The Formation of MgS & MgO Monomers and Dimers from Magnesium, Oxygen, and Sulfur Hydrides
Abstract
:1. Introduction
2. Results and Discussion
2.1. Magnesium Sulfides
2.2. Magnesium Oxides
3. Computational Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AGB | Asymptotic Giant Branch |
CCSD(T) | Coupled Cluster Singles, Doubles, and Perturbative Triples |
TS | Transition State |
MgS | Magnesium Sulfide |
MgO | Magnesium Oxide |
ZPVE | Zero-Point Vibrational Energy |
kcal mol−1 | kilocalorie mole−1 |
References
- Heikkila, A.; Johansson, L.E.B.; Olofsson, H. Molecular Abundance Variations in the Magellanic clouds. Astron. Astrophys. 1999, 344, 817–847. [Google Scholar]
- Gail, H.P.; Zhukovska, S.V.; Hoppe, P.; Trieloff, M. Stardust from Asymptotic Giant Branch Stars. Astrophys. J. 2009, 698, 1136–1154. [Google Scholar] [CrossRef]
- Doerksen, E.S.; Fortenberry, R.C. Coincidence between Bond Strength, Atomic Abundance, and the Composition of Rocky Materials. ACS Earth Space Chem. 2020, 4, 812–817. [Google Scholar] [CrossRef]
- Grosselin, D.; Fortenberry, R.C. Formation of Magnesium and Aluminum Oxides from Water and Metal Hydrides: Creation of the Smallest Ruby. ACS Earth Space Chem. 2022, 6, 18–24. [Google Scholar] [CrossRef]
- Firth, R.A.; Bell, K.M.; Fortenberry, R.C. Formation of AlO, AlOH, and Al(OH)3 in the Interstellar Medium and Circumstellar Envelopes of AGB Stars. ACS Earth Space Chem. 2024, 8, 974–982. [Google Scholar] [CrossRef]
- Flint, A.R.; Westbrook, B.R.; Fortenberry, R.C. Theoretical Rotational and Vibrational Spectra Data for the Hypermagnesium Oxide Species Mg2O and Mg2O+. Chem. Phys. Chem 2024, 25, e202400479. [Google Scholar] [CrossRef]
- Palmer, C.Z.; Firth, R.A.; Fortenberry, R.C. Computing Accurate Rovibrational Spectral Data for Relevant Aluminum-bearing Species in Interstellar and Atmospheric Chemistry. J. Comput. Chem. 2024, 46, e27524. [Google Scholar] [CrossRef]
- Lecoq-Molinos, H.; Gobrecht, D.; Sindel, J.P.; Helling, C.; Decin, L. Vanadium oxide clusters in substellar atmospheres—A quantum chemical study. Astron. Astrophys. 2024, A34, 690. [Google Scholar] [CrossRef]
- Flint, A.R.; Fortenberry, R.C. Formation and Destruction of Si6O12 Nanostructures in the Gas Phase: Applications to Grain Nucleation and Water Generation. ACS Earth Space Chem. 2023, 7, 2119–2128. [Google Scholar] [CrossRef]
- Flint, A.R.; Fortenberry, R.C. Computational Mechanistic Analysis of the Formation of the Magnesium Silicate Monomers MgSiO3 and Mg2SiO4. J. Phys. Chem. A 2024, 128, 9263–9274. [Google Scholar] [CrossRef]
- Ziurys, L.M. The Chemistry in Circumstellar Envelopes of Evolved Stars: Following the Origin of the Elements to the Origin of Life. Proc. Natl. Acad. Sci. USA 2006, 103, 12274–12279. [Google Scholar] [CrossRef]
- Puzzarini, C. Gas-phase Chemistry in the Interstellar Medium: The Role of Laboratory Astrochemistry. Front. Astron. Space Sci. 2022, 8, 811342. [Google Scholar] [CrossRef]
- Tinacci, L.; Ferrada-Chamorro, S.; Ceccarelli, C.; Pantaleone, S.; Ascenzi, D.; Maranzana, A.; Balucani, N.; Ugliengo, P. The GRETOBAPE Gas-phase Reaction Network: The Importance of Being Exothermic. Astrophys. J. Suppl. Ser. 2023, 266, 38. [Google Scholar] [CrossRef]
