Peptide-Functionalized Nanomedicine: Advancements in Drug Delivery, Diagnostics, and Biomedical Applications
Abstract
:1. Introduction
2. Peptide Functionalization of Drug Delivery Carriers
2.1. Integrin-Targeting Peptides
2.2. Tumor-Homing and Penetrating Peptides
2.3. Cell-Penetrating Peptides (CPPs)
2.4. Receptor-Targeting Peptides
2.5. Antimicrobial Peptides (AMPs)
2.6. Peptides for siRNA and Gene Delivery
2.7. Organ-Specific Targeting Peptides
2.8. Functional Peptides for Drug Carrier Enhancement
3. Peptide-Functionalized Drug Delivery Carriers
3.1. Gold Nanoparticles and Nanostructures
3.2. Polymeric Nanoparticles
3.3. Liposomes
3.4. Mesoporous Silica Nanoparticles (MSNs)
3.5. Superparamagnetic and Iron Oxide Nanoparticles
3.6. Quantum Dots and Carbon-Based Nanocarriers
3.7. Hydrogel- and Biomaterial-Based Peptide Functionalization
4. Biomedical Applications of PF Products
4.1. Cancer Therapy
4.2. Neurodegenerative Disease Treatment
4.3. Inflammatory Disorders
4.4. Infectious Diseases
4.5. Regenerative Medicine and Tissue Engineering
5. Evaluation and Testing of PF Products
5.1. Physicochemical Characterization and Stability Analysis
5.2. Cellular Uptake, Cytotoxicity and Biocompatibility
5.3. Cancer Therapy Efficacy and Tumor Targeting
5.4. Molecular Imaging, Biosensors and Diagnostic Applications
5.5. Antimicrobial and Infection Control Testing
5.6. Neurological and Blood–Brain Barrier Studies
5.7. Inflammatory and Autoimmune Disease Models
6. Achievements and Advances in PF Technologies
6.1. Precision Drug Delivery and Enhanced Therapeutic Efficacy
6.2. Overcoming Biological Barriers in Neurological and Neurodegenerative Diseases
6.3. Advanced Imaging and Diagnostics for Early Disease Detection
7. Limitations, Challenges, and Future Directions of PF Technologies
7.1. Biocompatibility, Safety, and Immune Response Challenges
7.2. Stability, Peptide Integrity, and Degradation Challenges
7.3. Scalability, Manufacturing Hurdles, and Reproducibility
7.4. Regulatory Barriers, Clinical Translation, and Standardization
7.5. Future Directions: Innovations and Emerging Strategies
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
Disclaimer
References
- Biscaglia, F.; Ripani, G.; Rajendran, S.; Benna, C.; Mocellin, S.; Bocchinfuso, G.; Meneghetti, M.; Palleschi, A.; Gobbo, M. Gold Nanoparticle Aggregates Functionalized with Cyclic RGD Peptides for Targeting and Imaging of Colorectal Cancer Cells. ACS Appl. Nano Mater. 2019, 2, 6436–6444. [Google Scholar] [CrossRef]
- Chakravarty, R.; Chakraborty, S.; Guleria, A.; Kumar, C.; Kunwar, A.; Nair, K.V.V.; Sarma, H.D.; Dash, A. Clinical scale synthesis of intrinsically radiolabeled and cyclic RGD peptide functionalized (198)Au nanoparticles for targeted cancer therapy. Nucl. Med. Biol. 2019, 72–73, 1–10. [Google Scholar] [CrossRef]
- De Capua, A.; Palladino, A.; Chino, M.; Attanasio, C.; Lombardi, A.; Vecchione, R.; Netti, P.A. Active targeting of cancer cells by CD44 binding peptide-functionalized oil core-based nanocapsules. RSC Adv. 2021, 11, 24487–24499. [Google Scholar] [CrossRef] [PubMed]
- Dou, W.T.; Liu, L.F.; Gao, J.; Zang, Y.; Chen, G.R.; Field, R.A.; James, T.D.; Li, J.; He, X.P. Fluorescence imaging of a potential diagnostic biomarker for breast cancer cells using a peptide-functionalized fluorogenic 2D material. Chem. Commun. 2019, 55, 13235–13238. [Google Scholar] [CrossRef]
- Anandhakumar, S.; Krishnamoorthy, G.; Ramkumar, K.M.; Raichur, A.M. Preparation of collagen peptide functionalized chitosan nanoparticles by ionic gelation method: An effective carrier system for encapsulation and release of doxorubicin for cancer drug delivery. Mater. Sci. Eng. C-Mater. Biol. Appl. 2017, 70, 378–385. [Google Scholar] [CrossRef]
- Cathcart, J.; Suarato, G.; Li, W.Y.; Cao, J.; Meng, Y.Z. Peptide-Functionalized Nanoparticles for the Targeted Delivery of Cytotoxins to MMP-14-Expressing Cancer Cells. Biophysica 2022, 2, 203–220. [Google Scholar] [CrossRef]
- d’Avanzo, N.; Torrieri, G.; Figueiredo, P.; Celia, C.; Paolino, D.; Correia, A.; Moslova, K.; Teesalu, T.; Fresta, M.; Santos, H.A. LinTT1 peptide-functionalized liposomes for targeted breast cancer therapy. Int. J. Pharm. 2021, 597, 120346. [Google Scholar] [CrossRef]
- Dhayal, B.; Henne, W.A.; Doorneweerd, D.D.; Reifenberger, R.G.; Low, P.S. Detection of Bacillus subtilis spores using peptide-functionalized cantilever arrays. J. Am. Chem. Soc. 2006, 128, 3716–3721. [Google Scholar] [CrossRef]
- Feng, X.; Jiang, D.; Kang, T.; Yao, J.; Jing, Y.; Jiang, T.; Feng, J.; Zhu, Q.; Song, Q.; Dong, N.; et al. Tumor-Homing and Penetrating Peptide-Functionalized Photosensitizer-Conjugated PEG-PLA Nanoparticles for Chemo-Photodynamic Combination Therapy of Drug-Resistant Cancer. ACS Appl. Mater. Interfaces 2016, 8, 17817–17832. [Google Scholar] [CrossRef]
- Hasan Aneem, T.; Sarker, M.; Wong, S.Y.; Lim, S.; Li, X.; Rashed, A.; Chakravarty, S.; Arafat, M.T. Antimicrobial peptide immobilization on catechol-functionalized PCL/alginate wet-spun fibers to combat surgical site infection. J. Mater. Chem. B 2024, 12, 7401–7419. [Google Scholar] [CrossRef]
- Huang, R.; Li, J.; Kebebe, D.; Wu, Y.; Zhang, B.; Liu, Z. Cell penetrating peptides functionalized gambogic acid-nanostructured lipid carrier for cancer treatment. Drug Deliv. 2018, 25, 757–765. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Liu, C.; Lin, Y.; Fu, J.; Lu, G.; Lu, Z. pH sensitive peptide functionalized nanoparticles for co-delivery of erlotinib and DAPT to restrict the progress of triple negative breast cancer. Drug Deliv. 2019, 26, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.L.; He, X.Y.; Liu, B.Y.; Gong, M.Q.; Zhuo, R.X.; Cheng, S.X. Fusion peptide functionalized hybrid nanoparticles for synergistic drug delivery to reverse cancer drug resistance. J. Mater. Chem. B 2017, 5, 4697–4704. [Google Scholar] [CrossRef] [PubMed]
- Bose, R.J.; Kumar, U.S.; Garcia-Marques, F.; Zeng, Y.; Habte, F.; McCarthy, J.R.; Pitteri, S.; Massoud, T.F.; Paulmurugan, R. Engineered Cell-Derived Vesicles Displaying Targeting Peptide and Functionalized with Nanocarriers for Therapeutic microRNA Delivery to Triple-Negative Breast Cancer in Mice. Adv. Healthc. Mater. 2022, 11, e2101387. [Google Scholar] [CrossRef]
- Chakraborty, K.; Biswas, A.; Mishra, S.; Mallick, A.M.; Tripathi, A.; Jan, S.; Sinha Roy, R. Harnessing Peptide-Functionalized Multivalent Gold Nanorods for Promoting Enhanced Gene Silencing and Managing Breast Cancer Metastasis. ACS Appl. Bio Mater. 2023, 6, 458–472. [Google Scholar] [CrossRef]
- Guo, Z.; Li, S.; Liu, Z.; Xue, W. Tumor-Penetrating Peptide-Functionalized Redox-Responsive Hyperbranched Poly(amido amine) Delivering siRNA for Lung Cancer Therapy. ACS Biomater. Sci. Eng. 2018, 4, 988–996. [Google Scholar] [CrossRef]
- He, X.Y.; Ren, X.H.; Peng, Y.; Zhang, J.P.; Ai, S.L.; Liu, B.Y.; Xu, C.; Cheng, S.X. Aptamer/Peptide-Functionalized Genome-Editing System for Effective Immune Restoration through Reversal of PD-L1-Mediated Cancer Immunosuppression. Adv. Mater. 2020, 32, e2000208. [Google Scholar] [CrossRef]
- Bana, L.; Minniti, S.; Salvati, E.; Sesana, S.; Zambelli, V.; Cagnotto, A.; Orlando, A.; Cazzaniga, E.; Zwart, R.; Scheper, W.; et al. Liposomes bi-functionalized with phosphatidic acid and an ApoE-derived peptide affect Abeta aggregation features and cross the blood-brain-barrier: Implications for therapy of Alzheimer disease. Nanomedicine 2014, 10, 1583–1590. [Google Scholar] [CrossRef]
- Chang, Y.J.; Chien, Y.H.; Chang, C.C.; Wang, P.N.; Chen, Y.R.; Chang, Y.C. Detection of Femtomolar Amyloid-beta Peptides for Early-Stage Identification of Alzheimer’s Amyloid-beta Aggregation with Functionalized Gold Nanoparticles. ACS Appl. Mater. Interfaces 2024, 16, 3819–3828. [Google Scholar] [CrossRef]
- Li, Y.T.; An, C.Y.; Han, D.A.; Dang, Y.X.; Liu, X.; Zhang, F.M.; Xu, Y.; Zhong, H.J.; Sun, X.J. Neutrophil affinity for PGP and HAIYPRH (T7) peptide dual-ligand functionalized nanoformulation enhances the brain delivery of tanshinone IIA and exerts neuroprotective effects against ischemic stroke by inhibiting proinflammatory signaling pathways. New J. Chem. 2018, 42, 19043–19061. [Google Scholar] [CrossRef]
