Anti-Glycation Activities of Angelica keiskei Leaves
Abstract
:1. Introduction
2. Results and Discussions
2.1. Inhibitory Activity of AGE Production by A. keiskei Leaves
2.2. Identification of Compounds in A. keiskei Leaves Using LC-MS and LC-MS/MS Analyses
2.3. Identification of the Key Compounds in A. keiskei Leaves for the Inhibitory Activity of AGE Production
3. Materials and Methods
3.1. General Methods
3.2. Materials
3.3. Preparation of the Sample Solutions
3.4. Assay for the Anti-Glycation Activity Using Methylglyoxal
3.5. Fractionation of A. keiskei Leaves Extract
3.6. LC-MS Analysis
3.7. Evaluation of the MGO Trapping Capacity of A. Keislei Leaves
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Welsh, K.J.; Kirkman, M.S.; Sacks, D.B. Role of glycated proteins in the diagnosis and management of diabetes: Research gaps and future directions. Diabetes Care 2016, 39, 1299–1306. [Google Scholar] [CrossRef] [PubMed]
- Lapolla, A.; Fedele, D.; Reitano, R.; Bonfante, L.; Guizzo, M.; Seraglia, R.; Tubaro, M.; Traldi, P. Mass spectrometric study of in vivo production of advanced glycation endproducts/peptides. J. Mass Spectrom. 2005, 40, 969–972. [Google Scholar] [CrossRef]
- Lapolla, A.; Fedele, D.; Seraglia, R.; Traldi, P. The role of mass spectrometry in the study of non-enzymatic protein glycation in diabetes: An update. Mass Spectrom. Rev. 2006, 25, 775–797. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Ames, J.M.; Smith, R.D.; Baynes, J.W.; Metz, T.O. A Perspective on the maillard reaction and the analysis of protein glycation by mass spectrometry: Probing the pathogenesis of chronic disease. J. Proteome Res. 2009, 8, 754–769. [Google Scholar] [CrossRef] [PubMed]
- Rabbani, N.X.M.; Thornalley, P.J. Dicarbonyl stress, protein glycation and the unfolded protein response. Glycoconj. J. 2021, 38, 331–340. [Google Scholar] [CrossRef]
- Schalkwijk, C.G.; Stehouwer, C.D.A. Methylglyoxal, a highly reactive dicarbonyl compound, in diabetes, its vascular complications, and other age-related diseases. Physiol. Rev. 2020, 100, 407–461. [Google Scholar] [CrossRef]
- Stratmann, B. Stress in diabetic vascular disease. Int. J. Mol. Sci. 2022, 23, 6186. [Google Scholar] [CrossRef]
- Dariya, B.; Nagaraju, G.P. Advanced glycation end products in diabetes, cancer and phytochemical therapy. Drug Discov. Today 2020, 25, 1614–1623. [Google Scholar] [CrossRef]
- Mitsuhashi, H. (Ed.) Illustrated Medicinal Plants of the World in Clour; Hokuryukan Co., Ltd.: Tokyo, Japan, 1988; p. 350. [Google Scholar]
- Kil, Y.-S.; Pham, S.T.; Seo, E.K.; Jafari, M. Angelica keiskei, an emerging medicinal herb with various bioactive constituents and biological activities. Arch. Pharmacal Res. 2017, 40, 655–675. [Google Scholar] [CrossRef]
- Shin, J.E.; Choi, E.J.; Jin, Q.; Jin, H.-G.; Woo, E.-R. Chalcones isolated from Angelica keiskei and their inhibition of IL-6 production in TNF-α-stimulated MG-63 cell. Arch. Pharmacal Res. 2011, 34, 437–442. [Google Scholar] [CrossRef]
