Construction of Robust Electrothermal Superhydrophobic Surface via Femtosecond Laser for Anti-Icing and Deicing
Abstract
1. Introduction
2. Results and Discussion
2.1. Morphology and Chemical Component Characterization of AESS
2.2. Characterization of the Wettability and Electrothermal Properties of AESS
2.3. Anti-Icing and Deicing Performance of AESS
2.4. Mechanical Durability of As-Prepared AESS
3. Materials and Methods
3.1. Materials
3.2. Preparation of AESS
3.3. Characterizations and Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| AESS | Armor-protected electrothermal superhydrophobic surface |
| CESS | Common electrothermal superhydrophobic surface |
| SEM | Scanning electron microscope |
| EDS | Energy-dispersive spectroscopy |
| WCA | Water contact angle |
| DDS | dimethyldichlorosilane |
References
- Andenæs, E.; Jelle, B.P.; Ramlo, K.; Kolås, T.; Selj, J.; Foss, S.E. The influence of snow and ice coverage on the energy generation from photovoltaic solar cells. Sol. Energy 2018, 159, 318–328. [Google Scholar] [CrossRef]
- Matejicka, L.; Georgakis, C.T. A review of ice and snow risk mitigation and control measures for bridge cables. Cold Reg. Sci. Technol. 2022, 193, 103429. [Google Scholar] [CrossRef]
- Chen, C.; Tian, Z.; Luo, X.; Jiang, G.; Hu, X.; Wang, L.; Peng, R.; Zhang, H.; Zhong, M. Micro–Nano-Nanowire Triple Structure-Held PDMS Superhydrophobic Surfaces for Robust Ultra-Long-Term Icephobic Performance. ACS Appl. Mater. Interfaces 2022, 14, 23973–23982. [Google Scholar] [CrossRef]
- He, H.; Guo, Z. Superhydrophobic materials used for anti-icing Theory, application, and development. iScience 2021, 24, 103357. [Google Scholar] [CrossRef]
- Cao, Y.; Tan, W.; Wu, Z. Aircraft icing: An ongoing threat to aviation safety. Aerosp. Sci. Technol. 2018, 75, 353–385. [Google Scholar] [CrossRef]
- Wang, T.; Zheng, Y.H.; Raji, A.R.O.; Li, Y.L.; Sikkema, W.K.A.; Tour, J.M. Passive Anti-Icing and Active Deicing Films. ACS Appl. Mater. Interfaces 2016, 8, 14169–14173. [Google Scholar] [CrossRef] [PubMed]
- Farzaneh, M.; Ryerson, C.C. Anti-icing and deicing techniques. Cold Reg. Sci. Technol. 2011, 65, 1–4. [Google Scholar] [CrossRef]
- Wang, L.; Tian, Z.; Jiang, G.; Luo, X.; Chen, C.; Hu, X.; Zhang, H.; Zhong, M. Spontaneous dewetting transitions of droplets during icing & melting cycle. Nat. Commun. 2022, 13, 378. [Google Scholar] [CrossRef]
- Zhao, W.; Xiao, L.; He, X.; Cui, Z.; Fang, J.; Zhang, C.; Li, X.; Li, G.; Zhong, L.; Zhang, Y. Moth-eye-inspired texturing surfaces enabled self-cleaning aluminum to achieve photothermal anti-icing. Opt. Laser Technol. 2021, 141, 107115. [Google Scholar] [CrossRef]
- Luo, X.T.; Li, C.J. Bioinspired Mechanically Robust Metal-Based Water Repellent Surface Enabled by Scalable Construction of a Flexible Coral-Reef-Like Architecture. Small 2019, 15, 1901919. [Google Scholar] [CrossRef]
- Guo, Q.; Ma, J.; Yin, T.; Jin, H.; Zheng, J.; Gao, H. Superhydrophobic Non-Metallic Surfaces with Multiscale Nano/Micro-Structure: Fabrication and Application. Molecules 2024, 29, 2098. [Google Scholar] [CrossRef] [PubMed]
- Kovač, N.; Može, M.; Kapun, B.; Golobič, I.; Milošev, I.; Rodič, P. Enhanced corrosion resistance and self-cleaning of AlSi7Mg0.3 via superhydrophobic surface using laser structuring and stearic acid grafting. Surf. Interfaces 2025, 61, 106089. [Google Scholar] [CrossRef]
- Yamada, Y.; Onishi, G.; Horibe, A. Sessile Droplet Freezing on Hydrophobic Structured Surfaces under Cold Ambient Conditions. Langmuir 2019, 35, 16401–16406. [Google Scholar] [CrossRef]
- Boinovich, L.B.; Emelyanenko, A.M. Recent progress in understanding the anti-icing behavior of materials. Adv. Colloid Interface Sci. 2024, 323, 103057. [Google Scholar] [CrossRef] [PubMed]
