Efficient Photodegradation of Dyes from Single and Binary Aqueous Solutions Using Copper(II) Coordination Polymers
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of CP1–CP3
2.1.1. Thermal Properties of H2L and CP2
2.1.2. Band Gap Analysis
2.2. Photocatalytic Studies
2.2.1. Influence of the Nature of the Photocatalyst
2.2.2. Evolution in Time of the Photodegradation Process
2.2.3. Effect of the Catalyst Dosage
2.2.4. Effect of Initial Concentration of Dye Solutions: Kinetic Studies
2.2.5. Recycling of Photocatalyst
2.2.6. Photodegradation of Binary Dye Mixture
2.3. Material Stability
2.4. Photocatalytic Mechanism
3. Materials and Methods
3.1. Synthesis of Coordination Polymers
3.2. Materials and Physical Measurements
3.3. Photocatalytic Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, L.; Yang, H.; Xu, X. Effects of water pollution on human health and disease heterogeneity: A review. Front. Environ. Sci. 2022, 10, 880246. [Google Scholar] [CrossRef]
- Hassaan, M.; El Nemr, A. Health and environmental impacts of dyes: Mini review. Am. J. Environ. Sci. Eng. 2017, 1, 64–67. [Google Scholar]
- Maheshwari, K.; Agrawal, M.; Gupta, A.B. Dye pollution in water and wastewater. In Novel Materials for Dye-Containing Wastewater Treatment Sustainable Textiles: Production, Processing, Manufacturing & Chemistry; Muthu, S.S., Khadir, A., Eds.; Springer: Singapore, 2021; pp. 1–25. [Google Scholar]
- Hussain, S.; Khan, N.; Gul, S.; Khan, S.; Khan, H. Contamination of water resources by food dyes and its removal technologies. In Water Chem; IntechOpen: London, UK, 2020. [Google Scholar]
- Pereira, L.; Alves, M. Dyes-environmental impact and remediation. In Environmental Protection Strategies for Sustainable Development, Strategies for Sustainability; Malik, A., Grohmann, E., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 111–154. [Google Scholar]
- Al-Tohamy, R.; Ali, S.S.; Li, F.; Okasha, K.M.; Yehia, A.-G.; Mahmoud, Y.A.-G.; Elsamahy, T.; Jiao, H.; Fu, Y.; Sun, J. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160. [Google Scholar] [CrossRef] [PubMed]
- Katheresan, V.; Kansedo, J.; Lau, S.T. Efficiency of various recent wastewater dye removal methods: A Review. J. Environ. Chem. Eng. 2018, 6, 4676–4697. [Google Scholar] [CrossRef]
- Kathing, C.; Saini, G. A review of various treatment methods for the removal of dyes from textile effluent. Recent Prog. Mater. 2022, 4, 21. [Google Scholar] [CrossRef]
- Viswanathan, B. Photocatalytic degradation of dyes: An overview. Curr. Catal. 2018, 7, 99–121. [Google Scholar] [CrossRef]
- Halmann, M.M. Photodegradation of Water Pollutants; CRC Press: Boca Raton, FL, USA; New York, NY, USA, 1995. [Google Scholar]
- Krishnan, A.; Swarnalal, D.; Das, D.; Krishnan, M.; Saji, V.S.; Shibli, S.M.A. A review on transition metal oxides based photocatalysts for degradation of synthetic organic pollutants. J. Environ. Sci. 2024, 139, 389–417. [Google Scholar] [CrossRef]