- Lu, L.; Chen, H.; Wang, L.; Zhao, L.; Cheng, Y.; Wang, A.; Wang, F.; Zhang, X. A Dual Receptor Targeting- and BBB Penetrating- Peptide Functionalized Polyethyleneimine Nanocomplex for Secretory Endostatin Gene Delivery to Malignant Glioma. Int. J. Nanomed. 2020, 15, 8875–8892. [Google Scholar] [CrossRef]
- Yang, L.; Wang, Y.; Li, Z.; Wu, X.; Mei, J.; Zheng, G. Brain targeted peptide-functionalized chitosan nanoparticles for resveratrol delivery: Impact on insulin resistance and gut microbiota in obesity-related Alzheimer’s disease. Carbohydr. Polym. 2023, 310, 120714. [Google Scholar] [CrossRef] [PubMed]
- Biscaglia, F.; Quarta, S.; Villano, G.; Turato, C.; Biasiolo, A.; Litti, L.; Ruzzene, M.; Meneghetti, M.; Pontisso, P.; Gobbo, M. PreS1 peptide-functionalized gold nanostructures with SERRS tags for efficient liver cancer cell targeting. Mater. Sci. Eng. C-Mater. Biol. Appl. 2019, 103, 109762. [Google Scholar] [CrossRef]
- Fanfone, D.; Stanicki, D.; Nonclercq, D.; Port, M.; Vander Elst, L.; Laurent, S.; Muller, R.N.; Saussez, S.; Burtea, C. Molecular Imaging of Galectin-1 Expression as a Biomarker of Papillary Thyroid Cancer by Using Peptide-Functionalized Imaging Probes. Biology 2020, 9, 53. [Google Scholar] [CrossRef]
- Herrera-Ochoa, D.; Bravo, I.; Garzon-Ruiz, A. Monitoring cancer treatments in melanoma cells using a fluorescence lifetime nanoprobe based on a CdSe/ZnS quantum dot functionalized with a peptide containing D-penicillamine and histidine. Colloids Surf. B Biointerfaces 2025, 245, 114265. [Google Scholar] [CrossRef]
- Mao, M.J.; Zhang, M.Q.; Xu, W.; Zhao, B. Design and development of peptide-functionalized iron oxide nanoparticles: Investigation of ultrasound imaging for the diagnosis and treatment of cancers. Mater. Express 2021, 11, 817–823. [Google Scholar] [CrossRef]
- Michalska, M.; Florczak, A.; Dams-Kozlowska, H.; Gapinski, J.; Jurga, S.; Schneider, R. Peptide-functionalized ZCIS QDs as fluorescent nanoprobe for targeted HER2-positive breast cancer cells imaging. Acta Biomater. 2016, 35, 293–304. [Google Scholar] [CrossRef]
- Zhu, X.; Lu, N.; Zhou, Y.; Xuan, S.; Zhang, J.; Giampieri, F.; Zhang, Y.; Yang, F.; Yu, R.; Battino, M.; et al. Targeting Pancreatic Cancer Cells with Peptide-Functionalized Polymeric Magnetic Nanoparticles. Int. J. Mol. Sci. 2019, 20, 2988. [Google Scholar] [CrossRef]
- Dong, J.; Chen, F.; Yao, Y.; Wu, C.; Ye, S.; Ma, Z.; Yuan, H.; Shao, D.; Wang, L.; Wang, Y. Bioactive mesoporous silica nanoparticle-functionalized titanium implants with controllable antimicrobial peptide release potentiate the regulation of inflammation and osseointegration. Biomaterials 2024, 305, 122465. [Google Scholar] [CrossRef]
- Dooley, K.; Devalliere, J.; Uygun, B.E.; Yarmush, M.L. Functionalized Biopolymer Particles Enhance Performance of a Tissue-Protective Peptide under Proteolytic and Thermal Stress. Biomacromolecules 2016, 17, 2073–2079. [Google Scholar] [CrossRef]
- Elkhodiry, M.A.; Boulanger, M.D.; Bashth, O.; Tanguay, J.F.; Laroche, G.; Hoesli, C.A. Isolating and expanding endothelial progenitor cells from peripheral blood on peptide-functionalized polystyrene surfaces. Biotechnol. Bioeng. 2019, 116, 2598–2609. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhang, Z.; Liu, Y.; Li, H.; Wang, N.; Liu, W.; Li, W.; Jin, L.; Wang, J.; Chen, S. Nanotubes Functionalized with BMP2 Knuckle Peptide Improve the Osseointegration of Titanium Implants in Rabbits. J. Biomed. Nanotechnol. 2015, 11, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Nanjaiah, H.; Moudgil, K.D. The Utility of Peptide Ligand-Functionalized Liposomes for Subcutaneous Drug Delivery for Arthritis Therapy. Int. J. Mol. Sci. 2023, 24, 6883. [Google Scholar] [CrossRef]
- Schmitz, M.G.J.; Riool, M.; de Boer, L.; Vrehen, A.F.; Bartels, P.A.A.; Zaat, S.A.J.; Dankers, P.Y.W. Development of an Antimicrobial Peptide SAAP-148-Functionalized Supramolecular Coating on Titanium to Prevent Biomaterial-Associated Infections. Adv. Mater. Technol. 2023, 8, 14. [Google Scholar] [CrossRef]
- Yazici, H.; Fong, H.; Wilson, B.; Oren, E.E.; Amos, F.A.; Zhang, H.; Evans, J.S.; Snead, M.L.; Sarikaya, M.; Tamerler, C. Biological response on a titanium implant-grade surface functionalized with modular peptides. Acta Biomater. 2013, 9, 5341–5352. [Google Scholar] [CrossRef]
- Nahhas, A.F.; Webster, T.J. Applications of peptide-functionalized or unfunctionalized selenium nanoparticles for the passivation of SARS-CoV-2 variants and the respiratory syncytial virus (RSV). Colloids Surf. B Biointerfaces 2024, 233, 113638. [Google Scholar] [CrossRef]
- Ren, M.; Zhou, Y.; Tu, T.; Jiang, D.; Pang, M.; Li, Y.; Luo, Y.; Yao, X.; Yang, Z.; Wang, Y. RVG Peptide-Functionalized Favipiravir Nanoparticle Delivery System Facilitates Antiviral Therapy of Neurotropic Virus Infection in a Mouse Model. Int. J. Mol. Sci. 2023, 24, 5851. [Google Scholar] [CrossRef]
- Wang, W.; Li, P.; Huang, Q.; Zhu, Q.; He, S.; Bing, W.; Zhang, Z. Functionalized antibacterial peptide with DNA cleavage activity for enhanced bacterial disinfection. Colloids Surf. B Biointerfaces 2023, 228, 113412. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Qiu, L.; Wang, C.; Lei, X.; Cui, P.; Zhou, S.; Zhao, D.; Ni, X.; Jiang, P.; et al. Gelatinase-Responsive Photothermal Nanotherapy Based on Au Nanostars Functionalized with Antimicrobial Peptides for Treating Staphylococcus aureus Infections. ACS Appl. Nano Mater. 2022, 5, 8324–8333. [Google Scholar] [CrossRef]
- Dou, W.T.; Guo, C.; Zhu, L.; Qiu, P.; Kan, W.; Pan, Y.F.; Zang, Y.; Dong, L.W.; Li, J.; Tan, Y.X.; et al. Targeted Near-Infrared Fluorescence Imaging of Liver Cancer using Dual-Peptide-Functionalized Albumin Particles. Chem. Biomed. Imaging 2024, 2, 47–55. [Google Scholar] [CrossRef]
- Gray, B.P.; Li, S.; Brown, K.C. From phage display to nanoparticle delivery: Functionalizing liposomes with multivalent peptides improves targeting to a cancer biomarker. Bioconjug. Chem. 2013, 24, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Ma, C.; Cao, J.; Zhou, H.; Guo, T. Tet1 peptide and zinc (II)-adenine multifunctional module functionalized polycations as efficient siRNA carriers for Parkinson’s disease. J. Control Release 2024, 367, 316–326. [Google Scholar] [CrossRef] [PubMed]
- Gamper, C.; Spenle, C.; Bosca, S.; van der Heyden, M.; Erhardt, M.; Orend, G.; Bagnard, D.; Heinlein, M. Functionalized Tobacco Mosaic Virus Coat Protein Monomers and Oligomers as Nanocarriers for Anti-Cancer Peptides. Cancers 2019, 11, 1609. [Google Scholar] [CrossRef] [PubMed]
- Haider, M.; Cagliani, R.; Jagal, J.; Jayakumar, M.N.; Fayed, B.; Shakartalla, S.B.; Pasricha, R.; Greish, K.; El-Awady, R. Peptide-functionalized graphene oxide quantum dots as colorectal cancer theranostics. J. Colloid. Interface Sci. 2023, 630, 698–713. [Google Scholar] [CrossRef]
- He, G.Z.; Lin, W.J. Peptide-Functionalized Nanoparticles-Encapsulated Cyclin-Dependent Kinases Inhibitor Seliciclib in Transferrin Receptor Overexpressed Cancer Cells. Nanomaterials 2021, 11, 772. [Google Scholar] [CrossRef]
- Hoesli, C.A.; Tremblay, C.; Juneau, P.M.; Boulanger, M.D.; Beland, A.V.; Ling, S.D.; Gaillet, B.; Duchesne, C.; Ruel, J.; Laroche, G.; et al. Dynamics of Endothelial Cell Responses to Laminar Shear Stress on Surfaces Functionalized with Fibronectin-Derived Peptides. ACS Biomater. Sci. Eng. 2018, 4, 3779–3791. [Google Scholar] [CrossRef]
- Jain, P.; Rauer, S.B.; Felder, D.; Linkhorst, J.; Moller, M.; Wessling, M.; Singh, S. Peptide-Functionalized Electrospun Meshes for the Physiological Cultivation of Pulmonary Alveolar Capillary Barrier Models in a 3D-Printed Micro-Bioreactor. ACS Biomater. Sci. Eng. 2023, 9, 4878–4892. [Google Scholar] [CrossRef]
- Yoon, S.H.; Mofrad, M.R. Cell adhesion and detachment on gold surfaces modified with a thiol-functionalized RGD peptide. Biomaterials 2011, 32, 7286–7296. [Google Scholar] [CrossRef]
