Self-Supporting Sn-Based Carbon Nanofiber Anodes for High-Performance Lithium-Ion Batteries
Abstract
1. Introduction
2. Results and Discussion
2.1. Effect of PAN/PVP Mass Ratio on Viscosity and Conductivity of Spinning Solutions
2.2. Effect of PAN/PVP Mass Ratio on Morphology of Electrospun Nfms
2.3. Morphological and Structural Analysis of Sn-C NFMs
2.4. Electrochemical Performance of Sn-C NFMs
3. Materials and Methods
3.1. Materials
3.2. Preparation of Sn-C NFM Self-Supporting Anode
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xia, X.; Qian, X.Y.; Chen, C.; Li, W.Y.; He, D.F.; He, G.Y.; Chen, H.Q. Recent progress of Si-based anodes in the application of lithium-ion batteries. J. Energy Storage 2023, 72, 28. [Google Scholar] [CrossRef]
- Liu, Y.C.; Liu, Y.G.; Zhu, B.; Wang, Z.K.; Zhang, X.; Wu, X.W. Multilayer Ti3C2Tx-loaded CoOHF composite structures for high-performance lithium-ion batteries. Mater. Res. Bull. 2024, 179, 9. [Google Scholar] [CrossRef]
- Zhao, J.K.; Wang, B.; Zhan, Z.H.; Hu, M.Y.; Cai, F.P.; Swierczek, K.; Yang, K.M.; Ren, J.N.; Guo, Z.H.; Wang, Z.L. Boron-doped three-dimensional porous carbon framework/carbon shell encapsulated silicon composites for high-performance lithium-ion battery anodes. J. Colloid Interface Sci. 2024, 664, 790–800. [Google Scholar] [CrossRef] [PubMed]
- Sui, D.; Yao, M.; Si, L.Q.; Yan, K.; Shi, J.G.; Wang, J.S.; Xu, C.C.; Zhang, Y.S. Biomass-derived carbon coated SiO2 nanotubes as superior anode for lithium-ion batteries. Carbon 2023, 205, 510–518. [Google Scholar] [CrossRef]
- Patrike, A.; Karbhal, I.; Wasnik, K.; Torris, A.; Maibam, A.; Krishnamurty, S.; Shelke, M. High rate, high temperature, dendrite free plating/stripping of Li in 3-dimensional honeycomb boron carbon nitride to realize an ultrastable lithium metal anode. J. Energy Storage 2023, 68, 12. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Wen, X.; Zhang, X.H.; Yang, C.; Wang, L.H.; Zhou, L.F.; Li, Z.H.; Deng, H.B.; Li, J. Effect of carbon modification on the structure and electrochemical properties of recycled graphite anode materials. J. Mater. Sci.-Mater. Electron. 2023, 34, 12. [Google Scholar] [CrossRef]
- Choi, W.; Oh, S.; Hwang, S.; Chae, S.; Park, H.; Lee, W.; Woo, C.; Dong, X.; Choi, K.H.; Ahn, J.; et al. One-dimensional van der Waals transition metal chalcogenide as an anode material for advanced lithium-ion batteries. J. Mater. Chem. A 2024, 12, 7122–7131. [Google Scholar] [CrossRef]
- Su, Y.; Lei, X.C.; Han, Z.; Liu, H.W.; Xiao, J.H.; Su, Y.P.; Ren, S.Y.; Lin, Y.T.; Hu, Q.M.; Yang, R.; et al. Structural Reversibility of Nanoscaled Sn Anodes. Nano Lett. 2024, 24, 5332–5341. [Google Scholar] [CrossRef]
- Rodriguez, J.R.; Hamann, H.J.; Mitchell, G.M.; Ortalan, V.; Gribble, D.; Xiong, B.C.; Pol, V.G.; Ramachandran, P.V. Interconnected Sn@SnO2 Nanoparticles as an Anode Material for Lithium-Ion Batteries. ACS Appl. Nano Mater. 2023, 6, 11070–11076. [Google Scholar] [CrossRef]
- Dubey, R.J.C.; Sasikumar, P.V.W.; Krumeich, F.; Blugan, G.; Kuebler, J.; Kravchyk, K.V.; Graule, T.; Kovalenko, M.V. Silicon Oxycarbide-Tin Nanocomposite as a High-Power-Density Anode for Li-Ion Batteries. Adv. Sci. 2019, 6, 9. [Google Scholar] [CrossRef]