- Qutub, N.; Singh, P.; Sabir, S.; Sagadevan, S.; Oh, W.-C. Enhanced photocatalytic degradation of Acid Blue dye using CdS/TiO2 nanocomposite. Sci. Rep. 2022, 12, 5759. [Google Scholar] [CrossRef]
- Yu, H.; Jiang, L.; Wang, H.; Huang, B.; Yuan, X.; Huang, J.; Zhang, J.; Zeng, G. Modulation of Bi2MoO6-based materials for photocatalytic water splitting and environmental application: A critical review. Small 2019, 15, 1901008. [Google Scholar] [CrossRef]
- Saha, S.; Chaudhary, N.; Kumar, A.; Khanuja, M. Polymeric nanostructures for photocatalytic dye degradation: Polyaniline for photocatalysis. SN Appl. Sci. 2020, 2, 1115. [Google Scholar] [CrossRef]
- Mittal, H.; Ivaturi, A.; Khanuja, M. MoSe2-modified ZIF-8 novel nanocomposite for photocatalytic remediation of textile dye and antibiotic-contaminated wastewater. Environ. Sci. Pollut. Res. 2023, 30, 4151–4165. [Google Scholar]
- Ettahiri, Y.Y.; Akhsassi, B.; El Fazdoune, M.; Bouddouch, A.; Bouna, L.; Benlhachemi, A.; Pérez-Villarejo, L.; Moreira, R.R. From synthesis to applications: A comprehensive review of geopolymer materials for photocatalytic degradation of organic pollutants. Sep. Purif. Technol. 2024, 330, 125396. [Google Scholar]
- Kyzas, G.Z.; Siafaka, P.I.; Pavlidou, E.G.; Chrissafis, K.J.; Bikiaris, D.N. Synthesis and adsorption application of succinyl-grafted chitosan for the simultaneous removal of zinc and cationic dye from binary hazardous mixtures. Chem. Eng. J. 2015, 259, 438–448. [Google Scholar] [CrossRef]
- Muntean, S.G.; Halip, L.; Nistor, M.A.; Pacurariu, C. Efficient separation and removal of dyes from single and multiple systems by magnetic/silver/carbon nanocomposite: Mechanism and mathematical modeling. Sustain. Chem. Pharm. 2022, 29, 100802. [Google Scholar]
- Giwa, A.-R.A.; Abdulsalam, K.A.; Wewers, F.; Oladipo, M.A. Biosorption of Acid Dye in single and multidye systems onto sawdust of Locust Bean (Parkia biglobosa) tree. J. Chem. 2016, 1, 6436039. [Google Scholar]
- Zhang, S.; Khan, S.; Naz, F.; Noman, A.; Nawaz, A.; Ali, S.; Saeed, K.; Ali, N.; Ge, M. Robust iron-doped manganese oxide nanoparticles from facile fabrication to photo-catalytic degradation application of binary dyes mixture. Environ. Res. 2024, 240, 117384. [Google Scholar] [PubMed]
- Ayodhya, D. Fabrication of SPR triggered Ag-CuO composite from Cu(II)-Schiff base complex for enhanced visible-light-driven degradation of single and binary-dyes and fluorometric detection of nitroaromatic compounds. Inorg. Chem. Commun. 2023, 148, 110295. [Google Scholar] [CrossRef]
- Verma, S.; Tirumala, R.B.; Singh, R.; Kaul, R. Photocatalytic degradation kinetics of cationic and anionic dyes using Au–ZnO nanorods: Role of pH for selective and simultaneous degradation of binary dye mixtures. Ceram. Int. 2021, 47, 34751–34764. [Google Scholar]
