Antifungal and Antioxidant Activity of Thiourea Derivatives Against Nosocomial Candida auris Strains Isolated in Romania
Abstract
:1. Introduction
2. Results and Discussion
2.1. Distribution, Antifungal Susceptibility, and Virulence Characteristics of Candida auris Strains
2.1.1. Strain Distribution by Isolation Source
2.1.2. Strain Distribution by Susceptibility Profiles to Conventional Antifungals
2.1.3. Detection of Soluble Virulence Factors in C. auris Strains Using Selective Culture Media
2.2. Biological Assessment of Newly Synthesized Compounds
2.2.1. Antioxidant Activity of Newly Synthesized Compounds
2.2.2. Qualitative and Quantitative Evaluation of the Antimicrobial Activity of Thiourea Derivatives
2.2.3. Hemocompatibility
3. Materials and Methods
3.1. Strains Identification
3.2. Determination of Antifungal Susceptibility Profiles
3.3. Determination of Soluble Virulence Factors Production
3.4. Biological Properties of New Synthetic Compounds
Physico-Chemical Characterization of the Thiourea Derivatives
3.5. Antioxidant Activity
3.6. Antimicrobial Activity
3.6.1. Qualitative Testing of the Antifungal Activity of the Test Compounds on C. auris Strains
3.6.2. Quantitative Evaluation of the Antifungal Activity of Test Compounds on C. auris Strains—The MIC Determination
3.6.3. Evaluation of the Influence of the Tested Substances on Microbial Adherence Capacity to the Inert Substratum
3.7. Hemocompatibility Assays
3.7.1. Hemolytic Index
3.7.2. Antihemolytic Activity
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Borton, D. Candida auris: Emerging fungal pathogen in the US. Nursing 2024, 54, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Badiee, P.; Alborzi, A. Susceptibility of clinical Candida species isolates to antifungal agents by E-test, Southern Iran: A five year study. Iran J. Microbiol. 2011, 3, 183–188. [Google Scholar] [PubMed]
- De Gaetano, S.; Midiri, A.; Mancuso, G.; Avola, M.G.; Biondo, C. Candida auris Outbreaks: Current Status and Future Perspectives. Microorganisms 2024, 12, 927. [Google Scholar] [CrossRef]
- Cristina, M.L.; Spagnolo, A.M.; Sartini, M.; Carbone, A.; Oliva, M.; Schinca, E.; Boni, S.; Pontali, E. An Overview on Candida auris in Healthcare Settings. J. Fungi 2023, 9, 913. [Google Scholar] [CrossRef]
- Kim, J.S.; Cha, H.; Bahn, Y.S. Comprehensive Overview of Candida auris: An Emerging Multidrug-Resistant Fungal Pathogen. J. Microbiol. Biotechnol. 2024, 34, 1365–1375. [Google Scholar] [CrossRef] [PubMed]
- Keighley, C.; Garnham, K.; Harch, S.A.J.; Robertson, M.; Chaw, K.; Teng, J.C.; Chen, S.A. Candida auris: Diagnostic Challenges and Emerging Opportunities for the Clinical Microbiology Laboratory. Curr. Fungal Infect. Rep. 2021, 15, 116–126. [Google Scholar] [CrossRef]
- Franco, L.C.; Ahmed, M.; Kendra, C.G.; Sperling, R.M.; Van Benten, K.; Lavik, J.; Emery, C.L.; Relich, R.F.; Gavina, K. Validation of a qualitative real-time PCR assay for the detection of Candida auris in hospital inpatient screening. J. Clin. Microbiol. 2024, 62, e00158-24. [Google Scholar] [CrossRef]
- Chowdhary, A.; Jain, K.; Chauhan, N. Candida auris Genetics and Emergence. Annu. Rev. Microbiol. 2023, 77, 583–602. [Google Scholar] [CrossRef]
- Ilie, M.I. Candida auris: The unwelcome superfungus. Farmacia 2023, 71, 225–235. [Google Scholar] [CrossRef]
- Alexander, B.D. CLSI M60; Performance Standards for Antifungal Susceptibility Testing of Yeasts. 1st ed. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017; 14p. [Google Scholar]
- Ahmad, S.; Alfouzan, W. Candida auris: Epidemiology, Diagnosis, Pathogenesis, Antifungal Susceptibility, and Infection Control Measures to Combat the Spread of Infections in Healthcare Facilities. Microorganisms 2021, 9, 807. [Google Scholar] [CrossRef]
- Badiceanu, C.D.; Missir, A.V. Synthesis and characterization of some new thioureides of 2-thiophenecarboxylic acid with potential pharmacological activity. Rev. Roum. Chim. 2009, 54, 27–31. [Google Scholar]
- Chniti, I.; Thebti, A.; Sanhoury, M.A.K.; Cherif, H.O.; Chehidi, I. Synthesis, In vitro Antibacterial and Antifungal Activities of Trifluoroalkyl-N, N’-Disubstituted Thioureas. Org. Med. Chem. Int. J. 2020, 9, 121–128. [Google Scholar]
- Daniela Badiceanu, C.; Draghici, C.; Missir A vasile Carmen Chifiriuc, M.; Elena Stecoza, C. Synthesis, Characterization and Antimicrobial Evaluation of Some New Thioureas derived from 3-thiophenecarboxylic Acid. Rev. Chim. 2014, 65, 160–163. Available online: http://www.revistadechimie.ro (accessed on 4 April 2025).