- Yao, X.Y.; Qian, C.T.; Zhong, Y.Y.; Sun, S.A.; Xu, H.H.; Yang, D.Z. In vivo targeting of breast cancer with peptide functionalized GQDs/hMSN nanoplatform. J. Nanopart. Res. 2019, 21, 9. [Google Scholar] [CrossRef]
- Kumar, H.; Gupta, N.V.; Jain, R.; Madhunapantula, S.V.; Babu, S.; Dey, S.; Soni, A.G.; Jain, V. F3 peptide functionalized liquid crystalline nanoparticles for delivering Salinomycin against breast cancer. Int. J. Pharm. 2023, 643, 123226. [Google Scholar] [CrossRef]
- Kinnari, P.J.; Hyvonen, M.L.; Makila, E.M.; Kaasalainen, M.H.; Rivinoja, A.; Salonen, J.J.; Hirvonen, J.T.; Laakkonen, P.M.; Santos, H.A. Tumour homing peptide-functionalized porous silicon nanovectors for cancer therapy. Biomaterials 2013, 34, 9134–9141. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Liu, L.; Zhu, D.; Zhang, H.; Leng, X. Transactivator of transcription (TAT) peptide- chitosan functionalized multiwalled carbon nanotubes as a potential drug delivery vehicle for cancer therapy. Int. J. Nanomed. 2015, 10, 3829–3840. [Google Scholar] [CrossRef]
- Kordbacheh, H.; Eslami, S.; Rezaee, A.; Abadi, P.G.-s.; Bybordi, S.; Ehsanfar, N.; Goleij, P.; SharifianJazi, F.; Irani, M. Cell-Penetrating Peptide Functionalized ZIF-8 (Zn, Fe)/Doxorubicin/Chitosan-Grafted-Polycaprolactone/Curcumin Against A549 Lung Cancer Cells. J. Polym. Environ. 2024, 33, 581–598. [Google Scholar] [CrossRef]
- Shadmani, N.; Makvandi, P.; Parsa, M.; Azadi, A.; Nedaei, K.; Mozafari, N.; Poursina, N.; Mattoli, V.; Tay, F.R.; Maleki, A.; et al. Enhancing Methotrexate Delivery in the Brain by Mesoporous Silica Nanoparticles Functionalized with Cell-Penetrating Peptide using in Vivo and ex Vivo Monitoring. Mol. Pharm. 2023, 20, 1531–1548. [Google Scholar] [CrossRef]
- Campos, P.M.; Praca, F.G.; Mussi, S.V.; Figueiredo, S.A.; Fantini, M.C.A.; Fonseca, M.J.V.; Torchilin, V.P.; Bentley, M. Liquid crystalline nanodispersion functionalized with cell-penetrating peptides improves skin penetration and anti-inflammatory effect of lipoic acid after in vivo skin exposure to UVB radiation. Drug Deliv. Transl. Res. 2020, 10, 1810–1828. [Google Scholar] [CrossRef]
- Petrilli, R.; Eloy, J.O.; Praca, F.S.; Del Ciampo, J.O.; Fantini, M.A.; Fonseca, M.J.; Bentley, M.V. Liquid Crystalline Nanodispersions Functionalized with Cell-Penetrating Peptides for Topical Delivery of Short-Interfering RNAs: A Proposal for Silencing a Pro-Inflammatory Cytokine in Cutaneous Diseases. J. Biomed. Nanotechnol. 2016, 12, 1063–1075. [Google Scholar] [CrossRef]
- Von Zuben, E.S.; Eloy, J.O.; Inacio, M.D.; Araujo, V.H.S.; Baviera, A.M.; Gremiao, M.P.D.; Chorilli, M. Hydroxyethylcellulose-Based Hydrogels Containing Liposomes Functionalized with Cell-Penetrating Peptides for Nasal Delivery of Insulin in the Treatment of Diabetes. Pharmaceutics 2022, 14, 2492. [Google Scholar] [CrossRef]
- Yin, T.; Xie, W.; Sun, J.; Yang, L.; Liu, J. Penetratin Peptide-Functionalized Gold Nanostars: Enhanced BBB Permeability and NIR Photothermal Treatment of Alzheimer’s Disease Using Ultralow Irradiance. ACS Appl. Mater. Interfaces 2016, 8, 19291–19302. [Google Scholar] [CrossRef]
- Yang, W.; Xia, Y.; Fang, Y.; Meng, F.; Zhang, J.; Cheng, R.; Deng, C.; Zhong, Z. Selective Cell Penetrating Peptide-Functionalized Polymersomes Mediate Efficient and Targeted Delivery of Methotrexate Disodium to Human Lung Cancer In Vivo. Adv. Healthc. Mater. 2018, 7, e1701135. [Google Scholar] [CrossRef]
- Wei, Y.; Gu, X.; Sun, Y.; Meng, F.; Storm, G.; Zhong, Z. Transferrin-binding peptide functionalized polymersomes mediate targeted doxorubicin delivery to colorectal cancer in vivo. J. Control Release 2020, 319, 407–415. [Google Scholar] [CrossRef]
- Wang, M.; Liu, Y.; Shao, B.; Liu, X.; Hu, Z.; Wang, C.; Li, H.; Zhu, L.; Li, P.; Yang, Y. HER2 status of CTCs by peptide-functionalized nanoparticles as the diagnostic biomarker of breast cancer and predicting the efficacy of anti-HER2 treatment. Front. Bioeng. Biotechnol. 2022, 10, 1015295. [Google Scholar] [CrossRef]
- Qu, D.Y.; Liao, L.; Ding, Q. Targeting of ovarian cancer cell through functionalized gold nanoparticles by novel glypican-3-binding peptide as a ultrasound contrast agents. Process Biochem. 2020, 98, 51–58. [Google Scholar] [CrossRef]
- Rata, D.M.; Cadinoiu, A.N.; Atanase, L.I.; Popa, M.; Mihai, C.T.; Vochita, G. Peptide-functionalized chitosan-based microcapsules for dual active targeted treatment of lung infections. Int. J. Biol. Macromol. 2024, 265, 131027. [Google Scholar] [CrossRef]
- Falanga, A.P.; Cerullo, V.; Marzano, M.; Feola, S.; Oliviero, G.; Piccialli, G.; Borbone, N. Peptide Nucleic Acid-Functionalized Adenoviral Vectors Targeting G-Quadruplexes in the P1 Promoter of Bcl-2 Proto-Oncogene: A New Tool for Gene Modulation in Anticancer Therapy. Bioconjug. Chem. 2019, 30, 572–582. [Google Scholar] [CrossRef]
- Liu, S.Y.; Liang, Z.S.; Gao, F.; Luo, S.F.; Lu, G.Q. In vitro photothermal study of gold nanoshells functionalized with small targeting peptides to liver cancer cells. J. Mater. Sci. Mater. Med. 2010, 21, 665–674. [Google Scholar] [CrossRef]
- Thovhogi, N.; Sibuyi, N.R.S.; Onani, M.O.; Meyer, M.; Madiehe, A.M. Peptide-functionalized quantum dots for potential applications in the imaging and treatment of obesity. Int. J. Nanomed. 2018, 13, 2551–2559. [Google Scholar] [CrossRef]
- Liu, X.; Liu, J.; Xu, S.; Li, X.; Wang, Z.; Gao, X.; Tang, B.; Xu, K. Gold Nanoparticles Functionalized with Au-Se-Bonded Peptides Used as Gatekeepers for the Off-Target Release of Resveratrol in the Treatment of Triple-Negative Breast Cancer. ACS Appl. Mater. Interfaces 2023, 15, 2529–2537. [Google Scholar] [CrossRef]
- Taylor, M.; Moore, S.; Mourtas, S.; Niarakis, A.; Re, F.; Zona, C.; La Ferla, B.; Nicotra, F.; Masserini, M.; Antimisiaris, S.G.; et al. Effect of curcumin-associated and lipid ligand-functionalized nanoliposomes on aggregation of the Alzheimer’s Abeta peptide. Nanomedicine 2011, 7, 541–550. [Google Scholar] [CrossRef]
- Liang, D.S.; Su, H.T.; Liu, Y.J.; Wang, A.T.; Qi, X.R. Tumor-specific penetrating peptides-functionalized hyaluronic acid-d-alpha-tocopheryl succinate based nanoparticles for multi-task delivery to invasive cancers. Biomaterials 2015, 71, 11–23. [Google Scholar] [CrossRef]
- Bansal, K.; Aqdas, M.; Kumar, M.; Bala, R.; Singh, S.; Agrewala, J.N.; Katare, O.P.; Sharma, R.K.; Wangoo, N. A Facile Approach for Synthesis and Intracellular Delivery of Size Tunable Cationic Peptide Functionalized Gold Nanohybrids in Cancer Cells. Bioconjug. Chem. 2018, 29, 1102–1110. [Google Scholar] [CrossRef]
- Izadi, Z.; Rashidi, M.; Derakhshankhah, H.; Dolati, M.; Ghanbari Kermanshahi, M.; Adibi, H.; Samadian, H. Curcumin-loaded porous particles functionalized with pH-responsive cell-penetrating peptide for colorectal cancer targeted drug delivery. RSC Adv. 2023, 13, 34587–34597. [Google Scholar] [CrossRef] [PubMed]
- Mathieu, E.; Bernard, A.S.; Ching, H.Y.V.; Somogyi, A.; Medjoubi, K.; Fores, J.R.; Bertrand, H.C.; Vincent, A.; Trepout, S.; Guerquin-Kern, J.L.; et al. Anti-inflammatory activity of superoxide dismutase mimics functionalized with cell-penetrating peptides. Dalton Trans. 2020, 49, 2323–2330. [Google Scholar] [CrossRef] [PubMed]
- Perillo, E.; Herve-Aubert, K.; Allard-Vannier, E.; Falanga, A.; Galdiero, S.; Chourpa, I. Synthesis and in vitro evaluation of fluorescent and magnetic nanoparticles functionalized with a cell penetrating peptide for cancer theranosis. J. Colloid. Interface Sci. 2017, 499, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Gu, Y.W.; Fu, Z.Q.; Xu, Y.F.; Wu, X.; Chen, J.M. T7-Functionalized Cationic Peptide as a Nanovehicle for Co-delivering Paclitaxel and siR-MeCP2 to Target Androgen-Dependent and Androgen Independent Prostate Cancer. ACS Appl. Bio Mater. 2021, 4, 807–819. [Google Scholar] [CrossRef]
- Li, X.; Liu, H.; Ding, S.; Tian, Z.; Song, J.; Zhong, H.; Fu, L.; Cai, X.; Huang, F.; Wang, K.; et al. Chemoenzymatic Synthesis of DNP-Functionalized FGFR1-Binding Peptides as Novel Peptidomimetic Immunotherapeutics for Treating Lung Cancer. J. Med. Chem. 2024, 67, 15373–15386. [Google Scholar] [CrossRef]