- Suhaimi, N.A.A.; Shahri, N.N.M.; Samat, J.H.; Kusrini, E.; Lim, J.W.; Hobley, J.; Usman, A. Domination of Methylene Blue over Rhodamine B during simultaneous photocatalytic degradation by TiO2 nanoparticles in an aqueous binary solution under UV irradiation. React. Kinet. Mech. Catal. 2022, 135, 511–527. [Google Scholar]
- Zhong, W.-W.; Dehghani, F.F.; Hanifehpour, Y.; Zeng, X.; Feng, Y.-J.; Liu, K.-G.; Joo, S.W.; Morsali, A.; Retailleau, P. Two-dimensional mixed-ligand metal–organic framework constructed from bridging bidentate v-shaped ligands. Inorganics 2023, 11, 184. [Google Scholar] [CrossRef]
- Abrahams, B.F.; Commons, C.J.; Dharma, D.A.; Hudson, T.A.; Robson, R.; Sanchez, R.W.; Stewart, T.C.; White, K.F. Synthesis, structure and properties of coordination polymers formed from bridging 4-hydroxybenzoic acid anions. Cryst. Eng. Comm. 2022, 24, 1924–1933. [Google Scholar]
- Shawkataly, O.B.; Sani, N.F.A.; Rosli, M.M.; Razali, M.R. Anion directed self-assembly of one-dimensional and two-dimensional coordination polymers containing bridging diphosphine ligands. Z. Anorg. Allg. Chem. 2016, 642, 419–423. [Google Scholar]
- Journaux, Y.; Ferrando-Soria, J.; Pardo, E.; Ruiz-Garcia, R.; Julve, M.; Lloret, F.; Cano, J.; Li, Y.; Lisnard, L.; Yu, P.; et al. Design of magnetic coordination polymers built from polyoxalamide ligands: A thirty year story. Eur. J. Inorg. Chem. 2018, 2018, 228–247. [Google Scholar]
- Hosseini, A.K.; Tadjarodi, A. Luminescent Cd coordination polymer based on thiazole as a dual-responsive chemosensor for 4-nitroaniline and CrO42− in water. Sci. Rep. 2023, 13, 269. [Google Scholar]
- Baruah, J.B. Coordination polymers in adsorptive remediation of environmental contaminants. Coord. Chem. Rev. 2022, 470, 214694. [Google Scholar] [CrossRef]
- Sun, A.; Yang, Y.; Liu, Y.; Ding, L.; Duan, P.; Yang, W.; Pan, Q. A zinc coordination polymer sensor for selective and sensitive detection of doxycycline based on fluorescence enhancement. Cryst. Growth. Des. 2021, 21, 4971–4978. [Google Scholar]
- Erkovan, A.O.; Seifi, A.; Aksoy, B.T.; Zorlu, Y.; Khataee, A.; Çoșut, B. Catalytic activity of Zn(II) coordination polymer based on a cyclotriphosphazene-functionalized ligand for removal of organic dyes. Catalysts 2023, 13, 756. [Google Scholar] [CrossRef]
- Somnath, A.M.; Siddiqui, K.A. Synthesis of a mixed-ligand h-bonded Cu coordination polymer: Exploring the pH-dependent high photocatalytic degradation of Rhodamine 6G, Methyl Violet, Crystal Violet, and Rose Bengal dyes under room illumination. ACS Omega 2022, 7, 41120–41136. [Google Scholar]
- Zhao, J.; Dang, Z.; Muddassir, M.; Raza, S.; Zhong, A.; Wang, X.; Jin, J. A new Cd(II)-based coordination polymer for efficient photocatalytic removal of organic dyes. Molecules 2023, 28, 6848. [Google Scholar] [CrossRef]
- Buta, I.; Nistor, M.A.; Lönnecke, P.; Hey-Hawkins, E.; Muntean, S.G.; Costisor, O. One-dimensional cadmium(II) coordination polymers: Structural diversity, luminescence and photocatalytic properties. J. Photochem. Photobiol. A 2021, 404, 112961. [Google Scholar]
