyoxovanadate Cage based on {Nb(V5)} Pentagons with Size-Selective Encapsulation Properties. Chem. Commun. 2025. advance article. [Google Scholar] [CrossRef]
- Zhang, T.; Hou, Y.H.; Hou, B.S.; Zhao, L.; Wang, X.L.; Qin, C.; Su, Z.M. High-nuclear polyoxovanadates assembled from pentagonal building blocks. Chem. Commun. 2022, 58, 11111. [Google Scholar] [CrossRef]
- Xiong, X.L.; Fu, Y.M.; Wu, S.X.; Qin, C.; Wang, X.L.; Su, Z.M. Two High-Nuclear Wheel-Hub-Shaped Transition-Metal-Doped Polyoxovanadates. Inorg. Chem. 2024, 63, 14296–14300. [Google Scholar] [CrossRef]
- Mahimaidoss, M.B.; Krasnikov, S.A.; Reck, L.; Onet, C.I.; Breen, J.M.; Zhu, N.Y.; Marzec, B.; Shvets, I.V.; Schmitt, W. Homologous size-extension of hybrid vanadate capsules—Solid state structures, solution stability and surface deposition. Chem. Commun. 2014, 50, 2265–2267. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Wojtas, L.; Zaworotko, M.J. Organic–inorganic hybrid polyhedra that can serve as supermolecular building blocks. Chem. Sci. 2014, 5, 927–931. [Google Scholar] [CrossRef]
- Zhang, Y.-T.; Wang, X.-L.; Zhou, E.-L.; Wu, X.-S.; Song, B.-Q.; Shao, K.-Z.; Su, Z.-M. Polyoxovanadate-based organic–inorganic hybrids: From {V5O9Cl} clusters to nanosized octahedral cages. Dalton Trans. 2016, 45, 3698–3701. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Gan, H.M.; Qin, C.; Wang, X.L.; Su, Z.M.; Zaworotko, M.J. Self-Assembly of Goldberg Polyhedra from a Concave [WV5O11(RCO2)5(SO4)]3− Building Block with 5-Fold Symmetry. J. Am. Chem. Soc. 2018, 140, 17365–17368. [Google Scholar] [CrossRef] [PubMed]
- Gan, H.M.; Bao, L.Y.; Xu, N.; Hou, B.S.; Wang, X.L.; Su, Z.M. Self-Assembly Engineering of Fullerene-Like Polyhedra: V60, V66, V72 From {MV5} Pentagonal Second Building Block. Adv. Sci. 2025, 2408863. [Google Scholar] [CrossRef]
- Zhang, Y.-T.; Wang, X.-L.; Li, S.-B.; Gong, Y.-R.; Song, B.-Q.; Shao, K.-Z.; Su, Z.-M. Anderson-like alkoxo-polyoxovanadate clusters serving as unprecedented second building units to construct metal–organic polyhedral. Chem. Commun. 2016, 52, 9632–9635. [Google Scholar] [CrossRef]
- Gong, Y.R.; Qin, C.; Zhang, Y.T.; Sun, C.Y.; Pan, Q.H.; Wang, X.L.; Su, Z.M. Face-Directed Assembly of Molecular Cubes by In Situ Substitution of a Predetermined Concave Cluster. Angew. Chem. Int. Ed. 2020, 59, 22034–22038. [Google Scholar] [CrossRef]
- Hou, B.S.; Gu, X.Y.; Gan, H.M.; Zheng, H.Y.; Zhu, Y.; Wang, X.L.; Su, Z.M. Face-Directed Construction of a Metal–Organic Isohedral Tetrahedron for the Highly Efficient Capture of Environmentally Toxic Oxoanions and Iodine. Inorg. Chem. 2022, 61, 7103–7110. [Google Scholar] [CrossRef]
- Augustyniak, A.W.; Fandzloch, M.; Domingo, M.; Łakomskab, I.; Navarro, J.A.R. A vanadium(IV) pyrazolate metal–organic polyhedron with permanent porosity and adsorption selectivity. Chem. Commun. 2015, 51, 14724–14727. [Google Scholar] [CrossRef]
- Spandl, J.; Brüdgam, I.; Hartl, H. Solvothermal Synthesis of a 24-Nuclear, Cube-Shaped Squarato-oxovanadium(IV) Framework: [N(nBu)4]8[V24O24(C4O4)12(OCH3)32]. Angew. Chem. Int. Ed. 2001, 40, 4018–4020. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Gao, W.-Y.; Wojtas, L.; Zhang, Z.J.; Zaworotko, M.J. A new family of anionic organic–inorganic hybrid doughnut-like nanostructures. Chem. Commun. 2015, 51, 9223–9226. [Google Scholar] [CrossRef]
- Wu, S.-X.; Yang, Y.; Qin, C.; Hou, Y.-H.; Wang, X.-L.; Su, Z.-M. Organophosphate functionalized of {Mo240} polyoxomolybdate dodecahedra. Tungsten 2023, 5, 247–253. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Wang, Y.; Li, L.; Xu, N.; Wang, X.L. Anderson-type polyoxometalate-based complexes constructed from a new ‘V’-like bis-pyridine–bisamide ligand for selective adsorption of organic dyes and detection of Cr(VI) and Fe(III) ions. Inorg. Chem. Front. 2021, 8, 4458–4466. [Google Scholar] [CrossRef]
- Yang, Y.; Fu, Y.M.; Wu, S.X.; Zhao, L.; Qin, C.; Wang, X.L.; Su, Z.M. Endohedral Functionalization for Structural Transformation of Polyoxovanadate-Based Metal–Organic Cube. Inorg. Chem. 2023, 62, 648–652. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Wang, X.L.; Li, S.B.; Song, B.Q.; Shao, K.Z.; Su, Z.M. Ligand-Directed Assembly of Polyoxovanadate-Based Metal–Organic Polyhedra. Inorg. Chem. 2016, 55, 8770–8775. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bate, N.; Hou, B.; Gan, H. Synthesis, Structure and Dye Adsorption Properties of Wine-Rack-Type Supramolecular Macrocycles Based on Polyoxovanadate. Molecules 2025, 30, 2075. https://doi.org/10.3390/molecules30092075
Bate N, Hou B, Gan H. Synthesis, Structure and Dye Adsorption Properties of Wine-Rack-Type Supramolecular Macrocycles Based on Polyoxovanadate. Molecules. 2025; 30(9):2075. https://doi.org/10.3390/molecules30092075
Chicago/Turabian StyleBate, Nasen, Baoshan Hou, and Hongmei Gan. 2025. "Synthesis, Structure and Dye Adsorption Properties of Wine-Rack-Type Supramolecular Macrocycles Based on Polyoxovanadate" Molecules 30, no. 9: 2075. https://doi.org/10.3390/molecules30092075
APA StyleBate, N., Hou, B., & Gan, H. (2025). Synthesis, Structure and Dye Adsorption Properties of Wine-Rack-Type Supramolecular Macrocycles Based on Polyoxovanadate. Molecules, 30(9), 2075. https://doi.org/10.3390/molecules30092075