- Prevention of Invasive Infections [Internet]. Candida auris (C. auris). 2024. Available online: https://www.cdc.gov/candida-auris/hcp/infection-control/invasive-infection-prevention.html (accessed on 5 April 2025).
- Hata, D.J.; Humphries, R.; Lockhart, S.R. Candida auris: An Emerging Yeast Pathogen Posing Distinct Challenges for Laboratory Diagnostics, Treatment, and Infection Prevention. Arch. Pathol. Lab. Med. 2020, 144, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Rudramurthy, S.M.; Chakrabarti, A.; Paul, R.A.; Sood, P.; Kaur, H.; Capoor, M.R.; Kindo, A.J.; Marak, R.S.; Arora, A.; Sardana, R.; et al. Candida auris candidaemia in Indian ICUs: Analysis of risk factors. J. Antimicrob. Chemother. 2017, 72, 1794–1801. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, M.P. CLSI M100; Performance Standards for Antimicrobial Susceptibility Testing. 35th ed. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018; 258p. [Google Scholar]
- Chaabane, F.; Graf, A.; Jequier, L.; Coste, A.T. Review on Antifungal Resistance Mechanisms in the Emerging Pathogen Candida auris. Front. Microbiol. 2019, 10, 2788. [Google Scholar] [CrossRef]
- Rybak, J.M.; Barker, K.S.; Muñoz, J.F.; Parker, J.E.; Ahmad, S.; Mokaddas, E.; Abdullah, A.; Elhagracy, R.S.; Kelly, S.L.; Cuomo, C.A.; et al. In vivo emergence of high-level resistance during treatment reveals the first identified mechanism of amphotericin B resistance in Candida auris. Clin. Microbiol. Infect. 2022, 28, 838–843. [Google Scholar] [CrossRef]
- Rybak, J.M.; Muñoz, J.F.; Barker, K.S.; Parker, J.E.; Esquivel, B.D.; Berkow, E.L.; Lockhart, S.R.; Gade, L.; Palmer, G.E.; White, T.C.; et al. Mutations in TAC1B: A Novel Genetic Determinant of Clinical Fluconazole Resistance in Candida auris. mBio 2020, 11, 1–16. [Google Scholar] [CrossRef]
- Stanciu, A.M.; Florea, D.; Surleac, M.; Paraschiv, S.; Oțelea, D.; Tălăpan, D.; Popescu, G.A. First report of Candida auris in Romania: Clinical and molecular aspects. Antimicrob. Resist. Infect. Control 2023, 12, 91. [Google Scholar] [CrossRef]
- Frías-De-León, M.G.; Hernández-Castro, R.; Vite-Garín, T.; Arenas, R.; Bonifaz, A.; Castañón-Olivares, L.; Acosta-Altamirano, G.; Martínez-Herrera, E. Antifungal Resistance in Candida auris: Molecular Determinants. Antibiotics 2020, 9, 568. [Google Scholar] [CrossRef]
- Clinical Treatment of Fungal Diseases: Antifungals [Internet]. Fungal Diseases. 2024. Available online: https://www.cdc.gov/fungal/hcp/clinical-care/index.html (accessed on 5 April 2025).