- Liu, H.; Wang, S.Z.; Zhao, J.A.; Zhang, B.Q.; Liu, L.; Bao, R.; Jing, Z.F. Sn-based anode materials for lithium-ion batteries: From mechanism to modification. J. Energy Storage 2024, 80, 20. [Google Scholar] [CrossRef]
- Wu, P.F.; Sun, J.N.; Wu, Y.F.; Xu, B.B.; Li, H.J.; Liu, A.H. Hydrangea-like SnS2/SnO2 heterostructure and voltage control for high capacity and stable lithium ion battery. J. Energy Storage 2024, 97, 7. [Google Scholar] [CrossRef]
- Li, Z.; Yin, Q.F.; Hu, W.W.; Zhang, J.W.; Guo, J.H.; Chen, J.P.; Sun, T.H.; Du, C.Q.; Shu, J.; Yu, L.G.; et al. Tin/tin antimonide alloy nanoparticles embedded in electrospun porous carbon fibers as anode materials for lithium-ion batteries. J. Mater. Sci. 2019, 54, 9025–9033. [Google Scholar] [CrossRef]
- Zhang, J.H.; Li, L.L.; Chen, J.Q.; He, N.N.; Yu, K.F.; Liang, C. Controllable SnO2/ZnO@PPy hollow nanotubes prepared by electrospinning technology used as anode for lithium ion battery. J. Phys. Chem. Solids 2021, 150, 9. [Google Scholar] [CrossRef]
- Yu, B.H.; Liu, Y.C.; Zhu, M.Z.; Sun, Y.M.; Ma, M. Multilayered SnP2O7/Reduced Graphene Oxide Architecture with High-Rate Lithium- and Sodium-Ion Storage. ACS Appl. Energ. Mater. 2024, 7, 2681–2689. [Google Scholar] [CrossRef]
- Tout, W.; Mateos, M.; Zhang, J.X.; Oubla, M.; Emery, N.; Leroy, E.; Dubot, P.; El Moursli, F.C.; Edfouf, Z.; Cuevas, F. Unraveling the energy storage mechanism in nanostructured SnHPO3 anode through advanced operando and ex-situ characterizations. J. Energy Storage 2025, 112, 10. [Google Scholar] [CrossRef]
- Idrissi, S.; Oubla, M.; Edfouf, Z.; Moursli, F.C.E. Investigation of the lithiation mechanism of tin phosphite SnHPO3 as anode for Lithium-ion batteries. J. Energy Storage 2024, 75, 10. [Google Scholar] [CrossRef]
- Li, Y.R.; Liu, X.Y.; Zhang, J.W.; Yub, H.; Zhang, J.W. Carbon-coated Si/N-doped porous carbon nanofibre derived from metal-organic frameworks for Li-ion battery anodes. J. Alloy. Compd. 2022, 902, 7. [Google Scholar] [CrossRef]
- Yang, S.; Pei, C.Y.; Zhang, D.M.; Sun, B.; Li, P.J.; Li, T.; Ni, S.B. Hierarchical Porous N-Doped Carbon Nanofibers with Encapsulated Li3VO4 Nanoparticles for Lithium-Ion Storage. ACS Appl. Nano Mater. 2024, 7, 827–835. [Google Scholar] [CrossRef]
- Zhou, X.H.; Su, K.M.; Kang, W.M.; Cheng, B.W.; Li, Z.H.; Jiang, Z. Locking metal sulfide nanoparticles in interconnected porous carbon nanofibers with protective macro -porous skin as freestanding anodes for lithium ion batteries. Chem. Eng. J 2020, 397, 10. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Ying, H.J.; Huang, P.F.; Zhang, S.L.; Zhang, Z.; Yang, T.T.; Han, W.Q. Porous Si decorated on MXene as free-standing anodes for lithium-ion batteries with enhanced diffusion properties and mechanical stability. Chem. Eng. J 2023, 451, 10. [Google Scholar] [CrossRef]
- Ding, Y.Y.; Li, P.P.; Wang, J.S.; Li, X.; Liu, Y.; Bai, H.C.; Zhang, H. Rationally designed rGO@CNTs@CNFs film as self-supporting binder-free Si electrodes for high-performance lithium-ion batteries. J. Colloid Interface Sci. 2023, 631, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.J.; Tao, J.; Liu, Z.J.; Yang, Y.H.; Yu, L.; Zhang, M.; Wang, F.; Ding, Y. Ultra-stable and high capacity flexible lithium-ion batteries based on bimetallic MOFs derivatives aiming for wearable electronic devices. Chem. Eng. J 2021, 417, 9. [Google Scholar] [CrossRef]