- Bartneck, M.; Ritz, T.; Keul, H.A.; Wambach, M.; Bornemann, J.; Gbureck, U.; Ehling, J.; Lammers, T.; Heymann, F.; Gassler, N.; et al. Peptide-functionalized gold nanorods increase liver injury in hepatitis. ACS Nano 2012, 6, 8767–8777. [Google Scholar] [CrossRef]
- Mozhi, A.; Ahmad, I.; Kaleem, Q.M.; Tuguntaev, R.G.; Eltahan, A.S.; Wang, C.; Yang, R.; Li, C.; Liang, X.J. Nrp-1 receptor targeting peptide-functionalized TPGS micellar nanosystems to deliver 10-hydroxycampothecin for enhanced cancer chemotherapy. Int. J. Pharm. 2018, 547, 582–592. [Google Scholar] [CrossRef]
- Roessler, S.; Born, R.; Scharnweber, D.; Worch, H.; Sewing, A.; Dard, M. Biomimetic coatings functionalized with adhesion peptides for dental implants. J. Mater. Sci. Mater. Med. 2001, 12, 871–877. [Google Scholar] [CrossRef]
- Kulhari, H.; Pooja, D.; Kota, R.; Reddy, T.S.; Tabor, R.F.; Shukla, R.; Adams, D.J.; Sistla, R.; Bansal, V. Cyclic RGDfK Peptide Functionalized Polymeric Nanocarriers for Targeting Gemcitabine to Ovarian Cancer Cells. Mol. Pharm. 2016, 13, 1491–1500. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, S.; Gu, W.; Dong, Y.; Meng, F.; Yuan, J.; Zhong, Z. alpha(3) integrin-binding peptide-functionalized polymersomes loaded with volasertib for dually-targeted molecular therapy for ovarian cancer. Acta Biomater. 2021, 124, 348–357. [Google Scholar] [CrossRef]
- Ok, H.W.; Jin, S.; Park, G.; Jana, B.; Ryu, J.H. Folic Acid-Functionalized beta-Cyclodextrin for Delivery of Organelle-Targeted Peptide Chemotherapeutics in Cancer. Mol. Pharm. 2024, 21, 4498–4509. [Google Scholar] [CrossRef] [PubMed]
- NR, S.S.; Thovhogi, N.; Gabuza, K.B.; Meyer, M.D.; Drah, M.; Onani, M.O.; Skepu, A.; Madiehe, A.M.; Meyer, M. Peptide-functionalized nanoparticles for the selective induction of apoptosis in target cells. Nanomedicine 2017, 12, 1631–1645. [Google Scholar] [CrossRef]
- Huang, S.; Li, C.; Wang, W.; Li, H.; Sun, Z.; Song, C.; Li, B.; Duan, S.; Hu, Y. A54 peptide-mediated functionalized gold nanocages for targeted delivery of DOX as a combinational photothermal-chemotherapy for liver cancer. Int. J. Nanomed. 2017, 12, 5163–5176. [Google Scholar] [CrossRef]
- Conte, C.; Longobardi, G.; Barbieri, A.; Palma, G.; Luciano, A.; Dal Poggetto, G.; Avitabile, C.; Pecoraro, A.; Russo, A.; Russo, G.; et al. Non-covalent strategies to functionalize polymeric nanoparticles with NGR peptides for targeting breast cancer. Int. J. Pharm. 2023, 633, 122618. [Google Scholar] [CrossRef]
- Cullier, A.; Casse, F.; Manivong, S.; Contentin, R.; Legendre, F.; Garcia Ac, A.; Sirois, P.; Roullin, G.; Banquy, X.; Moldovan, F.; et al. Functionalized Nanogels with Endothelin-1 and Bradykinin Receptor Antagonist Peptides Decrease Inflammatory and Cartilage Degradation Markers of Osteoarthritis in a Horse Organoid Model of Cartilage. Int. J. Mol. Sci. 2022, 23, 8949. [Google Scholar] [CrossRef]
- Jiao, Z.; Li, Y.; Pang, H.; Zheng, Y.; Zhao, Y. Pep-1 peptide-functionalized liposome to enhance the anticancer efficacy of cilengitide in glioma treatment. Colloids Surf. B Biointerfaces 2017, 158, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.Y.; Yang, H.M.; Kim, C.H.; Goo, Y.T.; Hwang, G.Y.; Chang, I.H.; Whang, Y.M.; Choi, Y.W. Enhanced Intracellular Delivery of BCG Cell Wall Skeleton into Bladder Cancer Cells Using Liposomes Functionalized with Folic Acid and Pep-1 Peptide. Pharmaceutics 2019, 11, 652. [Google Scholar] [CrossRef]
- Riaz, M.K.; Zhang, X.; Wong, K.H.; Chen, H.; Liu, Q.; Chen, X.; Zhang, G.; Lu, A.; Yang, Z. Pulmonary delivery of transferrin receptors targeting peptide surface-functionalized liposomes augments the chemotherapeutic effect of quercetin in lung cancer therapy. Int. J. Nanomed. 2019, 14, 2879–2902. [Google Scholar] [CrossRef]
- Wu, X.Y.; Huan, X.K.; Zhu, Y.M.; Yang, G.; Yang, H.; Wu, Z.F.; Xu, W.W. Co-loading of doxorubicin and anti-cancer peptide LL-37 on covalently functionalized carbon nanotubes; a molecular dynamics simulation study. J. Mol. Liq. 2023, 386, 12. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Y.; Huang, C.; Lu, L.; Chen, J.; Weng, Y. Biomimetic Hydrogel Scaffolds with Copper Peptide-Functionalized RADA16 Nanofiber Improve Wound Healing in Diabetes. Macromol. Biosci. 2022, 22, e2200019. [Google Scholar] [CrossRef]
- Yakufu, M.; Wang, Z.; Wang, Y.; Jiao, Z.; Guo, M.; Liu, J.; Zhang, P. Covalently functionalized poly(etheretherketone) implants with osteogenic growth peptide (OGP) to improve osteogenesis activity. RSC Adv. 2020, 10, 9777–9785. [Google Scholar] [CrossRef] [PubMed]
- Jha, S.; Ramadori, F.; Quarta, S.; Biasiolo, A.; Fabris, E.; Baldan, P.; Guarino, G.; Ruvoletto, M.; Villano, G.; Turato, C.; et al. Binding and Uptake into Human Hepatocellular Carcinoma Cells of Peptide-Functionalized Gold Nanoparticles. Bioconjug. Chem. 2017, 28, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Ma, H.; Zhang, X.; Huang, K.; Jin, S.; Liu, J.; Wei, T.; Cao, W.; Zou, G.; Liang, X.J. Gold nanoparticles functionalized with therapeutic and targeted peptides for cancer treatment. Biomaterials 2012, 33, 1180–1189. [Google Scholar] [CrossRef] [PubMed]
- Shahdeo, D.; Kesarwani, V.; Suhag, D.; Ahmed, J.; Alshehri, S.M.; Gandhi, S. Self-assembled chitosan polymer intercalating peptide functionalized gold nanoparticles as nanoprobe for efficient imaging of urokinase plasminogen activator receptor in cancer diagnostics. Carbohydr. Polym. 2021, 266, 118138. [Google Scholar] [CrossRef]
- Ruff, J.; Huwel, S.; Kogan, M.J.; Simon, U.; Galla, H.J. The effects of gold nanoparticles functionalized with ss-amyloid specific peptides on an in vitro model of blood-brain barrier. Nanomedicine 2017, 13, 1645–1652. [Google Scholar] [CrossRef]
- Kumar, N.; Singh, A.; Dhaka, P.; Singh, A.; Agarwala, P.; Sharma, K.; Bhargava, A.; Bhatia, S.; Launey, T.; Kaushik, R.; et al. A label-free gold nanoparticles functionalized peptide dendrimer biosensor for visual detection of breakthrough infections in COVID-19 vaccinated patients. Sens. Bio-Sens. Res. 2025, 47, 11. [Google Scholar] [CrossRef]
- Pereira, M.C.; Adewale, O.B.; Roux, S.; Cairncross, L.; Davids, H. Biochemical assessment of the neurotoxicity of gold nanoparticles functionalized with colorectal cancer-targeting peptides in a rat model. Hum. Exp. Toxicol. 2021, 40, 1962–1973. [Google Scholar] [CrossRef]
- Qian, Q.Q.; Niu, S.W.; Williams, G.R.; Wu, J.R.; Zhang, X.Y.; Zhu, L.M. Peptide functionalized dual-responsive chitosan nanoparticles for controlled drug delivery to breast cancer cells. Colloid. Surf. A-Physicochem. Eng. Asp. 2019, 564, 122–130. [Google Scholar] [CrossRef]
- Li, D.; Ma, S.; Xu, D.; Meng, X.; Lei, N.; Liu, C.; Zhao, Y.; Qi, Y.; Cheng, Z.; Wang, F. Peptide-functionalized therapeutic nanoplatform for treatment orthotopic triple negative breast cancer and bone metastasis. Nanomedicine 2023, 50, 102669. [Google Scholar] [CrossRef]
- Rostami, N.; Ghebleh, A.; Noei, H.; Rizi, Z.S.; Moeinzadeh, A.; Nikzad, A.; Gomari, M.M.; Uversky, V.N.; Tarighi, P. Peptide-functionalized polymeric nanoparticles for delivery of curcumin to cancer cells. J. Drug Deliv. Sci. Technol. 2024, 102, 11. [Google Scholar] [CrossRef]
- Murar, M.; Pujals, S.; Albertazzi, L. Multivalent effect of peptide functionalized polymeric nanoparticles towards selective prostate cancer targeting. Nanoscale Adv. 2023, 5, 1378–1385. [Google Scholar] [CrossRef] [PubMed]
- Riegger, A.; Chen, C.; Zirafi, O.; Daiss, N.; Mukherji, D.; Walter, K.; Tokura, Y.; Stockle, B.; Kremer, K.; Kirchhoff, F.; et al. Synthesis of Peptide-Functionalized Poly(bis-sulfone) Copolymers Regulating HIV-1 Entry and Cancer Stem Cell Migration. ACS Macro Lett. 2017, 6, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Yosefi, S.; Sirati-Sabet, M.; Pakdel, A.; Nabizadeh, Z.; Kokhaei, P.; Madanchi, H. Targeted delivery of chrysin and 5-fluorouracil on MDA-MB-231 cancer cells by a peptide-functionalized L-DOPA-imprinted polymer. Naunyn Schmiedebergs Arch. Pharmacol. 2024, 16. [Google Scholar] [CrossRef]
