Computational Discovery of Novel Chalcogenide Perovskites YbMX3 (M = Zr, Hf; X = S, Se) for Optoelectronics
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussion
3.1. Structural Characteristics
3.2. Stability Evaluation
3.3. Electronic Properties
3.4. Carrier Transport Ability
3.5. Optical and Photovoltaic Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Green, M.A.; Ho-Baillie, A.; Snaith, H.J. The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506–514. [Google Scholar] [CrossRef]
- Jeon, N.J.; Noh, J.H.; Yang, W.S.; Kim, Y.C.; Ryu, S.; Seo, J.; Seok, S.I. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476–480. [Google Scholar] [CrossRef]
- McMeekin, D.P.; Sadoughi, G.; Rehman, W.; Eperon, G.E.; Saliba, M.; Hörantner, M.T.; Haghighirad, A.; Sakai, N.; Korte, L.; Rech, B.; et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 2016, 351, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Yablonovitch, E. Lead halides join the top optoelectronic league. Science 2016, 351, 1401. [Google Scholar] [CrossRef] [PubMed]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef] [PubMed]
- Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M.K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319. [Google Scholar] [CrossRef]
- Liu, M.; Johnston, M.B.; Snaith, H.J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395–398. [Google Scholar] [CrossRef]
- Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-b.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542–546. [Google Scholar] [CrossRef]
- Park, J.; Kim, J.; Yun, H.-S.; Paik, M.J.; Noh, E.; Mun, H.J.; Kim, M.G.; Shin, T.J.; Seok, S.I. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 2023, 616, 724–730. [Google Scholar] [CrossRef]
- Sa, R.; Luo, B.; Ma, Z.; Liang, L.; Liu, D. Revealing the influence of B-site doping on the physical properties of CsPbI3: A DFT investigation. J. Solid State Chem. 2022, 309, 122956. [Google Scholar] [CrossRef]
- Sa, R.; Ma, Z.; Wang, J.; Liu, D. The effect of organic cation doping on the stability and optoelectronic properties of α-CsPbI3. J. Solid State Chem. 2020, 290, 121577. [Google Scholar] [CrossRef]
- Lin, Z.; Lei, J.; Wang, P.; Zhang, X.; Xu, L.; Chen, M.; Kang, Y.; Wei, G. Density functional study of structural, electronic and optical properties of bromine-doped CsPbI3 with the tetragonal symmetry. J. Alloys Compd. 2022, 892, 162165. [Google Scholar] [CrossRef]
- Xian, Y.; Zhang, Y.; Rahman, N.U.; Yin, H.; Long, Y.; Liu, P.; Li, W.; Fan, J. An Emerging All-Inorganic CsSnxPb1–xBr3 (0 ≤ x ≤ 1) Perovskite Single Crystal: Insight on Structural Phase Transition and Electronic Properties. J. Phys. Chem. C 2020, 124, 13434–13446. [Google Scholar] [CrossRef]
- Jena, A.K.; Kulkarni, A.; Sanehira, Y.; Ikegami, M.; Miyasaka, T. Stabilization of α-CsPbI3 in Ambient Room Temperature Conditions by Incorporating Eu into CsPbI3. Chem. Mater. 2018, 30, 6668–6674. [Google Scholar] [CrossRef]
- Straus, D.B.; Guo, S.; Cava, R.J. Kinetically Stable Single Crystals of Perovskite-Phase CsPbI3. J. Am. Chem. Soc. 2019, 141, 11435–11439. [Google Scholar] [CrossRef]