- Zhao, Y.; Li, L.; Liu, Z.Y.; Ding, B.; Wang, X.G.; Luo, Y.; Zhao, X.J.; Yang, E.C. Water-stable Zn(II) coordination polymers regulated by polysubstituted benzenes and their photocatalytic performance toward Methylene Blue degradation dominated by ligand-field effects. Cryst. Growth. Des. 2021, 21, 1218–1232. [Google Scholar]
- Saianand, G.; Gopalan, A.-I.; Wang, L.; Venkatramanan, K.; Roy, A.L.V.; Sonar, P.; Lee, D.-E.; Naidu, R. Conducting polymer based visible light photocatalytic composites for pollutant removal: Progress and prospects. Environ. Technol. Innov. 2022, 28, 102698. [Google Scholar]
- Liu, Q.; Yang, J.M.; Jin, L.N.; Sun, W.Y. Controlled synthesis of porous coordination-polymer microcrystals with definite morphologies and sizes under mild conditions. Chem. Eur. J. 2014, 20, 14783–14789. [Google Scholar] [PubMed]
- Hussain, N.; Bhardwaj, V.K. The influence of different coordination environment in one-dimensional Cu(II) coordination polymers on photo-degradation of organic dyes. Dalton Trans. 2016, 45, 7697. [Google Scholar]
- Jana, K.; Pramanik, U.; Ingle, K.S.; Maity, R.; Mukherjee, S.; Nayak, S.K.; Debnath, S.C.; Maity, T.; Maity, S.; Samanta, B.C. Copper(II) complexes with NNN and NNO Schiff base ligands as efficient photodegradation agents for methylene blue, preferential BSA binder and biomaterial transplants. J. Photochem. Photobiol. A Chem. 2022, 422, 113565. [Google Scholar]
- Nayak, B.; Baruah, S.; Puzari, A. 1D copper (II) based coordination polymer/PANI composite fabrication for enhanced photocatalytic activity. J. Photochem. Photobiol. A Chem. 2022, 427, 113803. [Google Scholar]
- Xie, C.-Z.; Luo, R.; Gao, Q.; Zhang, X.; Zhang, D.-M.; Fan, Y.-H.; Bi, S.-Y.; Shao, F. Photocatalytic degradation of dyes and magnetic properties in two one-dimensional coordination polymers. Polyhedron 2024, 250, 116825. [Google Scholar]
- Oladipo, A.C.; Aderibigbe, A.D.; Olayemi, V.T.; Ajibade, P.A.; Clayton, H.S.; Zolotarev, P.N.; Clarkson, G.J.; Walton, R.I.; Tella, A.C. Photocatalytic degradation of methylene blue using sunlight-powered coordination polymers constructed from a tetracarboxylate linker. J. Photochem. Photobiol. A Chem. 2024, 448, 115331. [Google Scholar]
- Buta, I.; Ardelean, A.; Lönnecke, P.; Novitchi, G.; Hey-Hawkins, E.; Andruh, M.; Costisor, O. Structural and magnetic properties of three one-dimensional nitrato-, azido- and phenoxido-bridged copper(II) coordination polymers. Polyhedron 2020, 190, 114766. [Google Scholar] [CrossRef]
- Wojewódka, A.; Bełzowski, J.; Wilk, Z.; Stas, J. Energetic characteristics of transition metal complexes. J. Hazard. Mater. 2009, 171, 1175–1177. [Google Scholar]
- Khatun, M.; Mitra, P.; Mukherjee, S. Effect of band gap and particle size on photocatalytic degradation of NiSnO3 nanopowder for some conventional organic dyes. Hybrid Adv. 2023, 4, 100079. [Google Scholar] [CrossRef]