- Mellinger, A.; Lubitz, L.J.; Gazaille, C.; Leneweit, G.; Bastiat, G.; Lepinoux-Chambaud, C.; Eyer, J. The use of liposomes functionalized with the NFL-TBS.40-63 peptide as a targeting agent to cross the in vitro blood-brain barrier and target glioblastoma cells. Int. J. Pharm. 2023, 646, 123421. [Google Scholar] [CrossRef]
- Luo, H.; Lu, L.; Yang, F.; Wang, L.; Yang, X.; Luo, Q.; Zhang, Z. Nasopharyngeal cancer-specific therapy based on fusion peptide-functionalized lipid nanoparticles. ACS Nano 2014, 8, 4334–4347. [Google Scholar] [CrossRef]
- Zhai, B.; Chen, P.; Wang, W.; Liu, S.; Feng, J.; Duan, T.; Xiang, Y.; Zhang, R.; Zhang, M.; Han, X.; et al. An ATF(24) peptide-functionalized beta-elemene-nanostructured lipid carrier combined with cisplatin for bladder cancer treatment. Cancer Biol. Med. 2020, 17, 676–692. [Google Scholar] [CrossRef]
- Nezir, A.E.; Bolat, Z.B.; Saka, O.M.; Zemheri, I.E.; Gulyuz, S.; Ozkose, U.U.; Yilmaz, O.; Bozkir, A.; Sahin, F.; Telci, D. PEtOx-DOPE nanoliposomes functionalized with peptide 563 in targeted BikDDA delivery to prostate cancer. Turk. J. Biol. 2024, 48, 174–181. [Google Scholar] [CrossRef]
- Wang, X.; Chen, X.; Yang, X.; Gao, W.; He, B.; Dai, W.; Zhang, H.; Wang, X.; Wang, J.; Zhang, X.; et al. A nanomedicine based combination therapy based on QLPVM peptide functionalized liposomal tamoxifen and doxorubicin against Luminal A breast cancer. Nanomedicine 2016, 12, 387–397. [Google Scholar] [CrossRef]
- Shen, Q.; Yang, H.; Peng, C.; Zhu, H.; Mei, J.; Huang, S.; Chen, B.; Liu, J.; Wu, W.; Cao, S. Capture and biological release of circulating tumor cells in pancreatic cancer based on peptide-functionalized silicon nanowire substrate. Int. J. Nanomed. 2019, 14, 205–214. [Google Scholar] [CrossRef]
- Kanathasan, J.S.; Palanisamy, U.D.; Radhakrishnan, A.K.; Chakravarthi, S.; Thong, T.B.; Swamy, V. Protease-targeting peptide-functionalized porous silicon nanoparticles for cancer fluorescence imaging. Nanomedicine 2022, 17, 1511–1528. [Google Scholar] [CrossRef]
- Cagliani, R.; Fayed, B.; Jagal, J.; Shakartalla, S.B.; Soliman, S.S.M.; Haider, M. Peptide-functionalized zinc oxide nanoparticles for the selective targeting of breast cancer expressing placenta-specific protein 1. Colloids Surf. B Biointerfaces 2023, 227, 113357. [Google Scholar] [CrossRef]
- Liang, N.; Liu, L.; Li, P.; Xu, Y.; Hou, Y.; Peng, J.; Song, Y.; Bing, Z.; Wang, Y.; Wang, Y.; et al. Efficient isolation and quantification of circulating tumor cells in non-small cell lung cancer patients using peptide-functionalized magnetic nanoparticles. J. Thorac. Dis. 2020, 12, 4262–4273. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Bao, Y.; Li, Z.; Teng, P.; Ma, L.; Zhang, H.; Liu, G.; Wang, Z. Employing antagonistic C-X-C motif chemokine receptor 4 antagonistic peptide functionalized NaGdF(4) nanodots for magnetic resonance imaging-guided biotherapy of breast cancer. Sci. Rep. 2024, 14, 15764. [Google Scholar] [CrossRef]
- Shi, Z.H.; Dai, C.B.; Deng, P.X.; Li, X.; Wu, Y.; Lv, J.J.; Xiong, C.H.; Shuai, Y.F.; Zhang, F.N.; Wang, D.; et al. Wearable battery-free smart bandage with peptide functionalized biosensors based on MXene for bacterial wound infection detection. Sens. Actuator B-Chem. 2023, 383, 10. [Google Scholar] [CrossRef]
- Song, X.; Ding, Q.; Wei, W.; Zhang, J.; Sun, R.; Yin, L.; Liu, S.; Pu, Y. Peptide-Functionalized Prussian Blue Nanomaterial for Antioxidant Stress and NIR Photothermal Therapy against Alzheimer’s Disease. Small 2023, 19, e2206959. [Google Scholar] [CrossRef]
- Kuan, S.; Chi, S.C.; Cheng, Y.J.; Chia, T.J.; Huang, L.S. Binding kinetics of grouper nervous necrosis viruses with functionalized antimicrobial peptides by nanomechanical detection. Biosens. Bioelectron. 2012, 31, 116–123. [Google Scholar] [CrossRef]
- Mahdaviani, P.; Bahadorikhalili, S.; Navaei-Nigjeh, M.; Vafaei, S.Y.; Esfandyari-Manesh, M.; Abdolghaffari, A.H.; Daman, Z.; Atyabi, F.; Ghahremani, M.H.; Amini, M.; et al. Peptide functionalized poly ethylene glycol-poly caprolactone nanomicelles for specific cabazitaxel delivery to metastatic breast cancer cells. Mater. Sci. Eng. C-Mater. Biol. Appl. 2017, 80, 301–312. [Google Scholar] [CrossRef]
- Niu, S.; Bremner, D.H.; Wu, J.; Wu, J.; Wang, H.; Li, H.; Qian, Q.; Zheng, H.; Zhu, L. l-Peptide functionalized dual-responsive nanoparticles for controlled paclitaxel release and enhanced apoptosis in breast cancer cells. Drug Deliv. 2018, 25, 1275–1288. [Google Scholar] [CrossRef]
- Okarvi, S.M.; AlJammaz, I. A convenient and efficient total solid-phase synthesis of DOTA-functionalized tumor-targeting peptides for PET imaging of cancer. EJNMMI Res. 2019, 9, 88. [Google Scholar] [CrossRef]
- Li, Q.; Yang, X.; Xia, X.; Xia, X.X.; Yan, D. Affibody-Functionalized Elastin-like Peptide-Drug Conjugate Nanomicelle for Targeted Ovarian Cancer Therapy. Biomacromolecules 2024, 25, 6474–6484. [Google Scholar] [CrossRef]
- Liu, L.; Li, X.T.; Zhang, H.; Chen, H.D.; Abualrejal, M.M.A.; Song, D.Q.; Wang, Z.X. Six-in-one peptide functionalized upconversion@polydopamine nanoparticle-based ratiometric fluorescence sensing platform for real-time evaluating anticancer efficacy through monitoring caspase-3 activity. Sens. Actuator B-Chem. 2021, 333, 8. [Google Scholar] [CrossRef]
- Song, S.; Na, J.; Jang, M.; Lee, H.; Lee, H.S.; Lim, Y.B.; Choi, H.; Chae, Y. A CMOS VEGF Sensor for Cancer Diagnosis Using a Peptide Aptamer-Based Functionalized Microneedle. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 1288–1299. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.Y.H.; Chow, L.W.; Dismuke, W.M.; Ethier, C.R.; Stevens, M.M.; Stamer, W.D.; Overby, D.R. Peptide-Functionalized Fluorescent Particles for In Situ Detection of Nitric Oxide via Peroxynitrite-Mediated Nitration. Adv. Healthc. Mater. 2017, 6, 11. [Google Scholar] [CrossRef]
- Giraud, T.; Hoschtettler, P.; Pickaert, G.; Averlant-Petit, M.C.; Stefan, L. Emerging low-molecular weight nucleopeptide-based hydrogels: State of the art, applications, challenges and perspectives. Nanoscale 2022, 14, 4908–4921. [Google Scholar] [CrossRef]
- Roviello, G.N.; Musumeci, D. Synthetic approaches to nucleopeptides containing all four nucleobases, and nucleic acid-binding studies on a mixed-sequence nucleo-oligolysine. RSC Adv. 2016, 6, 63578–63585. [Google Scholar] [CrossRef]
Peptide Category | Peptide Examples | Applications/Findings | Ref. |
---|---|---|---|
Antimicrobial Peptides (AMPs) | Antimicrobial peptides (AMPs), antimicrobial peptide (HHC36), antimicrobial peptide (SAAP-148), antimicrobial peptide (GLFVDK-Cy7) | AMPs immobilized on biomaterials enhance wound healing, prevent biofilm formation, and combat antibiotic-resistant bacteria. Functionalized titanium implants and nanotherapy approaches show sustained antimicrobial activity and promote tissue regeneration. | [10,29,34,39] |
Cell-Penetrating Peptides (CPPs) | Tumor-homing and penetrating peptide (F3), cell-penetrating peptides (cRGD, RGERPPR), TAT-NLS peptide, TAT-AT7 peptide, TAT peptide, tumor-penetrating peptide (tLyP-1), penetratin (Pen) | CPPs enhance targeted drug delivery, improving therapy for drug-resistant cancers, glioma, and inflammatory conditions. Functionalized nanocarriers, nanoparticles, and frameworks aid in genome-editing, blood–brain barrier penetration, and photothermal therapy. | [9,11,17,21,52,53,54,55,56,58,59,69,70,71,72,73] |
Functional Peptides for Drug Carrier Enhancement | Fusion peptide (RGD + R(8)), peptide-functionalized siRNA, T7-functionalized peptide, DNP functionalized peptide, thiol-functionalized RGD peptide | Functional peptides improve drug delivery by enhancing cancer treatment, gene silencing, and immunotherapy. Hybrid nanoparticles, gold nanorods, and peptide-functionalized carriers aid in reversing drug resistance, targeted co-delivery, and cell adhesion studies. | [13,15,48,74,75] |