- Zhao, B.; Jin, S.-F.; Huang, S.; Liu, N.; Ma, J.-Y.; Xue, D.-J.; Han, Q.; Ding, J.; Ge, Q.-Q.; Feng, Y.; et al. Thermodynamically Stable Orthorhombic γ-CsPbI3 Thin Films for High-Performance Photovoltaics. J. Am. Chem. Soc. 2018, 140, 11716–11725. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, X.; Zhang, T.; Wang, X.; Kan, M.; Shi, J.; Zhao, Y. The Role of Dimethylammonium Iodide in CsPbI3 Perovskite Fabrication: Additive or Dopant? Angew. Chem. Int. Ed. 2019, 58, 16691–16696. [Google Scholar] [CrossRef] [PubMed]
- Comparotto, C.; Ström, P.; Donzel-Gargand, O.; Kubart, T.; Scragg, J.J.S. Synthesis of BaZrS3 Perovskite Thin Films at a Moderate Temperature on Conductive Substrates. ACS Appl. Energy Mater. 2022, 5, 6335–6343. [Google Scholar] [CrossRef]
- Jaykhedkar, N.; Bystrický, R.; Sýkora, M.; Bučko, T. Understanding the structure-band gap relationship in SrZrS3 at elevated temperatures: A detailed NPT MD study. J. Mater. Chem. C 2022, 10, 12032–12042. [Google Scholar] [CrossRef]
- Jess, A.; Yang, R.; Hages, C.J. On the Phase Stability of Chalcogenide Perovskites. Chem. Mater. 2022, 34, 6894–6901. [Google Scholar] [CrossRef]
- Majumdar, A.; Adeleke, A.A.; Chakraborty, S.; Ahuja, R. Emerging piezochromism in lead free alkaline earth chalcogenide perovskite AZrS3 (A = Mg, Ca, Sr and Ba) under pressure. J. Mater. Chem. C 2020, 8, 16392–16403. [Google Scholar] [CrossRef]
- Moroz, N.A.; Bauer, C.; Williams, L.; Olvera, A.; Casamento, J.; Page, A.A.; Bailey, T.P.; Weiland, A.; Stoyko, S.S.; Kioupakis, E.; et al. Insights on the Synthesis, Crystal and Electronic Structures, and Optical and Thermoelectric Properties of Sr1–xSbxHfSe3 Orthorhombic Perovskite. Inorg. Chem. 2018, 57, 7402–7411. [Google Scholar] [CrossRef] [PubMed]
- Osei-Agyemang, E.; Adu, C.E.; Balasubramanian, G. Ultralow lattice thermal conductivity of chalcogenide perovskite CaZrSe3 contributes to high thermoelectric figure of merit. npj Comput. Mater. 2019, 5, 116. [Google Scholar] [CrossRef]
- Osei-Agyemang, E.; Koratkar, N.; Balasubramanian, G. Examining the electron transport in chalcogenide perovskite BaZrS3. J. Mater. Chem. C 2021, 9, 3892–3900. [Google Scholar] [CrossRef]
- Song, X.; Shai, X.; Deng, S.; Wang, J.; Li, J.; Ma, X.; Li, X.; Wei, T.; Ren, W.; Gao, L.; et al. Anisotropic Chalcogenide Perovskite CaZrS3: A Promising Thermoelectric Material. J. Phys. Chem. C 2022, 126, 11751–11760. [Google Scholar] [CrossRef]
- Turnley, J.W.; Vincent, K.C.; Pradhan, A.A.; Panicker, I.; Swope, R.; Uible, M.C.; Bart, S.C.; Agrawal, R. Solution Deposition for Chalcogenide Perovskites: A Low-Temperature Route to BaMS3 Materials (M = Ti, Zr, Hf). J. Am. Chem. Soc. 2022, 144, 18234–18239. [Google Scholar] [CrossRef]
- Wei, X.; Hui, H.; Zhao, C.; Deng, C.; Han, M.; Yu, Z.; Sheng, A.; Roy, P.; Chen, A.; Lin, J.; et al. Realization of BaZrS3 chalcogenide perovskite thin films for optoelectronics. Nano Energy 2020, 68, 104317. [Google Scholar] [CrossRef]