- Yadav, G.; Mishra, S.R.; Gadore, V.; Yadav, N.; Ahmaruzzaman, M. A smart and sustainable pathway for abatement of single and binary mixtures of dyes through magnetically retrievable Ca4Fe9O17 anchored on Biochar matrix. Sci. Rep. 2023, 13, 12940. [Google Scholar] [CrossRef] [PubMed]
- Hao, R.; Li, L.; Zhu, S.; Wang, Z.-H.; Zhao, X.-J.; Yang, E.-C. Three bulky conjugated 4-(2,6-di(pyrazin-2-yl)pyridin-4-yl)benzoate- based chains exhibiting dual photocatalytic and electrocatalytic performances. J. Mol. Struct. 2019, 1176, 376–385. [Google Scholar] [CrossRef]
- Liu, L.; Ding, J.; Huang, C.; Li, M.; Hou, H.; Fan, Y. Polynuclear CdII polymers: Crystal structures, topologies, and the photodegradation for organic dye contaminants. Cryst. Growth Des. 2014, 14, 3035–3043. [Google Scholar] [CrossRef]
- Kala, K.; Vasumathi, V.; Sivalingam, S.; Suresh, B. Optimization of organic dyes photodegradation and investigation of the anticancer performance by copper oxide/graphene oxide nanocomposite. Surf. Interfac. 2024, 50, 104482. [Google Scholar] [CrossRef]
- Makota, O.; Dutková, E.; Briančin, J.; Bednarcik, J.; Lisnichuk, M.; Yevchuk, I.; Melnyk, I. Advanced photodegradation of azo dye Methyl Orange using H2O2-activated Fe3O4@SiO2@ZnO composite under UV treatment. Molecules 2024, 29, 1190. [Google Scholar] [CrossRef] [PubMed]
- Winterbourn, C.C. Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 2008, 4, 278–286. [Google Scholar] [CrossRef]
- Zauška, L.; Volavka, D.; Lisnichuk, M.; Zelenka, T.; Kinnertová, E.; Zelenková, G.; Bednarčík, J.; Zeleňák, V.; Sharma, A.; Pal Nehra, S.; et al. Tuning the photocatalytic performance of mesoporous silica-titanium dioxide and cobalt titanate for Methylene Blue and Congo Red adsorption/photodegradation: Impact of azo dyes concentration, catalyst mass, wavelength, reusability and kinetic properties. J. Photochem. Photobiol. A Chem. 2024, 451, 115522. [Google Scholar] [CrossRef]
- Ng, C.M.; Chen, P.-C.; Manickam, S. Hydrothermal crystallization of titania on silver nucleation sites for the synthesis of visible light nano-photocatalysts-Enhanced photoactivity using Rhodamine 6G. Appl. Catal. A Gen. 2012, 433–434, 75–80. [Google Scholar] [CrossRef]
- Ma, Z.; Song, X.; Li, Z.; Ren, Y.; Wang, J.; Liang, Y. Ag-based coordination polymer-enhanced photocatalytic degradation of ciprofloxacin and nitrophenol. Dalton Trans. 2024, 53, 3797–3807. [Google Scholar] [CrossRef]
- Groeneveld, I.; Kanelli, M.; Ariese, F.; van Bommel, M.R. Parameters that affect the photodegradation of dyes and pigments in solution and on substrate—An overview. Dyes Pigm. 2023, 210, 110999. [Google Scholar] [CrossRef]
- Muntean, S.G.; Simu, G.M.; Kurunczi, L.; Szabadai, Z. Investigation of the aggregation of three disazo direct dyes by UV-VIS spectroscopy and mathematical analysis. Rev. Chim. 2009, 60, 152–155. [Google Scholar]
- Muntean, S.G.; Szabadai, Z.; Halip, L. Investigation of aggregation behavior using computational methods and absorption spectra for trisazo direct dyes. Struct. Chem. 2016, 27, 1049–1059. [Google Scholar]