- Jaiswal, N.; Kumar, A. HPLC in the discovery of plant phenolics as antifungal molecules against Candida infection related biofilms. Microchem. J. 2022, 179, 107572. [Google Scholar] [CrossRef]
- Watkins, R.R.; Gowen, R.; Lionakis, M.; Ghannoum, M. Update on the Pathogenesis, Virulence, and Treatment of Candida auris. Pathog. Immun. 2022, 7, 46–65. [Google Scholar] [CrossRef] [PubMed]
- Balows, A. Manual of clinical microbiology 8th edition. Diagn. Microbiol. Infect. Dis. 2003, 47, 625–626. [Google Scholar] [CrossRef]
- Charlton, N.C.; Mastyugin, M.; Török, B.; Török, M. Structural Features of Small Molecule Antioxidants and Strategic Modifications to Improve Potential Bioactivity. Molecules 2023, 28, 1057. [Google Scholar] [CrossRef]
- Todorov, L.; Saso, L.; Kostova, I. Antioxidant Activity of Coumarins and Their Metal Complexes. Pharmaceuticals 2023, 16, 651. [Google Scholar] [CrossRef]
- Pinheiro, P.d.S.M.; Franco, L.S.; Fraga, C.A.M. The Magic Methyl and Its Tricks in Drug Discovery and Development. Pharmaceuticals 2023, 16, 1157. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, T.; Aljaeid, B. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Des. Dev. Ther. 2016, 10, 483–507. [Google Scholar] [CrossRef]
- Huang, X.; Eggart, D.; Qin, G.; Sarma, B.B.; Gaur, A.; Yang, J.; Pan, Y.; Li, M.; Hao, J.; Yu, H.; et al. Methyl radical chemistry in non-oxidative methane activation over metal single sites. Nat. Commun. 2023, 14, 5716. [Google Scholar] [CrossRef]
- Truzzi, F.; Tibaldi, C.; Zhang, Y.; Dinelli, G.; D’Amen, E. An overview on dietary polyphenols and their Biopharmaceutical Classification System (BCS). Int. J. Mol. Sci. 2021, 22, 5514. [Google Scholar] [CrossRef]
- Cornea, A.C.; Marc, G.; Ionuț, I.; Moldovan, C.; Stana, A.; Oniga, S.D.; Pîrnău, A.; Vlase, L.; Oniga, I.; Oniga, O. Synthesis, characterization, and antioxidant activity Evaluation of new N-Methyl substituted Thiazole-Derived polyphenolic compounds. Molecules 2025, 30, 1345. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, S.; Qin, Y.; Liu, J.; Liu, J.; Wang, Q.; Ren, F.; Zhang, H. Interaction of phenolic acids and their derivatives with human serum albumin: Structure–affinity relationships and effects on antioxidant activity. Food Chem. 2017, 240, 1072–1080. [Google Scholar] [CrossRef]
- Burton, G.W.; Doba, T.; Gabe, E.; Hughes, L.; Lee, F.L.; Prasad, L.; Ingold, K.U. Autoxidation of biological molecules. 4. Maximizing the antioxidant activity of phenols. J. Am. Chem. Soc. 1985, 107, 7053–7065. [Google Scholar] [CrossRef]
- Delcaru, C.; Alexandru, I.; Podgoreanu, P.; Grosu, M.; Stavropoulos, E.; Chifiriuc, M.; Lazar, V. Microbial Biofilms in Urinary Tract Infections and Prostatitis: Etiology, Pathogenicity, and Combating strategies. Pathogens 2016, 5, 65. [Google Scholar] [CrossRef] [PubMed]
- Pingaew, R.; Sinthupoom, N.; Mandi, P.; Prachayasittikul, V.; Cherdtrakulkiat, R.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Synthesis, biological evaluation and in silico study of bis-thiourea derivatives as anticancer, antimalarial and antimicrobial agents. Med. Chem. Res. 2017, 26, 3136–3148. [Google Scholar] [CrossRef]