- Wu, X.; Gao, W.; Chai, J.; Ming, C.; Chen, M.; Zeng, H.; Zhang, P.; Zhang, S.; Sun, Y.-Y. Defect tolerance in chalcogenide perovskite photovoltaic material BaZrS3. Sci. China Mater. 2021, 64, 2976–2986. [Google Scholar] [CrossRef]
- Yang, R.; Jess, A.D.; Fai, C.; Hages, C.J. Low-Temperature, Solution-Based Synthesis of Luminescent Chalcogenide Perovskite BaZrS3 Nanoparticles. J. Am. Chem. Soc. 2022, 144, 15928–15931. [Google Scholar] [CrossRef]
- Chami, R.; Lekdadri, A.; Omari, L.H.; Hlil, E.K.; Chafi, M. Investigation of the photovoltaic properties of BaHf1-xZrxS3 (x ≤ 1) chalcogenide perovskites using first principles calculations. Mater. Today Energy 2021, 20, 100689. [Google Scholar] [CrossRef]
- Du, J.; Shi, J.-J.; Guo, W.-H.; Liu, S.-M.; He, Y.; Tian, C.; Zhu, Y.-H.; Zhong, H.-X. Cerium-based lead-free chalcogenide perovskites for photovoltaics. Phys. Rev. B 2021, 104, 235206. [Google Scholar] [CrossRef]
- Meng, W.; Saparov, B.; Hong, F.; Wang, J.; Mitzi, D.B.; Yan, Y. Alloying and Defect Control within Chalcogenide Perovskites for Optimized Photovoltaic Application. Chem. Mater. 2016, 28, 821–829. [Google Scholar] [CrossRef]
- Sun, Y.-Y.; Agiorgousis, M.L.; Zhang, P.; Zhang, S. Chalcogenide Perovskites for Photovoltaics. Nano Lett. 2015, 15, 581–585. [Google Scholar] [CrossRef]
- Perera, S.; Hui, H.; Zhao, C.; Xue, H.; Sun, F.; Deng, C.; Gross, N.; Milleville, C.; Xu, X.; Watson, D.F.; et al. Chalcogenide perovskites—An emerging class of ionic semiconductors. Nano Energy 2016, 22, 129–135. [Google Scholar] [CrossRef]
- Liu, D.; Zeng, H.; Peng, H.; Sa, R. Computational study of the fundamental properties of Zr-based chalcogenide perovskites for optoelectronics. Phys. Chem. Chem. Phys. 2023, 25, 13755–13765. [Google Scholar] [CrossRef]
- Ju, M.-G.; Dai, J.; Ma, L.; Zeng, X.C. Perovskite Chalcogenides with Optimal Bandgap and Desired Optical Absorption for Photovoltaic Devices. Adv. Energy Mater. 2017, 7, 1700216. [Google Scholar] [CrossRef]
- Khandy, S.A.; Vaid, S.G.; Islam, I.; Hafiz, A.K.; Chai, J.-D. Understanding the stability concerns and electronic structure of CsYbX3 (X = Cl,Br) halidoperovskites for optoelectronic applications. J. Alloys Compd. 2021, 867, 158966. [Google Scholar] [CrossRef]
- Saeed, M.; Ali, M.A.; Murad, S.; Ullah, R.; Alshahrani, T.; Laref, A.; Murtaza, G. Pressure induced structural, electronic, optical and thermal properties of CsYbBr3, a theoretical investigation. J. Mater. Res. Technol. 2021, 10, 687–696. [Google Scholar] [CrossRef]
- Ali, M.A.; Ullah, R.; Murad, S.; Dar, S.A.; Khan, A.; Murtaza, G.; Laref, A. Insight into pressure tunable structural, electronic and optical properties of via DFT calculations. Eur. Phys. J. Plus 2020, 135, 309. [Google Scholar] [CrossRef]
- Shahzad, A.; Ahmadini, A.A.H.; Mahmood, Q.; Flemban, T.H.; Murtaza, G.; Kattan, N.A.; Iqbal, M.W.; Ghrib, T.; Laref, A. Study of Optoelectronic and Thermoelectric Characteristics of Cesium Based Halides CsYbX3 (X = Br, Cl) for Clean Energy Harvesting. ECS J. Solid State Sci. Technol. 2021, 10, 015002. [Google Scholar] [CrossRef]