- Fitzpatrick, E.L. The Abundance of Mg in the Interstellar Medium. Astrophys. J. 1997, 482, L199. [Google Scholar] [CrossRef]
- Yang, X.J.; Hua, L.; Li, A. Where Have All the Sulfur Atoms Gone? Polycyclic Aromatic Hydrocarbon as a Possible Sink for the Missing Sulfur in the Interstellar Medium. I. The C–S Band Strengths. Astrophys. J. 2024, 974, 30. [Google Scholar] [CrossRef]
- Ossenkopf, V.; Muller, H.S.P.; Lis, D.C.; Schilke, P.; Bell, T.A.; Bruderer, S.; Bergin, E.; Ceccarelli, C.; Comito, C.; Stutzki, J.; et al. Detection of interstellar oxidaniumyl: Abundant H2O+ towards the star-forming regions DR21, Sgr B2, and NGC6334. Astron. Astrophys. 2010, 518, L110. [Google Scholar] [CrossRef]
- Avery, L.W.; Bell, M.B.; Cunningham, C.T.; Feldman, P.A.; Hayward, R.H.; McLeod, J.M.; Matthews, H.E.; Wade, J.D. Submillimeter Molecular Line Observations of IRC +10216: Searches for MgH, SiH2, and HCO+, and Detection of Hot HCN. Astrophys. J. 1994, 426, 737. [Google Scholar] [CrossRef]
- Mohan Rao, D.; Rangarajan, K.E. Molecular Line Polarization in the Solar Atmosphere: MgH Lines. Astrophys. J. 1999, 524, L139–L142. [Google Scholar] [CrossRef]
- Weinreb, S.; Barrett, A.H.; Meeks, M.L.; Henry, J.C. Radio Observations of OH in the Interstellar Medium. Nature 1963, 200, 829–831. [Google Scholar] [CrossRef]
- Neufeld, D.A.; Falgarone, E.; Gerin, M.; Godard, B.; Herbst, E.; Pineau des Forêts, G.; Vasyunin, A.I.; Güsten, R.; Wiesemeyer, H.; Ricken, O. Discovery of Interstellar Mercapto Radicals (SH) with the GREAT Instrument on SOFIA. Astron. Astrophys. 2012, 542, L6. [Google Scholar] [CrossRef]
- Rey-Montejo, M.; Jimenez-Serra, I.; Martin-Pintado, J.; Rivilla, V.M.; Megias, A.; Andres, D.S.; Sanz-Novo, M.; Colzi, L.; Zeng, S.; Lopez-Gallifa, A.; et al. Discovery of MgS and NaS in the Interstellar Medium and tentative detection of CaO. Astrophys. J. 2024, 975, 174. [Google Scholar]
- Zhu, C.; Hosokai, S.; Akiyama, T. Growth Mechanism for the Controlled Synthesis of MgH2/Mg Crystals via a Vapor-Solid Process. Cryst. Growth Des 2011, 11, 4166–4174. [Google Scholar] [CrossRef]
- Woon, D.E. Formation of Hydroxide Anions in Amorphous Astrophysical Ices and Recombination with Protons: A Quantum Chemical Study. Mon. Not. Royal Astron. Soc. 2023, 527, 1357–1363. [Google Scholar] [CrossRef]
- Fortenberry, R.C.; McGuire, B.A. A Possible Additional Formation Pathway for the Interstellar Diatomic SiS. Astrophys. J. 2024, 971, 101. [Google Scholar] [CrossRef]
- Fortenberry, R.C.; Trabelsi, T.; Francisco, J.S. Hydrogen Sulfide as a Scavenger of Sulfur Atomic Cation. J. Phys. Chem. A 2018, 122, 4983–4987. [Google Scholar]
- Bassett, M.K.; Fortenberry, R.C. Magnesium in the Formaldehyde: The Theoretical Rovibrational Analysis of 3B1 MgCH2. J. Molec. Spectrosc. 2018, 344, 61–64. [Google Scholar] [CrossRef]
- Martin, W.C.; Zalubas, R. Energy Levels of Magnesium, Mg I through Mg XII. J. Phys. Chem. Ref. Data 1980, 9, 1–58. [Google Scholar] [CrossRef]