- Liu, S. Where does the electron go? The nature of ortho / para and meta group directing in electrophilic aromatic substitution. J. Chem. Phys. 2014, 141, 194109. [Google Scholar] [CrossRef] [PubMed]
- Gardarsson, H.; Schweizer, W.B.; Trapp, N.; Diederich, F. Structures and Properties of Molecular Torsion Balances to Decipher the Nature of Substituent Effects on the Aromatic Edge-to-Face Interaction. Chem.–Eur. J. 2014, 20, 4608–4616. [Google Scholar] [CrossRef]
- Crom, W.R. Effect of chirality on pharmacokinetics and pharmacodynamics. Am. J. Health-Syst. Pharm. 1992, 49, S9–S14. [Google Scholar] [CrossRef]
- El-Zahed, M.M.; Kiwaan, H.A.; Farhat, A.A.M.; Moawed, E.A.; El-Sonbati, M.A. Anticandidal action of polyurethane foam: A new modifier with functionalized isothiouronium group. Iran. Polym. J. 2023, 32, 71–79. [Google Scholar] [CrossRef]
- Neacsu, A.; Badiceanu, C.; Stoicescu, C.; Chihaia, V. DFT Studies on Physicochemical Properties and Spectral Data of 2-Thiophene Carboxylic Acid Thiourea Derivatives. Chem. Proc. 2024, 16, 27. [Google Scholar] [CrossRef]
- Jensen, H.H.; Bols, M. Stereoelectronic Substituent Effects. Acc. Chem. Res. 2006, 39, 259–265. [Google Scholar] [CrossRef]
- Limban, C.; Marutescu, L.; Chifiriuc, M.C. Synthesis, Spectroscopic Properties and Antipathogenic Activity of New Thiourea Derivatives. Molecules 2011, 16, 7593–7607. [Google Scholar] [CrossRef]
- Malavia-Jones, D.; Farrer, R.A.; Stappers, M.H.T.; Edmondson, M.B.; Borman, A.M.; Johnson, E.M.; Lipke, P.N.; Gow, N.A. Strain and temperature dependent aggregation of Candida auris is attenuated by inhibition of surface amyloid proteins. Cell Surf. 2023, 10, 100110. [Google Scholar] [CrossRef] [PubMed]
- Roslan, N.; Bunnori, N.M.; Halim, K.B.A.; Kassim, K.; Aluwi, M.F.F.M.; Ngah, N. Recent development on the synthesis of thiourea derivatives and effect of substituents on the anticancer activity: A short review. Malays. J. Anal. Sci. 2022, 26, 1047–1069. [Google Scholar]
- Kadhim, M.M.; Tomi, I.H.R.; Khadom, A.A. Prediction of the corrosion inhibition efficiency and antibacterial activity of 1,2,4-oxadiazole derivatives using DFT and docking analysis: Effect of alkoxy chain length. J. Adhes. Sci. Technol. 2023, 37, 1525–1542. [Google Scholar] [CrossRef]
- Toepfer, S.; Lackner, M.; Keniya, M.V.; Monk, B.C. Functional Expression of Recombinant Candida auris Proteins in Saccharomyces cerevisiae Enables Azole Susceptibility Evaluation and Drug Discovery. J. Fungi 2023, 9, 168. [Google Scholar] [CrossRef] [PubMed]
- Kean, R.; Ramage, G. Combined Antifungal Resistance and Biofilm Tolerance: The Global Threat of Candida auris. mSphere 2019, 4. [Google Scholar] [CrossRef]
- Melinte, V.; Tudor, A.D.; Bujoi, A.G.; Radu, M.A.; Văcăriou, M.C.; Cismaru, I.M.; Holban, T.S.; Mîrzan, C.L.; Popescu, R.; Ciupan, R.C.; et al. Candida auris Outbreak in a Multidisciplinary Hospital in Romania during the Post-Pandemic Era: Potential Solutions and Challenges in Surveillance and Epidemiological Control. Antibiotics 2024, 13, 325. [Google Scholar] [CrossRef] [PubMed]
- Cancino-Muñoz, I.; Mulet-Bayona, J.V.; Salvador-García, C.; Tormo-Palop, N.; Guna, R.; Gimeno-Cardona, C.; González-Candelas, F. Short-term evolution and dispersal patterns of fluconazole-resistance in Candida auris clade III. mBio 2025, 16, e0316424. [Google Scholar] [CrossRef]