- Huo, J.; Yu, D.; Li, H.; Luo, B.; Arulsamy, N. Mechanistic investigation of photocatalytic degradation of organic dyes by a novel zinc coordination polymer. RSC Adv. 2019, 9, 39323–39331. [Google Scholar]
- Nagaraja, R.; Kottam, N.; Girija, C.R.; Nagabhushana, B.M. Photocatalytic degradation of Rhodamine B dye under UV/solar light using ZnO nanopowder synthesized by solution combustion route. Powder Technol. 2012, 215–216, 91–97. [Google Scholar] [CrossRef]
- Loghambal, S.; Agvinos Catherine, A.J.; Subash, S.V. Analysis of Langmuir-Hinshelwood kinetics model for photocatalytic degradation of aqueous Direct Blue 71 through analytical expression. IJMAA 2018, 6, 903–913. [Google Scholar]
- Ajibade, P.A.; Oluwalana, A.E. Photocatalytic degradation of single and binary mixture of Brilliant Green and Rhodamine B dyes by zinc sulfide quantum dots. Molecules 2021, 26, 7686. [Google Scholar] [CrossRef]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part A, 5th ed.; John Wiley & Sons Inc.: New York, NY, USA, 1997. [Google Scholar]
- Lu, N.; Zhang, M.; Jing, X.; Zhang, P.; Zhu, Y.; Zhang, Z. Electrospun semiconductor-based nano-heterostructures for photocatalytic energy conversion and environmental remediation: Opportunities and challenges. Energy Environ. Mater. 2022, 6, e12338. [Google Scholar]
- Cheng, L.; Xiang, Q.; Liao, Y.; Zhang, H. CdS-Based photocatalysts. Energy Environ. Sci. 2018, 11, 1362–1391. [Google Scholar]
- Yang, X.-F.; Chen, X.-L.; Zhu, H.-B.; Shen, Y. An acid-base resistant paddle-wheel Cu(II) coordination polymer for visible-light-driven photodegradation of organic dyes. Polyhedron 2019, 157, 367–373. [Google Scholar] [CrossRef]
- Li, D.-X.; Ni, C.-Y.; Chen, M.-M.; Dai, M.; Zhang, W.-H.; Yan, W.-Y.; Qi, H.-X.; Rena, Z.-G.; Lang, J.-P. Construction of Cd(II) coordination polymers used as catalysts for the photodegradation of organic dyes in polluted water. Cryst. Eng. Comm. 2014, 16, 2158–2167. [Google Scholar]
- Nosaka, Y.; Nosaka, A.Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 2017, 117, 11302–11336. [Google Scholar] [CrossRef]
- Ribao, P.; Corredor, J.; Rivero, M.J.; Ortiz, I. Role of reactive oxygen species on the activity of noble metal-doped TiO2 photocatalysts. J. Hazard. Mater. 2019, 372, 45–51. [Google Scholar]
- Chen, X.; Rong, H.; Ndagijimana, P.; Nkinahamira, F.; Kumar, A.; Guo, D.; Cui, B. Towards removal of PPCPs by advanced oxidation processes: A review. Results Eng. 2023, 20, 101496. [Google Scholar]
- Khan, S.; Noor, T.; Iqbal, N.; Yaqoob, L. Photocatalytic dye degradation from textile wastewater: A review. ACS Omega 2024, 9, 21751–21767. [Google Scholar] [PubMed]
- Momeni, S.; Nematollahi, D. New insights into the electrochemical behavior of acid orange 7: Convergent paired electrochemical synthesis of new aminonaphthol derivatives. Sci. Rep. 2017, 7, 41963–41973. [Google Scholar]