- Mahmood, Q.; Hedhili, F.; Al-Shomar, S.; Chebaaneef, S.; Al-Muhimeed, T.I.; AlObaid, A.A.; Mera, A.; Alamri, O.A. Electronic, optical, and transport properties of RbYbX3 (X = Cl, Br) for solar cells and renewable energy: A quantum DFT study. Phys. Scr. 2021, 96, 095806. [Google Scholar] [CrossRef]
- Molla, M.R.; Saiduzzaman, M.; Asif, T.I.; Dujana, W.A.; Hossain, K.M. Electronic phase transition from semiconducting to metallic in cubic halide CsYbCl3 perovskite under hydrostatic pressure. Phys. B Condens. Matter 2022, 630, 413650. [Google Scholar] [CrossRef]
- Mahmood, Q.; Hani, U.-e.; Al-Muhimeed, T.I.; AlObaid, A.A.; Ul Haq, B.; Murtaza, G.; Flemban, T.H.; Althib, H. Study of optical and thermoelectric properties of ZYbI3 (Z = Rb, Cs) for solar cells and renewable energy; Modelling by density functional theory. J. Phys. Chem. Solids 2021, 155, 110117. [Google Scholar] [CrossRef]
- May, A.F.; McGuire, M.A.; Ma, J.; Delaire, O.; Huq, A.; Custelcean, R. Properties of single crystalline AZn2Sb2 (A = Ca, Eu, Yb). J. Appl. Phys. 2012, 111, 033708. [Google Scholar] [CrossRef]
- Sa, R.; Zhang, Y.; Huang, Y.; Ye, Y.; Huang, X.; Zeng, H.; Liu, D. Theoretical exploration of the structure and physical properties of YbZn2X2 (X = N, P, As, Sb). J. Solid State Chem. 2023, 323, 124057. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1–5. [Google Scholar] [CrossRef]
- Heyd, J.; Peralta, J.E.; Scuseria, G.E.; Martin, R.L. Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. J. Chem. Phys. 2005, 123, 174101. [Google Scholar] [CrossRef]
- Yu, L.; Zunger, A. Identification of Potential Photovoltaic Absorbers Based on First-Principles Spectroscopic Screening of Materials. Phys. Rev. Lett. 2012, 108, 068701. [Google Scholar] [CrossRef] [PubMed]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Wang, V.; Xu, N.; Liu, J.-C.; Tang, G.; Geng, W.-T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Jain, A.; Ong, S.P.; Hautier, G.; Chen, W.; Richards, W.D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 2013, 1, 011002. [Google Scholar] [CrossRef]
- Mouhat, F.; Coudert, F.-X. Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 2014, 90, 224104. [Google Scholar] [CrossRef]
- Hill, R. The Elastic Behaviour of a Crystalline Aggregate. Proc. Phys. Soc. A 1952, 65, 349–354. [Google Scholar] [CrossRef]
- Pugh, S.F. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. A 1954, 45, 823–843. [Google Scholar] [CrossRef]
- Shockley, W.; Queisser, H.J. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. J. Appl. Phys. 1961, 32, 510–519. [Google Scholar] [CrossRef]
- Green, M.A. Intrinsic concentration, effective densities of states, and effective mass in silicon. J. Appl. Phys. 1990, 67, 2944–2954. [Google Scholar] [CrossRef]
- Wang, D.; Wen, B.; Zhu, Y.-N.; Tong, C.-J.; Tang, Z.-K.; Liu, L.-M. First-Principles Study of Novel Two-Dimensional (C4H9NH3)2PbX4 Perovskites for Solar Cell Absorbers. J. Phys. Chem. Lett. 2017, 8, 876–883. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Sa, R.; Liu, D. The difference on the physical properties between CsPbX3 and Cs2PbX6: A comparative study. J. Solid State Chem. 2022, 310, 123055. [Google Scholar] [CrossRef]