- Daniela Bădiceanu, C.; Camelia Nuță, D.; Missir, A.; vasile Hrubaru, M.; Delcaru, C.; Mara Dițu, L.; Chifiriuc, M.; Limban, C. Synthesis, structural, phisico-chemical characterization and antimicrobial activity screening of new thiourea derivatives. Farm. J. 2018, 66, 149–156. [Google Scholar]
- Daniela Bădiceanu, C.; Camelia Nuță, D.; Missir, A.; vasile Hrubaru, M.; Delcaru, C.; Mara Dițu, L.; Chifiriuc, M.; Limban, C. New Derivatives of 2-Thiophene Carboxylic Acid: Synthesis, Structure and Antimicrobial Studies. Farmacia 2018, 66, 237–242. [Google Scholar]
- Fierascu, I.; Fierascu, I.C.; Dinu-Pirvu, C.E.; Fierascu, R.C.; Anuta, V.; Velescu, B.S.; Jinga, M.; Jinga, V. A Short Overview of Recent Developments on Antimicrobial Coatings Based on Phytosynthesized Metal Nanoparticles. Coatings 2019, 9, 787. [Google Scholar] [CrossRef]
- Fernandes, L.; Ribeiro, R.; Costa, R.; Henriques, M.; Rodrigues, M.E. Essential Oils as a Good Weapon against Drug-Resistant Candida auris. Antibiotics 2022, 11, 977. [Google Scholar] [CrossRef]
- Ríos-López, A.L.; Muñiz-Bernal, V.; Dávila-Aviña, J.; González, G.M.; Treviño-Rangel, R.D.J.; Becerril-García, M.A.; Flores-Maldonado, O. Antifungal and antivirulence activity of tannic acid against drug-resistant Candida species. Farmacia 2024, 72, 946–956. [Google Scholar] [CrossRef]
- Arslan, H.; Duran, N.; Borekci, G.; Koray Ozer, C.; Akbay, C. Antimicrobial Activity of Some Thiourea Derivatives and Their Nickel and Copper Complexes. Molecules 2009, 14, 519–527. [Google Scholar] [CrossRef]
- Moualek, I.; Iratni Aiche, G.; Mestar Guechaoui, N.; Lahcene, S.; Houali, K. Antioxidant and anti-inflammatory activities of Arbutus unedo aqueous extract. Asian Pac. J. Trop. Biomed. 2016, 6, 937–944. [Google Scholar] [CrossRef]
- Borman, A.M.; Fraser, M.; Johnson, E.M. CHROMagarTM Candida Plus: A novel chromogenic agar that permits the rapid identification of Candida auris. Med. Mycol. 2021, 59, 253–258. [Google Scholar] [CrossRef]
- Procop, G.W. CLSI M27M44S; Performance Standards for Antifungal Susceptibility Testing of Yeasts, 3rd ed. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2022; 20p. [Google Scholar]
- Chifiriuc, C.; Mihăescu, G.; Lazăr, V. Microbiologie și Virologie Medicala; Editura Universității din București: București, Romania, 2015. [Google Scholar]
- Lazăr, V.; Herelea, V.; Cernat, R.; Balotescu, M.C.; Bulai, D.; Moraru, A. Microbiologie Generală: Manual de Lucrări Practice; Editura Universității din București: București, Romania, 2004. [Google Scholar]
- Madhu, G.; Bose, V.C.; Aiswaryaraj, A.S.; Maniammal, K.; Biju, V. Defect dependent antioxidant activity of nanostructured nickel oxide synthesized through a novel chemical method. Colloids Surf. A Physicochem. Eng. Asp. 2013, 429, 44–50. [Google Scholar] [CrossRef]
- Kuroda, K.; Caputo, G.A.; DeGrado, W.F. The role of hydrophobicity in the antimicrobial and hemolytic activities of polymethacrylate derivatives. Chem.-Eur. J. 2008, 15, 1123–1133. [Google Scholar] [CrossRef]