- Kgatle, M.; Sikhwivhilu, K.; Ndlovu, G.; Moloto, N. Degradation kinetics of Methyl Orange dye in water using trimetallic Fe/Cu/Ag nanoparticles. Catalysts 2021, 11, 428. [Google Scholar] [CrossRef]
- Cretu, C.; Tudose, R.; Cseh, L.; Linert, W.; Halevas, E.; Hatzidimitriou, A.; Costisor, O.; Salifoglou, A. Schiff base coordination flexibility toward binary cobalt and ternary zinc complex assemblies. The case of the hexadentate ligand N,N′-bis[(2-hydroxybenzilideneamino)-propyl]-piperazine. Polyhedron 2015, 85, 48–59. [Google Scholar]
- Gičević, A.; Hindija, L.; Karačić, A. Toxicity of azo dyes in pharmaceutical industry. CMBEBIH 2019, 2019, 581–587. [Google Scholar]
- Chung, K.-T. Azo dyes and human health: A review. J. Environ. Sci. Health Part C 2016, 34, 233–261. [Google Scholar]
- Meghwal, K.; Kumawat, S.; Ameta, C.; Jangid, N.K. Effect of dyes on water chemistry, soil quality, and biological properties of water. In Impact of Textile Dyes on Public Health and the Environment; Wani, K., Jangid, N., Bhat, A., Eds.; IGI Global: Hershey, PA, USA, 2020; pp. 90–114. [Google Scholar]
- Perer, H.J. Removal of Acid Orange 7 Dye from Wastewater: Review; ASET: Tokyo, Japan, 2020; pp. 1–6. [Google Scholar]
- Fernando, E.; Keshavarz, T.; Kyazze, G. Complete degradation of the azo dye Acid Orange-7 and bioelectricity generation in an integrated microbial fuel cell, aerobic two-stage bioreactor system in continuous flow mode at ambient temperature. Bioresour. Technol. 2014, 156, 155–162. [Google Scholar] [PubMed]
- Kishor, R.; Purchase, D.; Saratale, G.D.; Ferreira, L.F.R.; Hussain, C.M.; Mulla, S.I.; Bharagava, R.N. Degradation mechanism and toxicity reduction of Methyl Orange dye by a newly isolated bacterium Pseudomonas aeruginosa MZ520730. J. Water Process Eng. 2021, 43, 102300. [Google Scholar]
- Dutta, S.K.; Amin, M.K.; Ahmed, J.; Elias, M.; Mahiuddin, M. Removal of toxic methyl orange by a cost-free and eco-friendly adsorbent: Mechanism, phytotoxicity, thermodynamics, and kinetics. S. Afr. J. Chem. Eng. 2022, 40, 195–208. [Google Scholar]
Dye | Photocatalyst | R (%) | R with H2O2 (%) | Ref. |
---|---|---|---|---|
Rhodamine B | {[Zn3(L)(4,4′-bpy)]}n (GTU-3) | 76.50 | [31] | |
Methylene Blue | 86.20 | |||
Acid Red 17 | 52.80 | |||
Crystal Violet | {[Cu2(Or)2(Bimb)3]·4H2O}n | 75.80 | [32] | |
MethylViolet | 76.80 | |||
Rhodamine 6G | 86.50 | |||
Rose Bengal | 76.10 | |||
Methylene Blue | 17.80 | |||
Congo Red | 40.20 | |||
Methyl blue | [Cd(bpyp)(nba)2] | 29.24 | [33] | |
Methyl orange | 35.44 | |||
Rhodamine B | 95.52 | |||
Methyl violet | 58.92 | |||
Rhodamine B | {[Cu(L’)Cl]·2.25H2O}n | 6.10 | 91.20 | [47] |
Methylene Blue | 28.30 | 91.90 | ||
Methyl orange | {[Cd3L2(H2O)5]·H2O}n | 59.80 | [48] | |
{[Cd3L2(hbmb)-(H2O)2]·2.5H2O}n | 47.30 | |||
{[Cd3L2(btbb)(H2O)2]·2EtOH·1.5H2O}n | 51.40 | |||
{[Cd6L4(bipy)2(H2O)6]·3H2O}n | 80.00 | |||
Rhodamine-B | GO@CuO nanocomposite | 84.77 | [49] | |
Malachite green | 87.81 | |||