- Roy, S.; Panda, P.; Barman, S. Electrospun highly porous carbon nitride-carbon nanofibers for high performance supercapacitor application. J. Energy Storage 2024, 91, 12. [Google Scholar] [CrossRef]
- Zhang, B.; Yu, Y.; Xu, Z.L.; Abouali, S.; Akbari, M.; He, Y.B.; Kang, F.Y.; Kim, J.K. Correlation Between Atomic Structure and Electrochemical Performance of Anodes Made from Electrospun Carbon Nanofiber Films. Adv. Energy Mater. 2014, 4, 9. [Google Scholar] [CrossRef]
- Li, Y.R.; Ding, T.Q.; Xu, X.B.; Chakir, S.; Ding, Y.; Zhu, S.F.; Mei, J.; Wang, H.T.; Wang, X.B. Synergistic effect of pore generation and nitrogen doping on the enhanced CO2 capture and selectivity of carbon nanofibers. J. Environ. Chem. Eng. 2024, 12, 10. [Google Scholar] [CrossRef]
- Kang, Y.T.; Chen, J.H.; Feng, S.S.; Zhou, H.X.; Zhou, F.Q.; Low, Z.X.; Zhong, Z.X.; Xing, W.H. Efficient removal of high-temperature particulate matters via a heat resistant and flame retardant thermally-oxidized PAN/PVP/SnO2 nanofiber membrane. J. Membr. Sci. 2022, 662, 11. [Google Scholar] [CrossRef]
- Huang, Z.M.; Zhang, Y.Z.; Kotaki, M.; Ramakrishna, S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 2003, 63, 2223–2253. [Google Scholar] [CrossRef]
- Eda, G.; Shivkumar, S. Bead structure variations during electrospinning of polystyrene. J. Mater. Sci. 2006, 41, 5704–5708. [Google Scholar] [CrossRef]
- Ye, C.W.; Xu, L. Heteroatom-doped porous carbon derived from zeolite imidazole framework/polymer core-shell fibers as an electrode material for supercapacitor. Compos. Pt. B-Eng. 2021, 225, 11. [Google Scholar] [CrossRef]
- Yan, X.M.; Liang, S.T.; Shi, H.T.; Hu, Y.L.; Liu, L.Y.; Xu, Z.W. Nitrogen-enriched carbon nanofibers with tunable semi-ionic C-F bonds as a stable long cycle anode for sodium-ion batteries. J. Colloid Interface Sci. 2021, 583, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.P.; Jin, L.G.; Zhu, S.L.; Mao, C.Y.; Wu, S.L.; Wang, C.F.; Zheng, Y.F.; Li, Z.Y.; Jiang, H.; Cui, Z.D.; et al. Motion-Activating Pliable Carbon Nanofiber for Smart Mechanosensitive Sensing and Antibacterial Protection. Adv. Funct. Mater. 2025, 35, 14. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, Y.S.; Chen, K.; Liu, X.; Yi, T.F.; Chen, L.F. Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Phys.-Chim. Sin. 2024, 40, 11. [Google Scholar] [CrossRef]
- Yang, C.; Ren, J.G.; Zheng, M.S.; Zhang, M.Y.; Zhong, Z.; Liu, R.Q.; Huang, J.; Lan, J.L.; Yu, Y.H.; Yang, X.P. High-level N/P co-doped Sn-carbon nanofibers with ultrahigh pseudocapacitance for high-energy lithium-ion and sodium-ion capacitors. Electrochim. Acta 2020, 359, 11. [Google Scholar] [CrossRef]
- Lu, X.M.; Chen, Y.B.; Tian, Q.H.; Zhang, W.; Sui, Z.Y.; Chen, J.Z. Enabling improved cycling stability of hollow SnO2/C composite anode for lithium-ion battery by constructing a built-in porous carbon support. Appl. Surf. Sci. 2021, 537, 8. [Google Scholar] [CrossRef]
- Alkhouzaam, A.; Qiblawey, H.; Khraisheh, M.; Atieh, M.; Al-Ghouti, M. Synthesis of graphene oxides particle of high oxidation degree using a modified Hummers method. Ceram. Int. 2020, 46, 23997–24007. [Google Scholar] [CrossRef]