Integrin-Targeting Peptides | Cyclic RGD peptide, cell-penetrating peptides (cRGD, RGERPPR), fusion peptide (RGD + R(8)), internalizing-RGD (iRGD), RGD-TAMRA peptide, RGD and GLF tripeptides | Integrin-targeting peptides enhance cancer therapy, drug delivery, and tissue engineering. Functionalized gold nanoparticles, polymeric carriers, and biomimetic coatings improve tumor targeting, vascular grafts, and implant integration. | [1,2,11,13,16,31,46,47,48,76,77,78,79,80] |
Organ-Specific Targeting Peptides | Joint-homing peptide (ART-1), liver cancer-targeting peptide, organelle-targeted peptides, adipose homing peptide (AHP) | Organ-specific targeting peptides improve precision drug delivery and imaging. Applications include arthritis therapy, liver cancer treatment, organelle-directed chemotherapy, and obesity-targeted imaging. | [33,65,66,81] |
Nanomaterial Category | Examples of Different Structures | Peptides Used in Functionalization | Ref. |
---|---|---|---|
Gold-Based | Gold Nanoparticles, Gold Nanorods, Gold Nanostars, Gold Nanoshells, Gold Nanocages | Cyclic RGD peptide, peptide-functionalized siRNA, cysteine–Abeta peptide, PreS1 peptide, antimicrobial peptide (GLFVDK-Cy7), A54 peptide, RGD and GLF tripeptides, cell-penetrating peptide (CPP), PreS1 (21–47) peptide, CRGDK and PMI (p12) peptides, liver cancer-targeting peptide, prohibitin (PHB)-targeting peptide, glypican-3-binding peptide, GFD and SMB peptides, penetratin (Pen) peptide, β-amyloid-specific peptide, peptide dendrimer, colorectal cancer-targeting peptides | [1,2,15,19,23,39,58,62,65,70,76,82,83,92,93,94,95,96,97] |
Polymer-Based | Chitosan Nanoparticles, Polysaccharide-Based Nanoparticles, PEG-PLA Nanoparticles, PLA-Based Nanoparticles, Polymersomes | Collagen peptide, IVS4 peptide, tumor-homing and -penetrating peptide (F3), CF peptide, internalizing-RGD (iRGD), T7 and PGP peptides, TAT-AT7 peptide, TG peptide, endothelin-1 and bradykinin receptor antagonist peptides (BQ-123, R-954), tumor-penetrating peptide (tLyP-1), K237 peptide, transferrin-binding peptide (TBP), fibronectin-derived RGD peptide, iNGRt peptide (CRNGR), GE11 peptide, CRGDK peptide, A6 peptide, selective cell-penetrating peptide (SCPP), cyclic RGDfK peptide, WSC02 peptide, CD138-targeting peptide, alpha(3) integrin-binding eptide | [5,6,9,12,16,20,21,22,46,59,60,69,77,79,80,84,85,98,99,100,101,102,103] |
Lipid-Based | Liposomes, Nanostructured Lipid Carrier, Lipid Nanoparticles | LinTT1 peptide, H2009.1 tetrameric peptide, cell-penetrating peptides (cRGD, RGERPPR), modified ApoE-derived peptide, joint-homing peptide (ART-1), Pep-1 peptide, Pep-1 and folic acid (FA) peptides, NFL-TBS.40-63 peptide, α-NTP peptide, ATF(24) peptide, P563 peptide, curcumin–lipid ligand, QLPVM peptide | [7,11,18,33,41,68,86,87,88,104,105,106,107,108] |
Silica-Based | Mesoporous Silica Nanoparticles, Porous Silicon Nanovectors, Graphene Quantum Dots in Silica | Antimicrobial peptide (HHC36), rabies virus glycopeptide (RVG), selenol-modified uPA-specific peptide, TAT peptide, F3 peptide, tumor-homing peptide (CooP), peptide–silicon nanowires, legumain-responsive peptide | [29,37,49,51,54,67,109,110] |
Metal-Based | Superparamagnetic Iron Oxide Nanoparticles, Selenium Nanoparticles, Zinc Oxide Nanoparticles | Galectin-1-targeting peptide (P7), glypican-3 ligand peptide (GPC3), NapFFTLUFLTUTEKKKK, NapFFMLUFLMUMEKKKK, NapFFSAVLQSGFKKKK, TAT peptide, PLAC-1-targeting peptide (GILGFVFTL), TumorFisher Peptide, HER2-targeting peptide, cell-penetrating peptide (gH625) | [24,26,36,53,61,73,111,112] |
Quantum Dots | CdSe/ZnS Quantum Dots, Graphene Quantum Dots, NaGdF(4) Nanodots | Peptide with D-penicillamine and histidine, LTVSPWY peptide, PLAC-1 targeting peptide (GILGFVFTL), F3 peptide, CXCR4-antagonistic peptide, adipose homing peptide (AHP) | [25,27,44,49,66,113] |
Carbon-Based | Multiwalled Carbon Nanotubes, Functionalized Carbon Nanotubes, MXene-Based Biosensors | TAT peptide, LL-37 peptide, sortase A-targeting peptide | [52,89,114] |
Physicochemical Property | Key Features and Quantitative Data | Ref. |
---|---|---|
Nanoparticle Size (10–250 nm range) | Smaller particles (~10–100 nm) show enhanced tumor penetration, while larger particles (~100–250 nm) improve circulation time. Examples: Gold NPs (~12.5 nm), Liposomes (~100 nm), Iron Oxide NPs (~10 nm), Mesoporous Silica NPs (~79 nm), Micelles (~110 nm). | [2,3,5,9,10,29,59,69,77,82,83,84,98,117] |
Zeta Potential (Surface Charge, −30 to +40 mV) | Positively charged particles (+20 to +40 mV) improve cellular uptake; negatively charged particles (−10 to −30 mV) enhance circulation stability. Examples: PEG-PLA NPs (+27.4 mV), Gold NPs (−12.5 mV), Chitosan NPs (+18.7 mV), Liposomes (−21.8 mV). | [9,12,21,33,45,84,98,100] |
High Drug Encapsulation Efficiency (>70%) | Common in liposomal, polymeric, and silica-based nanoparticles, ensuring sustained drug release. Examples: Liposomes (92%), PLGA NPs (87%), Micelles (82.5%), Mesoporous Silica NPs (93%), PF Gold NPs (89.8%). | [5,7,11,12,21,69,100,106,118] |
pH-Responsive Behavior (Tumor pH ~6.5, Endosomal pH ~5.5) | pH-sensitive drug release enables targeted therapy, especially in tumor microenvironments. Examples: Gold Nanocages (95% drug release at pH 5.5), PLGA NPs (pH 6.5), Liposomes (90% release at pH 5.5). | [12,21,53,71,77,100,118] |
Redox-Responsive Drug Release (GSH-Triggered) | Triggered release in cancer cells due to high glutathione (GSH) levels (~10 mM in tumors vs. ~1 mM in normal cells). Examples: Mesoporous Silica NPs (93.5% drug release), Gold NPs (90%), Polymer Micelles (89%). | [21,53,77,118] |
High Binding Affinity (Kd < 1 µM, Strong Peptide–Target Interactions) | Ensures precise targeting of cancer cells and amyloid-beta aggregation inhibition. Examples: Amyloid-beta peptide binding (Kd = 0.6 µM), Integrin αvβ3 Binding (Kd = 250 nM), HER2 Binding (Kd = 220 nM). | [1,2,18,19,40,62,92,96] |
Increased BBB Permeability (3–13× Higher Penetration) | PF nanoparticles improve drug delivery to the brain. Examples: Liposomes (5× higher BBB permeability), Gold NPs (13-fold higher brain accumulation), Graphene Quantum Dots (4.8× increased BBB crossing). | [4,18,19,52,57,58,95,104,105] |
High Tumor Accumulation (>5% ID/g in Tumor Tissue) | Targeted nanoparticles accumulate in tumors, reducing off-target effects. Examples: Gold NPs (8.7% ID/g at 4 h), Iron Oxide NPs (75% tumor sensitivity), Liposomes (50% uptake by M2 macrophages). | [2,7,9,14,26,40,62,69] |
High Fluorescence or Imaging Contrast (Strong NIR, PET, MRI Signals) | Used for bioimaging, including fluorescence, MRI, PET, and ultrasound. Examples: Iron Oxide NPs (100% specificity in tumor detection), Gold NPs (over 80% sensitivity), Quantum Dots (35% photoluminescence quantum yield). | [23,24,25,26,27,28,40,92,94,112] |
Multivalent Peptide Presentation (≥2× Increased Binding Affinity) | Enhances receptor targeting and cell binding for cancer therapy. Examples: RGD-functionalized NPs (2.5× stronger binding), Tetrameric Peptides (6× increased cytotoxicity), Multivalent Gold NPs (3× increased cellular uptake). | [1,41,93,94] |
Selective Cellular Uptake (≥3× Higher in Target Cells vs. Non-Target Cells) | PF nanoparticles show significantly increased uptake in target cells compared to controls. Examples: ZnO NPs (4.8× uptake in PLAC-1 cells), Micelles (3.3× increased tumor accumulation), Liposomes (3.7× higher uptake). | [3,9,21,70,84,86,111,117] |
Long Circulation Time (>12 h in vivo, Delayed Clearance) | Improves nanoparticle stability and tumor targeting. Examples: PEGylated Liposomes (24 h half-life), PLGA NPs (18 h circulation time), Peptide-NPs (16 h blood retention). | [2,33,45,60] |
Enhanced Apoptosis Induction (>50%) | PF nanoparticles significantly increase cancer cell apoptosis rates. Examples: ZnO NPs (93.5% apoptosis), PLGA NPs (50%+ apoptosis in TNBC), Gold NPs (70% apoptosis induction). | [12,45,67,79,106,111,118] |
Increased ROS Production and Mitochondrial Dysfunction (Tumor-Specific Oxidative Stress Induction) | Enhances cancer cell death via oxidative stress. Examples: Micelles (89% ROS production), Gold NPs (92% mitochondrial dysfunction), Iron Oxide NPs (80% cell necrosis). | [11,16,77,79] |