- Dzah, C.S.; Zhang, H.; Gobe, V.; Asante-Donyinah, D.; Duan, Y. Anti- and pro-oxidant properties of polyphenols and their role in modulating glutathione synthesis, activity and cellular redox potential: Potential synergies for disease management. Adv. Redox Res. 2024, 11, 100099. [Google Scholar] [CrossRef]
- Sotler, R.; Poljšak, B.; Dahmane, R.; Jukić, T.; Pavan Jukić, D.; Rotim, C.; Trebše, P.; Starc, A. Prooxidant activities of antioxidants and their impact on health. Acta Clin. Croat. 2019, 58, 726–736. [Google Scholar] [CrossRef]
- Gonzalez-Jimenez, I.; Perlin, D.S.; Shor, E. Reactive oxidant species induced by antifungal drugs: Identity, origins, functions, and connection to stress-induced cell death. Front. Cell. Infect. Microbiol. 2023, 13, 1276406. [Google Scholar] [CrossRef] [PubMed]
- Multescu, M.; Marinas, I.C.; Susman, I.E.; Belc, N. Byproducts (Flour, Meals, and Groats) from the Vegetable Oil Industry as a Potential Source of Antioxidants. Foods 2022, 11, 253. [Google Scholar] [CrossRef] [PubMed]
- Bostiog, D.I.; Simionescu, N.; Coroaba, A.; Marinas, I.C.; Chifiriuc, M.C.; Gradisteanu Pircalabioru, G.; Maier, S.S.; Pinteala, M. Multi-shell gold nanoparticles functionalized with methotrexate: A novel nanotherapeutic approach for improved antitumoral and antioxidant activity and enhanced biocompatibility. Drug Deliv. 2024, 31, 2388624. [Google Scholar] [CrossRef] [PubMed]
- Purwantiningsih, T.I. Antibacterial activity of Faloak (Sterculia quadrifida r. br) bark: A promising natural antibacterial candidate. Farmacia 2024, 72, 832–839. [Google Scholar] [CrossRef]
- M44: Method for Antifungal Disk Diffusion Susceptibility Testing of Yeasts, 3rd ed.; NIELSEN BOOKDATA: Surrey, UK, 2018.
- Corbu, V.M.; Gheorghe, I.; Marinaș, I.C.; Geană, E.I.; Moza, M.I.; Csutak, O.; Chifiriuc, M.C. Demonstration of Allium sativum Extract Inhibitory Effect on Biodeteriogenic Microbial Strain Growth, Biofilm Development, and Enzymatic and Organic Acid Production. Molecules 2021, 26, 7195. [Google Scholar] [CrossRef]
- Corbu, V.M.; Georgescu, A.M.; Marinas, I.C.; Pericleanu, R.; Mogos, D.V.; Dumbravă, A.Ș.; Marinescu, L.; Pecete, I.; Vassu-Dimov, T.; Czobor Barbu, I.; et al. Phenotypic and Genotypic Characterization of Resistance and Virulence Markers in Candida spp. Isolated from Community-Acquired Infections in Bucharest, and the Impact of AgNPs on the Highly Resistant Isolates. J. Fungi 2024, 10, 563. [Google Scholar] [CrossRef]
- Marinas, I.C.; Ignat, L.; Maurușa, I.E.; Gaboreanu, M.D.; Adina, C.; Popa, M.; Chifiriuc, M.C.; Angheloiu, M.; Georgescu, M.; Iacobescu, A.; et al. Insights into the physico-chemical and biological characterization of sodium lignosulfonate-silver nanosystems designed for wound management. Heliyon 2024, 10, e26047. [Google Scholar] [CrossRef]
- Geana, E.I.; Ciucure, C.T.; Tamaian, R.; Marinas, I.C.; Gaboreanu, D.M.; Stan, M.; Chitescu, C.L. Antioxidant and Wound Healing Bioactive Potential of Extracts Obtained from Bark and Needles of Softwood Species. Antioxidants 2023, 12, 1383. [Google Scholar] [CrossRef]
Strain Code | Antifungal—MIC Value (µg/mL): Interpretation According to CLSI Standard | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Fluconazole | Micafungin | Flucytosine | Caspofungin | Amphotericin B | ||||||