- Wang, J.; Liu, H.Y.; Diao, J.Y.; Gu, X.M.; Wang, H.H.; Rong, J.F.; Zong, B.N.; Su, D.S. Size-controlled nitrogen-containing mesoporous carbon nanospheres by one-step aqueous self-assembly strategy. J. Mater. Chem. A 2015, 3, 2305–2313. [Google Scholar] [CrossRef]
- Xin, Y.; Mou, H.Y.; Miao, C.; Nie, S.Q.; Wen, M.Y.; He, G.W.; Xiao, W. Encapsulating Sn-Cu alloy particles into carbon nanofibers as improved performance anodes for lithium-ion batteries. J. Alloy. Compd. 2022, 922, 10. [Google Scholar] [CrossRef]
- Liang, X.Q.; Wang, J.J.; Zhang, S.Y.; Wang, L.Y.; Wang, W.F.; Li, L.Y.; Wang, H.F.; Huang, D.; Zhou, W.Z.; Guo, J. Fabrication of uniform Si-incorporated SnO2 nanoparticles on graphene sheets as advanced anode for Li-ion batteries. Appl. Surf. Sci. 2019, 476, 28–35. [Google Scholar] [CrossRef]
- Thomas, R.; Rao, G.M. SnO2 nanowire anchored graphene nanosheet matrix for the superior performance of Li-ion thin film battery anode. J. Mater. Chem. A 2015, 3, 274–280. [Google Scholar] [CrossRef]
- Badadhe, S.S.; Yadav, P.; Suryawanshi, S.; More, M.A. Facile synthesis of nanocomposites of CNF-Sn and C-Sn microspheres: Prospective field emitter. J. Alloy. Compd. 2022, 907, 8. [Google Scholar] [CrossRef]
- Kuang, H.F.; Zhang, H.Q.; Liu, X.H.; Chen, Y.D.; Zhang, W.G.; Chen, H.; Ling, Q.D. Microwave-assisted synthesis of NiCo-LDH/graphene nanoscrolls composite for supercapacitor. Carbon 2022, 190, 57–67. [Google Scholar] [CrossRef]
- Wang, J.; Ding, W.F.; Yin, J.; Xu, L. Enhancing lithium storage by reticulated RGO as a buffer layer in silicon-carbon composites. J. Energy Storage 2024, 99, 10. [Google Scholar] [CrossRef]
- Yao, W.Q.; Xu, J.; Cao, Y.J.; Meng, Y.F.; Wu, Z.L.; Zhan, L.; Wang, Y.L.; Zhang, Y.L.; Manke, I.; Chen, N.; et al. Dynamic Intercalation-Conversion Site Supported Ultrathin 2D Mesoporous SnO2/SnSe2 Hybrid as Bifunctional Polysulfide Immobilizer and Lithium Regulator for Lithium-Sulfur Chemistry. ACS Nano 2022, 16, 10783–10797. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, K.N.; Sun, C.L.; Yu, R.H.; Zhuang, Z.C.; Li, J.T.; Xu, W.N.; Wang, C.M.; Xu, W.W.; Mai, L.Q. Compact Sn/SnO2 microspheres with gradient composition for high volumetric lithium storage. Energy Stor. Mater 2020, 25, 376–381. [Google Scholar] [CrossRef]
- Spada, D.; Bruni, P.; Ferrari, S.; Albini, B.; Galinetto, P.; Berbenni, V.; Girella, A.; Milanese, C.; Bini, M. Self-Supported Fibrous Sn/SnO2@C Nanocomposite as Superior Anode Material for Lithium-Ion Batteries. Materials 2022, 15, 919. [Google Scholar] [CrossRef]
- Sun, L.; Si, H.C.; Zhang, Y.X.; Shi, Y.; Wang, K.; Liu, J.G.; Zhang, Y.H. Sn-SnO2 hybrid nanoclusters embedded in carbon nanotubes with enhanced electrochemical performance for advanced lithium ion batteries. J. Power Sources 2019, 415, 126–135. [Google Scholar] [CrossRef]
- Xu, L.P.; Kim, C.; Shukla, A.K.; Dong, A.G.; Mattox, T.M.; Milliron, D.J.; Cabana, J. Monodisperse Sn Nanocrystals as a Platform for the Study of Mechanical Damage during Electrochemical Reactions with Li. Nano Lett. 2013, 13, 1800–1805. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, H.B.; Liu, B.; Lou, X.W. Formation of porous SnO2 microboxes via selective leaching for highly reversible lithium storage. Energy Environ. Sci. 2014, 7, 1013–1017. [Google Scholar] [CrossRef]