Methyl Orange | Fe3O4@SiO2@ZnO | 96.00 | [50] | |
Acid Orange 7 | CP-1 | 92.40 | 93.81 | This work |
CP-2 | 71.80 | 76.60 | ||
CP-3 | 89.03 | 91.10 | ||
Methyl Orange | CP-1 | 80.50 | 84.82 | This work |
CP-2 | 47.00 | 51.72 | ||
CP-3 | 57.45 | 71.43 |
Dye | C0 (mg/L) | R (%) | Time (min) |
---|---|---|---|
AO7 | 15 | 90.93 | 130 |
30 | 92.40 | 140 | |
45 | 79.46 | 180 | |
60 | 56.32 | 210 | |
MO | 15 | 74.29 | 170 |
30 | 80.50 | 180 | |
45 | 70.51 | 220 | |
60 | 56.61 | 240 |
CPs | AO7 | MO | ||||||
---|---|---|---|---|---|---|---|---|
Conc. (mg/L) | k × 103 (min−1) | R2 | SD | Conc. (mg/L) | k × 103 (min−1) | R2 | SD | |
CP1 | 15 | 16.40 | 0.9716 | 0.1551 | 15 | 11.28 | 0.9274 | 0.1483 |
30 | 13.07 | 0.8631 | 0.3401 | 30 | 9.33 | 0.9247 | 0.1707 | |
45 | 8.57 | 0.9263 | 0.1687 | 45 | 6.07 | 0.9657 | 0.0906 | |
60 | 3.20 | 0.9918 | 0.0329 | 60 | 3.94 | 0.9648 | 0.0581 | |
CP2 | 30 | 5.25 | 0.9287 | 0.1201 | 30 | 5.82 | 0.9220 | 0.0694 |
CP3 | 30 | 9.76 | 0.9246 | 0.2319 | 30 | 6.70 | 0.8802 | 0.1156 |
R (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Dye | AO7 | MO | AO7 + MO | |||||||
Single | Binary | Single | Binary | |||||||
- | H2O2 | - | H2O2 | - | H2O2 | - | H2O2 | - | H2O2 | |
CP1 | 92.40 | 93.81 | 74.64 | 84.05 | 80.50 | 84.82 | 72.05 | 81.46 | 73.83 | 83.54 |
CP2 | 71.80 | 76.60 | 30.12 | 33.29 | 47.00 | 51.72 | 27.35 | 29.02 | 29.98 | 31.34 |
CP3 | 89.03 | 91.10 | 43.03 | 55.00 | 54.45 | 71.43 | 34.39 | 50.51 | 41.70 | 53.71 |
Dye | Molecular Weight (g/mol) | Structure | Toxicity |
---|---|---|---|
AO7 | 350.32 | Dangerous for the aquatic environment in the long term. Strong irritant to skin and eyes, and may cause allergic reactions in sensitive people [77,78]. | |
MO | 327.33 | Harmful to the environment, biology, and human health. May cause respiratory tract irritation and skin irritation [79]. It is a toxic, carcinogenic, tumorigenic, mutagenic, and genotoxic azo dye [80]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buta, I.; Nistor, M.A.; Muntean, S.G. Efficient Photodegradation of Dyes from Single and Binary Aqueous Solutions Using Copper(II) Coordination Polymers. Molecules 2025, 30, 1652. https://doi.org/10.3390/molecules30081652
Buta I, Nistor MA, Muntean SG. Efficient Photodegradation of Dyes from Single and Binary Aqueous Solutions Using Copper(II) Coordination Polymers. Molecules. 2025; 30(8):1652. https://doi.org/10.3390/molecules30081652
Chicago/Turabian StyleButa, Ildiko, Maria Andreea Nistor, and Simona Gabriela Muntean. 2025. "Efficient Photodegradation of Dyes from Single and Binary Aqueous Solutions Using Copper(II) Coordination Polymers" Molecules 30, no. 8: 1652. https://doi.org/10.3390/molecules30081652
APA StyleButa, I., Nistor, M. A., & Muntean, S. G. (2025). Efficient Photodegradation of Dyes from Single and Binary Aqueous Solutions Using Copper(II) Coordination Polymers. Molecules, 30(8), 1652. https://doi.org/10.3390/molecules30081652