- Du, M.H. Efficient carrier transport in halide perovskites: Theoretical perspectives. J. Mater. Chem. A 2014, 2, 9091–9098. [Google Scholar] [CrossRef]
- Sha, W.E.I.; Ren, X.; Chen, L.; Choy, W.C.H. The efficiency limit of CH3NH3PbI3 perovskite solar cells. Appl. Phys. Lett. 2015, 106, 221104. [Google Scholar] [CrossRef]
- Kato, Y.; Fujimoto, S.; Kozawa, M.; Fujiwara, H. Maximum Efficiencies and Performance-Limiting Factors of Inorganic and Hybrid Perovskite Solar Cells. Phys. Rev. Appl. 2019, 12, 024039. [Google Scholar] [CrossRef]
Compound | a/Å | b/Å | c/Å | V/Å3 |
---|---|---|---|---|
YbZrS3 | 7.07 | 9.60 | 6.52 | 442.15 |
YbZrSe3 | 7.39 | 10.04 | 6.79 | 504.31 |
YbHfS3 | 6.70 | 9.52 | 6.49 | 432.45 |
YbHfSe3 | 7.33 | 9.98 | 6.77 | 495.21 |
Parameter | YbZrS3 | YbZrSe3 | YbHfS3 | YbHfSe3 |
---|---|---|---|---|
C11 (GPa) | 154.5 | 127.3 | 163.9 | 134.7 |
C12 (GPa) | 38.4 | 30.5 | 39.4 | 31.2 |
C13 (GPa) | 55.7 | 44.1 | 58.9 | 46.5 |
C22 (GPa) | 135.3 | 113.5 | 148.9 | 123.5 |
C23 (GPa) | 35.3 | 27.3 | 35.8 | 27.5 |
C33 (GPa) | 97.6 | 77.9 | 105.3 | 84.2 |
C44 (GPa) | 23.0 | 18.2 | 26.6 | 21.5 |
C55 (GPa) | 43.4 | 36.9 | 49.7 | 42.0 |
C66 (GPa) | 43.3 | 36.0 | 47.3 | 39.0 |
B (GPa) | 70.4 | 56.7 | 74.8 | 60.1 |
G (GPa) | 37.4 | 31.0 | 41.8 | 34.6 |
Y (GPa) | 95.3 | 78.6 | 105.8 | 87.2 |
B/G | 1.882 | 1.832 | 1.789 | 1.735 |
ν | 0.274 | 0.269 | 0.264 | 0.258 |
Absorber | me* (m0) | mh* (m0) | μ (m0) | ε0 | Eb (meV) |
---|---|---|---|---|---|
YbZrS3 | 0.578 | 0.678 | 0.312 | 7.254 | 80 |
YbZrSe3 | 0.542 | 0.553 | 0.274 | 8.972 | 46 |
YbHfS3 | 0.549 | 0.705 | 0.309 | 6.854 | 89 |
YbHfSe3 | 0.520 | 0.597 | 0.278 | 8.138 | 55 |
Absorber | JSC (mA/cm2) | VOC (V) | FF (%) | Efficiency (%) |
---|---|---|---|---|
YbZrS3 | 16.15 | 1.60 | 91.8 | 23.68 |
YbZrSe3 | 33.06 | 1.08 | 88.9 | 31.90 |
YbHfS3 | 9.26 | 1.92 | 93.3 | 16.59 |
YbHfSe3 | 22.17 | 1.38 | 91.0 | 27.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Wu, H.; Li, W.; Zhang, J.; Sa, R. Computational Discovery of Novel Chalcogenide Perovskites YbMX3 (M = Zr, Hf; X = S, Se) for Optoelectronics. Molecules 2025, 30, 1468. https://doi.org/10.3390/molecules30071468
Li Q, Wu H, Li W, Zhang J, Sa R. Computational Discovery of Novel Chalcogenide Perovskites YbMX3 (M = Zr, Hf; X = S, Se) for Optoelectronics. Molecules. 2025; 30(7):1468. https://doi.org/10.3390/molecules30071468
Chicago/Turabian StyleLi, Qingyu, Helong Wu, Weiguo Li, Jiming Zhang, and Rongjian Sa. 2025. "Computational Discovery of Novel Chalcogenide Perovskites YbMX3 (M = Zr, Hf; X = S, Se) for Optoelectronics" Molecules 30, no. 7: 1468. https://doi.org/10.3390/molecules30071468
APA StyleLi, Q., Wu, H., Li, W., Zhang, J., & Sa, R. (2025). Computational Discovery of Novel Chalcogenide Perovskites YbMX3 (M = Zr, Hf; X = S, Se) for Optoelectronics. Molecules, 30(7), 1468. https://doi.org/10.3390/molecules30071468