Superior Biocompatibility (>80% Cell Viability in Normal Cells, Low Cytotoxicity to Non-Target Cells) | PF nanoparticles minimize toxicity in normal cells while targeting cancer cells. Examples: Gold NPs (>90% biocompatibility), Liposomes (85% cell viability), Graphene QDs (>87%). | [6,10,59,70,79,82,84,100] |
Targeted Antibacterial and Antiviral Activity (>95% Eradication Rate) | PF nanoparticles effectively eliminate bacteria and viruses. Examples: Selenium NPs (100% inhibition of Omicron XBB and RSV), Gold NPs (>95% bacterial eradication), Mesoporous Silica NPs (98.8% in vivo bacterial clearance). | [10,29,36,37,38,39,116] |
Application Area | Specific Purpose (Drug Active or Therapeutic Use) | Key Features and Quantitative Data | Ref. |
---|---|---|---|
Cancer Therapy | Targeted chemotherapy (DOX, Paclitaxel, Gemcitabine, Curcumin, etc.) | Tumor accumulation (>5% ID/g), high apoptosis induction (>50%), increased drug bioavailability (up to 10×), pH-responsive drug release (~90% at pH 5.5), and extended circulation time (>12 h). | [1,5,6,7,9,21,41,45,59,69,70,77,84,86,99,100,118] |
Gene Therapy | siRNA, CRISPR, and genetic modulation for cancer and other diseases | High gene transfection efficiency (>80%), enhanced siRNA stability (3× longer half-life), gene knockdown (>70%), tumor suppression (>60%), and minimal toxicity to healthy cells. | [12,15,16,17,21,42,74] |
Cancer Imaging and Theranostics | Fluorescence, MRI, PET, and photothermal imaging for tumor detection and treatment | Gold NPs (8.7% ID/g at 4 h), iron oxide NPs (75% tumor detection sensitivity), quantum dots (35% photoluminescence quantum yield), and high contrast (NIR/PET/MRI). | [2,19,23,24,25,26,27,28,44,61,62,92,94,112] |
Neurological Disorders (Alzheimer’s, Parkinson’s, Stroke) | Targeted therapy for amyloid-beta aggregation inhibition and neuroprotection | Amyloid-beta aggregation inhibition (70%), blood–brain barrier penetration (5× higher), enhanced neuronal survival (>80%), amd significant reduction in neuroinflammation. | [4,18,19,37,42,57,95,104,105] |
Osteoarthritis and Orthopedic Therapy | Regenerative therapy and osseointegration for bone and joint diseases | High biocompatibility (>85% cell viability), enhanced bone-implant contact (~50% increase), and increased osteogenesis markers (ALP, Collagen-I upregulated). | [10,29,32,78,85,91] |
Wound Healing and Tissue Regeneration | PF biomaterials for enhanced healing and antimicrobial protection | Collagen deposition (>50% increase), angiogenesis stimulation, infection reduction (>95%), enhanced wound closure (2× faster). | [10,30,90] |
Antibacterial and Antiviral Therapy | Targeted inhibition of bacterial infections and viruses (SARS-CoV-2, RSV, etc.) | Bacterial eradication (>98%), viral inhibition (100% inhibition of Omicron XBB and RSV), sustained antimicrobial release (>30 days), and minimal host cytotoxicity. | [10,29,36,37,38,39,116] |
BBB Penetration | Improved delivery of drugs and genes for brain disorders | BBB permeability enhancement (3–13× higher), improved brain-targeted drug retention (up to 24 h), and neuronal protection (>80%). | [4,52,54,57,58,104] |
Inflammatory and Autoimmune Diseases | Targeted therapy for rheumatoid arthritis and inflammatory skin diseases | Joint-specific drug delivery via ART-1 peptide-functionalized liposomes for arthritis treatment (subcutaneous route); enhanced skin penetration using CPP-modified nanodispersions for inflammatory skin therapy. Key outcomes include targeted drug accumulation at disease sites, reduction of inflammatory cytokines (e.g., TNF-α, IL-1β), and significant disease suppression in preclinical models. | [33,55] |
Cardiovascular Therapy | Vascular targeting, endothelial regeneration, and imaging | Enhanced endothelial cell proliferation (>60%), increased vascular graft retention (>80%), and improved vascular repair efficiency. | [31,46] |
Testing and Evaluation Method | Key Features and Technical Data | Ref. |
---|---|---|
Physicochemical Characterization (Size, Surface Charge, Structure, Stability) | DLS, TEM, SEM, FTIR, XPS, and zeta potential analysis used for nanoparticle size (~50–200 nm), charge (−30 to +40 mV), and structural confirmation. Ensures colloidal stability (>6 months) and high peptide loading efficiency (>90%). | [2,5,6,9,11,29,32,45,53,54,84,111] |
Nanoparticle Functionalization and Conjugation Analysis | Surface Plasmon Resonance (SPR), molecular docking, peptide–protein binding studies confirm efficient functionalization (>80% binding efficiency), stability under physiological conditions, and specificity to target receptors. | [1,18,23,44,59,62,92,94,96,123] |
Cellular Uptake and Targeting Efficiency Studies | Confocal microscopy, flow cytometry, and receptor-mediated uptake studies confirm 3–10× higher PF nanoparticle uptake vs. non-functionalized. Uptake via clathrin-mediated endocytosis in cancer cells. | [6,7,41,49,70,77,92,99,102,111] |
In Vitro Drug Release and Pharmacokinetics | Controlled release studies (pH/redox-responsive systems) confirm sustained drug release (>90% at pH 5.5 or high-GSH conditions). Drug bioavailability enhanced 3–10× vs. free drugs. | [12,21,53,71,98,100,118] |
Cytotoxicity and Biocompatibility Analysis | MTT, Live/Dead, and hemolysis assays confirm high selectivity for cancer cells (>80% viability in normal cells, >90% apoptosis in target cells). Biocompatibility validated in fibroblasts and immune cells. | [5,31,45,50,52,61,67,70,98,103] |
In Vivo Tumor Targeting, Biodistribution and Therapy Efficacy | Fluorescence/MRI/PET imaging confirms high tumor uptake (>5% ID/g), improved nanoparticle retention over 24 h, significant tumor growth inhibition (>70%), and extended survival in validated preclinical cancer models. | [2,7,14,17,21,24,40,88,99,112] |
Gene Silencing and Genome Editing Efficiency | siRNA and CRISPR studies show >80% gene knockdown efficiency, effective tumor suppression (>60%), and immune system activation (T-cell proliferation and PD-L1 suppression). | [12,15,16,17,21,42,74] |
Cancer Imaging and Theranostic (Fluorescence, MRI, PET, CT, SERRS, Photothermal) | Gold nanoparticles (5–15 nm), iron oxide (~10 nm), and quantum dots used for imaging. Tumor detection sensitivity: MRI (75%), PET (80%), and fluorescence (>85%). | [2,23,24,25,26,27,28,44,62,94,112] |
BBB Penetration and Neuroprotection | In vivo BBB permeability tests confirm 5–13× enhanced brain uptake, amyloid-beta clearance (70%), and neuronal survival (>80%) in Alzheimer’s and Parkinson’s models. | [4,18,19,42,57,58,95,104,105] |
Wound Healing and Regenerative Medicine Testing | Angiogenesis stimulation, collagen deposition (>50% increase), faster wound closure (2×), and infection reduction (>95%) in diabetic models. | [10,30,90] |
Antimicrobial and Antiviral Testing | Bacterial eradication (>98%), viral inhibition (100% for SARS-CoV-2 Omicron XBB and RSV), antimicrobial peptide release >30 days. | [10,29,36,37,38,39,116] |
Category | Key Insights | New Insights and Future Research Directions | Ref. |
---|---|---|---|
Nanoparticle Stability and Long-Term Shelf-Life Optimization | Colloidal stability achieved via PEGylation, pH tuning (pH 7.4), and ionic strength control. Storage at −20 °C maintains particle integrity for >12 months. Zeta potential tuning (−20 to +30 mV) prevents aggregation. | Enhancing Stability and Biocompatibility: While PEGylation improves stability, long-term biocompatibility and immunogenic responses should be studied further. The role of secondary stabilizing agents (e.g., polysaccharides and zwitterionic coatings) could be explored. Future research should assess the impact of dynamic biological environments on colloidal stability over time. | [1,21,33,45,52,98] |
Enhancing Drug Loading and Encapsulation Efficiency | Lipophilic drugs optimized with lipid nanoparticles (≥90% encapsulation). Hydrophilic drugs benefit from PLGA, chitosan, and silica-based carriers (>85% encapsulation). Cross-linking peptides (RGD and TAT) improve drug retention. | Tailoring Drug Delivery for Personalized Medicine: While high encapsulation efficiency is achieved, future research should focus on optimizing nanoparticle degradation kinetics in different biological environments. Developing patient-specific drug formulations based on genetic or tumor microenvironment profiling could further enhance treatment efficacy. | [5,6,45,53,77,100,118] |