- Rodič, P.; Kovač, N.; Kralj, S.; Jereb, S.; Golobič, I.; Može, M.; Milošev, I. Anti-corrosion and anti-icing properties of superhydrophobic laser-textured aluminum surfaces. Surf. Coat. Technol. 2024, 494, 131325. [Google Scholar] [CrossRef]
- Wei, X.; Cai, F.; Wang, J. Electrothermal/photothermal superhydrophobic coatings based on micro/nano graphite flakes for efficient anti-icing and de-icing. Prog. Org. Coat. 2023, 182, 107696. [Google Scholar] [CrossRef]
- Fan, J.; Long, Z.; Wu, J.; Gao, P.; Wu, Y.; Si, P.; Zhang, D. Electrothermal superhydrophobic epoxy nanocomposite coating for anti-icing/deicing. J. Coat. Technol. Res. 2023, 20, 1557–1568. [Google Scholar] [CrossRef]
- Jiang, L.; Sun, J.; Lin, Y.; Gong, M.; Tu, K.; Chen, Y.; Xiao, T.; Xiang, P.; Tan, X. The preparation of CNTs/GP/TiN/PDMS/PVDF superhydrophobic coating with strong photothermal and electrothermal properties for anti-icing and de-icing. Surf. Coat. Technol. 2024, 476, 130273. [Google Scholar] [CrossRef]
- Li, D.; Zhang, Y.; Yuan, L.; Ding, Z.; Liang, G.; Gu, A. Superhydrophobic and self-healable tri-layered composites with great thermal resistance and electrothermal ability. Compos. Commun. 2020, 21, 100397. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, H.; Zhu, Y.; Liu, X.; Wang, Z.; Chen, J. A robust superhydrophobic anti-icing/de-icing composite coating with electrothermal and auxiliary photothermal performances. Compos. Sci. Technol. 2022, 227, 109578. [Google Scholar] [CrossRef]
- Yang, C.; Ji, H.Z.; Song, L.H.; Su, H.X.; Qi, Z.P.; Wang, Y.; Cheng, E.; Zhao, L.B.; Hu, N. Multifunctional superhydrophobic composite film with icing monitoring and anti-icing/deicing performance. Compos. Sci. Technol. 2024, 258, 110916. [Google Scholar] [CrossRef]
- Li, K.; Wang, Q.; Zhou, X.; He, Y.; Shi, Y.; Qin, M.; Wu, B.; Chen, N.; Liu, R.; Yi, X. Electrothermal/Superhydrophobic Anti-Deicing Coating with a Sandwich Structure Based on Micro-Nanomaterials. ACS Appl. Nano Mater. 2024, 7, 24847–24856. [Google Scholar] [CrossRef]
- Tenjimbayashi, M.; Samitsu, S.; Naito, M. Simultaneous Detection and Repair of Wetting Defects in Superhydrophobic Coatings via Cassie-Wenzel Transitions of Liquid Marbles. Adv. Funct. Mater. 2019, 29, 1900688. [Google Scholar] [CrossRef]
- Li, K.; Wang, Y.S.; Jiang, Z.L.; Wong, H.; Zhou, T.; Wu, J.X.; Zhang, J.H.; Zhang, A.M. Functional building devices using laser-induced selective metallization on magnesium oxychloride cement composites. Cem. Concr. Compos. 2022, 128, 104423. [Google Scholar] [CrossRef]
- Huang, B.; Jiang, S.; Diao, Y.; Liu, X.; Liu, W.; Chen, J.; Yang, H. Hydrogels as Durable Anti-Icing Coatings Inhibit and Delay Ice Nucleation. Molecules 2020, 25, 3378. [Google Scholar] [CrossRef]
- Yan, X.; Chen, F.; Sett, S.; Chavan, S.; Li, H.; Feng, L.; Li, L.; Zhao, F.; Zhao, C.; Huang, Z.; et al. Hierarchical Condensation. ACS Nano 2019, 13, 8169–8184. [Google Scholar] [CrossRef]
- Li, X.; Su, H.; Li, H.; Tan, X.; Lin, X.; Wu, Y.; Xiong, X.; Li, Z.; Jiang, L.; Xiao, T.; et al. Photothermal superhydrophobic surface with good corrosion resistance, anti-/de-icing property and mechanical robustness fabricated via multiple-pulse laser ablation. Appl. Surf. Sci. 2024, 646, 158944. [Google Scholar] [CrossRef]
- Wang, D.; Sun, Q.; Hokkanen, M.J.; Zhang, C.; Lin, F.-Y.; Liu, Q.; Zhu, S.-P.; Zhou, T.; Chang, Q.; He, B.; et al. Design of robust superhydrophobic surfaces. Nature 2020, 582, 55–59. [Google Scholar] [CrossRef]
- Shahzad, F.; Alhabeb, M.; Hatter, C.B.; Anasori, B.; Man Hong, S.; Koo, C.M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137–1140. [Google Scholar] [CrossRef]
- Zhou, B.; Zhang, Z.; Li, Y.; Han, G.; Feng, Y.; Wang, B.; Zhang, D.; Ma, J.; Liu, C. Flexible, Robust, and Multifunctional Electromagnetic Interference Shielding Film with Alternating Cellulose Nanofiber and MXene Layers. ACS Appl. Mater. Interfaces 2020, 12, 4895–4905. [Google Scholar] [CrossRef]
- Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633–7644. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, R.; Li, Z. Irregular LIPSS produced on metals by single linearly polarized femtosecond laser. Int. J. Extrem. Manuf. 2022, 4, 015102. [Google Scholar] [CrossRef]
- Pan, R.; Cai, M.; Liu, W.; Luo, X.; Chen, C.; Zhang, H.; Zhong, M. Extremely high Cassie–Baxter state stability of superhydrophobic surfaces via precisely tunable dual-scale and triple-scale micro–nano structures. J. Mater. Chem. A 2019, 7, 18050–18062. [Google Scholar] [CrossRef]
- Tang, B.-H.; Wang, Q.; Han, X.-C.; Zhou, H.; Yan, X.-J.; Yu, Y.; Han, D.-D. Fabrication of anti-icing/de-icing surfaces by femtosecond laser. Front. Chem. 2022, 10, 1073473. [Google Scholar] [CrossRef] [PubMed]
- Cui, T.; Zheng, Y.; Hu, M.; Lin, B.; Wang, J.; Cai, W.; Fei, B.; Zhu, J.; Hu, Y. Biomimetic Multifunctional Graphene-Based Coating for Thermal Management, Solar De-Icing, and Fire Safety: Inspired from the Antireflection Nanostructure of Compound Eyes. Small 2024, 20, 2312083. [Google Scholar] [CrossRef] [PubMed]
- Marmur, A.; Della Volpe, C.; Siboni, S.; Amirfazli, A.; Drelich, J.W. Contact angles and wettability: Towards common and accurate terminology. Surf. Innov. 2017, 5, 3–8. [Google Scholar] [CrossRef]
- Li, S.; Zhong, M.; Zou, Y.; Xu, M.; Liu, X.; Xing, X.; Zhang, H.; Jiang, Y.; Qiu, C.; Qin, W.; et al. Fabrication of Micron-Structured Heatable Graphene Hydrophobic Surfaces for Deicing and Anti-Icing by Laser Direct Writing. Coatings 2023, 13, 1559. [Google Scholar] [CrossRef]
- Xing, W.; Li, Z.; Yang, H.; Li, X.; Wang, X.; Li, N. Anti-icing aluminum alloy surface with multi-level micro-nano textures constructed by picosecond laser. Mater. Des. 2019, 183, 108156. [Google Scholar] [CrossRef]
- Wang, H.; He, M.; Liu, H.; Guan, Y. One-Step Fabrication of Robust Superhydrophobic Steel Surfaces with Mechanical Durability, Thermal Stability, and Anti-icing Function. ACS Appl. Mater. Interfaces 2019, 11, 25586–25594. [Google Scholar] [CrossRef]
- Xuan, S.; Yin, H.; Li, G.; Zhang, Z.; Jiao, Y.; Liao, Z.; Li, J.; Liu, S.; Wang, Y.; Tang, C.; et al. Trifolium repens L.-Like Periodic Micronano Structured Superhydrophobic Surface with Ultralow Ice Adhesion for Efficient Anti-Icing/Deicing. ACS Nano 2023, 17, 21749–21760. [Google Scholar] [CrossRef]
- Wang, W.; Chang, J.; Chen, L.; Weng, D.; Yu, Y.; Hou, Y.; Yu, G.; Wang, J.; Wang, X. A laser-processed micro/nanostructures surface and its photothermal de-icing and self-cleaning performance. J. Colloid Interface Sci. 2024, 655, 307–318. [Google Scholar] [CrossRef] [PubMed]
- Maitra, T.; Jung, S.; Giger, M.E.; Kandrical, V.; Ruesch, T.; Poulikakos, D. Superhydrophobicity vs. Ice Adhesion: The Quandary of Robust Icephobic Surface Design. Adv. Mater. Interfaces 2015, 2, 1500330. [Google Scholar] [CrossRef]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, X.; Tian, D.; Li, J.; Li, W.; Jiang, R.; Chen, C. Construction of Robust Electrothermal Superhydrophobic Surface via Femtosecond Laser for Anti-Icing and Deicing. Molecules 2025, 30, 1741. https://doi.org/10.3390/molecules30081741
Peng X, Tian D, Li J, Li W, Jiang R, Chen C. Construction of Robust Electrothermal Superhydrophobic Surface via Femtosecond Laser for Anti-Icing and Deicing. Molecules. 2025; 30(8):1741. https://doi.org/10.3390/molecules30081741
Chicago/Turabian StylePeng, Xuqiao, Daqing Tian, Jingyang Li, Wenxuan Li, Ruisong Jiang, and Chaolang Chen. 2025. "Construction of Robust Electrothermal Superhydrophobic Surface via Femtosecond Laser for Anti-Icing and Deicing" Molecules 30, no. 8: 1741. https://doi.org/10.3390/molecules30081741
APA StylePeng, X., Tian, D., Li, J., Li, W., Jiang, R., & Chen, C. (2025). Construction of Robust Electrothermal Superhydrophobic Surface via Femtosecond Laser for Anti-Icing and Deicing. Molecules, 30(8), 1741. https://doi.org/10.3390/molecules30081741