- Lin, J.; Peng, Z.W.; Xiang, C.S.; Ruan, G.D.; Yan, Z.; Natelson, D.; Tour, J.M. Graphene Nanoribbon and Nanostructured SnO2 Composite Anodes for Lithium Ion Batteries. ACS Nano 2013, 7, 6001–6006. [Google Scholar] [CrossRef]
- Yang, M.; Liu, L.; Yan, H.X.; Zhang, W.; Su, D.; Wen, J.X.; Liu, W.; Yuan, Y.T.; Liu, J.F.; Wang, X.Y. Porous nitrogen-doped Sn/C film as free-standing anodes for lithium ion batteries. Appl. Surf. Sci. 2021, 551, 7. [Google Scholar] [CrossRef]
- Xu, Z.L.; Fan, L.; Ni, X.Y.; Han, J.; Guo, R. Sn-encapsulated N-doped porous carbon fibers for enhancing lithium-ion battery performance. RSC Adv. 2019, 9, 8753–8758. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.P.; Xue, X.L.; Hu, Y.; Kong, W.H.; Lin, H.N.; Chen, T.; Jin, Z. Intermetallic SnSb nanodots embedded in carbon nanotubes reinforced nanofabric electrodes with high reversibility and rate capability for flexible Li-ion batteries. Nanoscale 2019, 11, 13282–13288. [Google Scholar] [CrossRef]
- Wang, H.Q.; Zhang, X.H.; Wen, J.B.; Huang, Y.G.; Lai, F.Y.; Li, Q.Y. Preparation of Spherical Sn/SnO2/Porous Carbon Composite Materials as Anode Material for Lithium-Ion Batteries. J. Mater. Eng. Perform. 2015, 24, 1856–1864. [Google Scholar] [CrossRef]
- Le, Q.D.; Ngoc, P.N.; Huu, H.; Nguyen, T.H.T.; Van, T.N.; Thi, L.N.; Le, M.K.; Tran, V.; Le, M.L.P.; Vo, V. A novel anode Sn/g-C3N4 composite for lithium-ion batteries. Chem. Phys. Lett. 2022, 796, 7. [Google Scholar] [CrossRef]
- Ji, H.M.; Ma, C.; Ding, J.J.; Yang, J.; Yang, G.; Chao, Y.M.; Yang, Y. Complementary stabilization by core/sheath carbon nanofibers/spongy carbon on submicron tin oxide particles as anode for lithium-ion batteries. J. Power Sources 2019, 413, 42–49. [Google Scholar] [CrossRef]
- Zha, J.X.; Zheng, D.Y.; Wang, Y.S.; Xie, Z.L.; Wu, G.; Qi, J.Q.; Wei, F.X.; Meng, Q.K.; Xue, X.L.; Zhao, D.Y.; et al. Coaxial electrospinning synthesis free-standing Sn/TiO2 flexible carbon fibers with sheath/core structure for advanced flexible lithium/potassium-ion batteries. Electrochim. Acta 2024, 500, 14. [Google Scholar] [CrossRef]
Label | PAN/PVP | Viscosity (mPa·s) | Conductivity (mS/cm) |
---|---|---|---|
PAN/PVP/SnCl2-0 | 3:0 | 487 ± 17 | 10.436 ± 0.048 |
PAN/PVP/SnCl2-1 | 2:1 | 444 ± 11 | 10.888 ± 0.017 |
PAN/PVP/SnCl2-2 | 1.5:1.5 | 287 ± 4 | 11.824 ± 0.015 |
PAN/PVP/SnCl2-3 | 1:2 | 251 ± 9 | 12.474 ± 0.017 |
PAN/PVP/SnCl2-4 | 0:3 | 246 ± 6 | 12.664 ± 0.042 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, J.; Xu, L. Self-Supporting Sn-Based Carbon Nanofiber Anodes for High-Performance Lithium-Ion Batteries. Molecules 2025, 30, 1740. https://doi.org/10.3390/molecules30081740
Xie J, Xu L. Self-Supporting Sn-Based Carbon Nanofiber Anodes for High-Performance Lithium-Ion Batteries. Molecules. 2025; 30(8):1740. https://doi.org/10.3390/molecules30081740
Chicago/Turabian StyleXie, Jingjie, and Lan Xu. 2025. "Self-Supporting Sn-Based Carbon Nanofiber Anodes for High-Performance Lithium-Ion Batteries" Molecules 30, no. 8: 1740. https://doi.org/10.3390/molecules30081740
APA StyleXie, J., & Xu, L. (2025). Self-Supporting Sn-Based Carbon Nanofiber Anodes for High-Performance Lithium-Ion Batteries. Molecules, 30(8), 1740. https://doi.org/10.3390/molecules30081740