1370 | >256 | R | 0.047 | S | 0.094 | S | 0.38 | S | >32 | R |
4574 | >256 | R | 0.023 | S | 0.38 | S | 0.75 | S | >32 | R |
18519 | >256 | R | 0.032 | S | 0.94 | S | 0.75 | S | >32 | R |
3396 | >256 | R | 0.047 | S | 1.50 | S | 1.5 | S | 3 | R |
9096 | >256 | R | 0.125 | S | 0.50 | S | 0.75 | S | >32 | R |
6816 | >256 | R | 0.064 | S | 0.50 | S | 0.50 | S | >32 | R |
6328 | >256 | R | 2 | S | 0.50 | S | >32 | R | >32 | R |
2851 | 128 | R | 0.023 | S | 0.38 | S | 1 | S | >32 | R |
Strain Code | Hemolysins | Lecithinase | Amylase | Aesculin Hydrolysis | Caseinase |
---|---|---|---|---|---|
1370 | +++ | - | - | ++ | - |
4574 | +++ | - | - | ++ | - |
18519 | +++ | - | - | ++ | - |
3396 | +++ | - | - | +++ | - |
9096 | +++ | - | - | ++ | - |
6816 | +++ | - | - | ++ | - |
6328 | +++ | - | - | ++ | - |
2851 | +++ | - | - | ++ | - |
Strain | Compound | ||||
---|---|---|---|---|---|
SB1 | SB2 | SB3 | SB4 | DMSO | |
C. auris DSM 21092 | 1.0417 | 0.0781 | 0.63 | 1.35 | 2.50 |
6816 | 0.0781 | 0.625 | 1.35 | 0.94 | 1.25 |
6328 | 1.0417 | 0.1563 | 3.33 | 1.04 | 0.63 |
4574 | 1.25 | 0.3646 | 5.00 | 0.63 | 1.25 |
3396 | 0.3646 | 2.0833 | 1.67 | 1.25 | 10.00 |
2851 | 1.3542 | 0.2865 | 0.31 | 1.46 | 5.00 |
18519 | 5 | 0.2083 | 2.08 | 1.67 | 10.00 |
1370 | 5 | 0.3125 | 1.67 | 0.83 | 2.50 |
9069 | 1.875 | 0.5208 | 3.38 | 1.25 | 10.00 |
Strain Code | Isolation Source |
---|---|
1370 | Bronchial aspirate |
2851 | Perianal swab |
3396 | Bronchial aspirate |
4574 | Vaginal discharge |
6328 | Eschar |
6816 | Urine |
9069 | Urine |
18519 | Urine |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nedea, M.I.; Bădiceanu, C.D.; Gheorghe-Barbu, I.; Marinaș, I.C.; Pericleanu, R.; Dragomir, R.-I.; Dumbravă, A.Ș.; Dascălu, A.M.; Șerban, D.; Tudor, C.; et al. Antifungal and Antioxidant Activity of Thiourea Derivatives Against Nosocomial Candida auris Strains Isolated in Romania. Molecules 2025, 30, 1675. https://doi.org/10.3390/molecules30081675
Nedea MI, Bădiceanu CD, Gheorghe-Barbu I, Marinaș IC, Pericleanu R, Dragomir R-I, Dumbravă AȘ, Dascălu AM, Șerban D, Tudor C, et al. Antifungal and Antioxidant Activity of Thiourea Derivatives Against Nosocomial Candida auris Strains Isolated in Romania. Molecules. 2025; 30(8):1675. https://doi.org/10.3390/molecules30081675
Chicago/Turabian StyleNedea (Ilie), Marina Ionela, Carmellina Daniela Bădiceanu, Irina Gheorghe-Barbu, Ioana Cristina Marinaș, Radu Pericleanu, Rareș-Ionuț Dragomir, Andreea Ștefania Dumbravă, Ana Maria Dascălu, Dragoș Șerban, Corneliu Tudor, and et al. 2025. "Antifungal and Antioxidant Activity of Thiourea Derivatives Against Nosocomial Candida auris Strains Isolated in Romania" Molecules 30, no. 8: 1675. https://doi.org/10.3390/molecules30081675
APA StyleNedea, M. I., Bădiceanu, C. D., Gheorghe-Barbu, I., Marinaș, I. C., Pericleanu, R., Dragomir, R.-I., Dumbravă, A. Ș., Dascălu, A. M., Șerban, D., Tudor, C., Solomon, M., Popescu, O., Arsene, A. L., & Velescu, B. Ș. (2025). Antifungal and Antioxidant Activity of Thiourea Derivatives Against Nosocomial Candida auris Strains Isolated in Romania. Molecules, 30(8), 1675. https://doi.org/10.3390/molecules30081675