- Crawford, T.D.; Schaefer, H.F. An Introduction to Coupled Cluster Theory for Computational Chemists. Rev. Comput. Chem. 2007, 14, 33–136. [Google Scholar]
- Raghavachari, K.; Trucks, G.W.; Pople, J.A.; Head-Gordon, M. A Fifth-Order Perturbation Comparison of Electron Correlation Theories. Chem. Phys. Lett. 1989, 157, 479–483. [Google Scholar]
- Adler, T.B.; Knizia, G.; Werner, H.J. A Simple and Efficient CCSD(T)-F12 Approximation. J. Chem. Phys. 2007, 127, 221106. [Google Scholar]
- Knizia, G.; Adler, T.B.; Werner, H.J. Simplified CCSD(T)-F12 Methods: Theory and Benchmarks. J. Chem. Phys. 2009, 130, 054104. [Google Scholar] [PubMed]
- Hill, J.G.; Peterson, K.A. Correlation Consistent Basis Sets for Explicitly Correlated Wavefunctions: Valence and Core Valence Basis Sets for Li, Be, Na, and Mg. Phys. Chem. Chem. Phys. 2010, 12, 10460–10468. [Google Scholar] [PubMed]
- Prascher, B.P.; Woon, D.E.; Peterson, K.A.; Dunning, T.H.; Wilson, A.K. Gaussian Basis Sets for Use in Correlated Molecular Calculations. VII. Valence, Core-Valence, and Scalar Relativistic Basis Sets for Li, Be, Na, and Mg. Theor. Chem. Acc 2011, 128, 69–82. [Google Scholar] [CrossRef]
- Werner, H.J.; Knowles, P.J.; Knizia, G.; Manby, F.R.; Schütz, M. Molpro: A General-Purpose Quantum Chemistry Program Package. WIREs Comput. Mol. Sci. 2012, 2, 242–253. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian; 16 Revision C.01; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Dunning, T.H.J. Gaussian Basis Sets for use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. [Google Scholar]
- Kendall, R.A.; Dunning, T.H.J.; Harrison, R.J. Electron Affinities of the First-row Atoms Revisited. Systematic Basis Sets and Wave Functions. J. Chem. Phys. 1992, 96, 6796–6806. [Google Scholar]
- Woon, D.E.; Dunning, T.H.J. Gaussian Basis Sets for use in Correlated Molecular Calculations. III. The Atoms Aluminum through Argon. J. Chem. Phys. 1993, 98, 1358–1371. [Google Scholar]
- Turner, A.M.; Koutsogiannis, A.S.; Kleimeier, N.F.; Bergantini, A.; Zhu, C.; Fortenberry, R.C.; Kaiser, R.I. An Experimental and Theoretical Investigation into the Formation of Ketene (H2CCO) and Ethynol (HCCOH) in Interstellar Analog Ices. Astrophys. J. 2020, 896, 88. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bell, K.M.; Fortenberry, R.C. The Formation of MgS & MgO Monomers and Dimers from Magnesium, Oxygen, and Sulfur Hydrides. Molecules 2025, 30, 1650. https://doi.org/10.3390/molecules30081650
Bell KM, Fortenberry RC. The Formation of MgS & MgO Monomers and Dimers from Magnesium, Oxygen, and Sulfur Hydrides. Molecules. 2025; 30(8):1650. https://doi.org/10.3390/molecules30081650
Chicago/Turabian StyleBell, Kailey M., and Ryan C. Fortenberry. 2025. "The Formation of MgS & MgO Monomers and Dimers from Magnesium, Oxygen, and Sulfur Hydrides" Molecules 30, no. 8: 1650. https://doi.org/10.3390/molecules30081650
APA StyleBell, K. M., & Fortenberry, R. C. (2025). The Formation of MgS & MgO Monomers and Dimers from Magnesium, Oxygen, and Sulfur Hydrides. Molecules, 30(8), 1650. https://doi.org/10.3390/molecules30081650