Overcoming BBB Limitations | Functionalization with cell-penetrating peptides (TAT and penetratin) and transferrin-receptor-targeting ligands increased CNS drug delivery efficiency by 5–13×. Liposome and polymeric nanoparticles showed the highest BBB permeability. | Expanding to Neurodegenerative and Neuropsychiatric Disorders: While effective for increasing BBB permeability, long-term safety concerns regarding immune responses, off-target effects, and protein corona formation should be addressed. Future research could explore combinations with receptor-mediated transcytosis for even more efficient CNS-targeting. | [4,18,42,57,58,95,104,105] |
Reducing Off-Target Toxicity and Improving Tumor Selectivity | Dual-ligand targeting (folic acid + peptides; HA + RGD) improves tumor selectivity by 3–5×. pH/redox-responsive nanoparticles enhance selective drug release (>90% at pH 5.5 or tumor microenvironment). | Refining Tumor-Selective Nanomedicine: While selectivity is improved, integrating AI-driven ligand selection models could enhance precision targeting. Additionally, testing in 3D tumor spheroid models or patient-derived organoids could improve translational predictability. | [9,14,59,69,71,84,98] |
Maximizing Cellular Uptake and Internalization Efficiency | Nanoparticle surface charge tuning (+10 to +25 mV) enhances endocytosis. Hydrophobic coatings (lipid-based) increase membrane fusion and intracellular uptake (2–10× compared to non-functionalized carriers). | Optimizing Uptake Pathways for Different Cell Types: Future research could explore how different endocytic pathways (e.g., clathrin-mediated, caveolae-mediated, and macropinocytosis) affect nanoparticle uptake efficiency in specific cancer subtypes. Additionally, the real-time tracking of nanoparticle internalization via super-resolution microscopy could refine targeting strategies. | [7,49,70,92,99,102,111] |
Nanoparticle Shape and Morphology Impact on Functionality | Rod-shaped nanoparticles (gold nanorods and mesoporous silica) exhibit superior tumor penetration vs. spherical nanoparticles (up to 4× increased diffusion in tumor matrix). Disordered porous silicon allows for better sustained release. | Shape-Dependent Targeting Strategies: Future work should map out the biological interactions of various nanoparticle shapes in different tumor microenvironments to optimize uptake. Hybrid nanoarchitectures (e.g., combining rods with porous structures) may further enhance functionality. | [1,32,44,51,76,94] |
Synergistic Multimodal Therapies for Cancer Treatment | Combination chemo-photothermal, chemo-photodynamic, and gene-silencing therapies demonstrate up to 10× increased tumor inhibition vs. single treatments. Gold nanostars, quantum dots, and hybrid peptide–lipid systems excel in theranostics. | Optimizing Multimodal Approaches for Clinical Translation: While multimodal therapies show promise, challenges include controlling drug release kinetics, mitigating phototoxicity, and optimizing nanoparticle biodistribution. Future work should explore adaptive nanoplatforms that respond to multiple tumor microenvironment cues (pH, hypoxia, enzymes, and ROS levels). | [9,12,27,77,83,99,112] |
Scaling-Up and Manufacturing Challenges | Batch-to-batch variation minimized using microfluidic-assisted synthesis and automated peptide conjugation (≤10% variation). Nanoparticle reproducibility controlled via solvent evaporation and controlled pH adjustments. | Improving Industrial-Scale Nanoparticle Manufacturing: While microfluidic-assisted synthesis enhances reproducibility, optimizing continuous flow synthesis methods and real-time quality control monitoring (e.g., AI-assisted process analytics) could further improve scalability and cost-effectiveness. | [3,23,33,47,109] |
Enhancing Tumor Imaging and Theranostic Applications | Gold, iron oxide, and quantum dot nanoparticles provide 75–100% detection sensitivity for tumors (MRI, PET, and fluorescence imaging). Functionalization with antibodies and peptides increases specificity. | Next-Generation Multi-Modal Imaging Strategies: While current nanoprobes enhance tumor detection, future efforts should focus on developing biodegradable imaging agents, enhancing multiplex imaging for deeper tissue penetration, and combining diagnostic and therapeutic functions for real-time treatment monitoring. | [2,24,25,26,27,28,44,94,112] |
Addressing Antimicrobial Resistance (AMR) and Infection Therapy | PF nanoparticles show >98% bacterial eradication and effective biofilm penetration. Long-term antimicrobial activity achieved with sustained peptide release (>30 days). | Next-Generation Biofilm-Targeting Strategies: While current nanoparticles effectively penetrate biofilms, integrating stimuli-responsive (pH-, enzyme-, or light-sensitive) nanoparticles could enhance targeted bacterial eradication while reducing off-target effects. | [10,29,36,38,39,116] |
Advancements in Autoimmune and Inflammatory Disease Treatments | Targeted nanocarriers for arthritis and inflammatory skin conditions. | Joint-homing peptide (ART-1)-functionalized liposomes enhance subcutaneous delivery and preferential accumulation in arthritic joints, leading to improved suppression of arthritis progression. CPP-modified liquid crystalline nanodispersions (e.g., TAT, D4) enhance topical delivery and skin retention of anti-inflammatory agents, reduce cytokine levels (TNF-α, IL-1β), and mitigate oxidative stress in inflammatory skin models. | [33,55] |
Emerging Applications in Neurodegenerative Diseases | Alzheimer’s-targeted nanoparticles reduce amyloid-beta aggregation by 60–70%. Parkinson’s-targeted siRNA carriers demonstrate > 80% gene knockdown and neuroprotection. | Optimizing BBB Penetration and Stability: While peptide-functionalized nanocarriers show promise for AD and PD, improving long-term stability and reducing immune response remain key challenges. Future research should explore adaptive nanoplatforms with controlled drug release and responsive delivery triggered by neuroinflammatory signals to enhance specificity and efficacy. | [4,18,19,42,57,58,95,105] |
Future Potential: Smart and Responsive Nanomedicine | Real-time biosensing via caspase-3-activated nanoparticles enables cancer therapy monitoring in vivo. Theranostic nanoparticles combining diagnostics and therapy show strong potential for next-generation medicine. | Advancing Personalized Theranostics: The development of biosensing nanoparticles for real-time cancer monitoring is a major breakthrough. However, integrating AI-driven diagnostics with nanoparticle-based sensors could further improve treatment precision. Future studies should explore multiplexed biomarker detection in circulating tumor cells and biodegradable sensor platforms to reduce long-term toxicity. | [94,96,121,122] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omidian, H.; Cubeddu, L.X.; Wilson, R.L. Peptide-Functionalized Nanomedicine: Advancements in Drug Delivery, Diagnostics, and Biomedical Applications. Molecules 2025, 30, 1572. https://doi.org/10.3390/molecules30071572
Omidian H, Cubeddu LX, Wilson RL. Peptide-Functionalized Nanomedicine: Advancements in Drug Delivery, Diagnostics, and Biomedical Applications. Molecules. 2025; 30(7):1572. https://doi.org/10.3390/molecules30071572
Chicago/Turabian StyleOmidian, Hossein, Luigi X. Cubeddu, and Renae L. Wilson. 2025. "Peptide-Functionalized Nanomedicine: Advancements in Drug Delivery, Diagnostics, and Biomedical Applications" Molecules 30, no. 7: 1572. https://doi.org/10.3390/molecules30071572
APA StyleOmidian, H., Cubeddu, L. X., & Wilson, R. L. (2025). Peptide-Functionalized Nanomedicine: Advancements in Drug Delivery, Diagnostics, and Biomedical Applications. Molecules, 30(7), 1572. https://doi.org/10.3390/molecules30071572