- Kim, D.W.; Curtis-Long, M.J.; Yuk, H.J.; Wang, Y.; Song, Y.H.; Jeong, S.H.; Park, K.H. Quantitative analysis of phenolic metabolites from different parts of Angelica keiskei by HPLC-ESI MS/MS and their xanthine oxidase inhibition. Food Chem. 2014, 153, 20–27. [Google Scholar] [PubMed]
- Zhang, W.; Jin, Q.; Luo, J.; Wu, J.; Wang, Z. Phytonutrient and anti-diabetic functional properties of flavonoid-rich ethanol extract from Angelica keiskei leaves. J. Food Sci. Technol. 2018, 55, 4406–4412. [Google Scholar] [CrossRef] [PubMed]
- Enoki, T.; Ohnogi, H.; Nagamine, K.; Kudo, Y.; Sugiyama, K.; Tanabe, M.; Kobayashi, E.; Sagawa, H.; Kato, I. Antidiabetic Activities of Chalcones Isolated from a Japanese Herb, Angelica keiskei. J. Agric. Food Chem. 2007, 55, 6013–6017. [Google Scholar] [PubMed]
- Li, J.-L.; Gao, L.-X.; Meng, F.-W.; Tang, C.-L.; Zhang, R.-J.; Li, J.-Y.; Luo, C.; Li, J.; Zhao, W.-M. PTP1B inhibitors from stems of Angelica keiskei (Ashitaba). Bioorg. Med. Chem. Lett. 2015, 25, 2028–2032. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhong, J.-Y.; Li, L.; Yin, Y.-L.; Liu, B. Effects of Angelica keiskei chalcone on insulin resistance of skeletal muscle cells of type 2 diabetic rats. Xiandai Shengwuyixue Jinzhan 2013, 13, 1655–1658. [Google Scholar]
- Akaki, J.; Kojima, H. Glycation Inhibitor. WO 2008038705 A1, 3 April 2008. [Google Scholar]
- Kim, S.-J.; Cho, J.-Y.; Wee, J.-H.; Jang, M.-Y.; Kim, C.; Rim, Y.-S.; Shin, S.-C.; Ma, S.-J.; Moon, J.-H.; Park, K.-H. Isolation and characterization of antioxidative compounds from the aerial parts of Angelica keiskei. Food Sci. Biotechnol. 2005, 14, 58–63. [Google Scholar]
- Liu, J.; Xu, S.; Meng, Z.; Yao, X.; Wu, Y. Further isolation of coumarin from Angelica pubescens Maxim f. Shan et Yuan. J. Chin. Pharm. Sci. 1997, 6, 221–224. [Google Scholar]
- Wu, M.R.; Tang, L.H.; Chen, Y.Y.; Shu, L.X.; Xu, Y.Y.; Yao, Y.Q.; Li, Y.B. Systematic characterization of the chemical constituents in vitro and in vivo of Qianghuo by UPLC-Q-TOF-MS/MS. Fitoterapia 2024, 172, 105758. [Google Scholar]
- Tian, Z.; Sun, L.; Chi, B.; Du, Z.; Zhang, X.; Liu, Y.; Zhou, H. Affinity ultrafiltration and UPLC-HR-Orbitrap-MS based screening of neuraminidase inhibitors from Angelica pubescens. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2022, 1208, 123398. [Google Scholar]
- Luo, L.; Wang, R.; Wang, X.; Ma, Z.; Li, N. Compounds from Angelica keiskei with NQO1 induction, DPPH· scavenging and α-glucosidase inhibitory activities. Food Chem. 2012, 131, 992–998. [Google Scholar]
- Akihisa, T.; Tokuda, H.; Ukiya, M.; Iizuka, M.; Schneider, S.; Ogasawara, K.; Mukainaka, T.; Iwatsuki, K.; Suzuki, T.; Nishino, H. Chalcones, coumarins, and flavanones from the exudate of Angelica keiskei and their chemopreventive effects. Cancer Lett. 2003, 201, 133–137. [Google Scholar] [PubMed]
- Akihisa, T.; Tokuda, H.; Hasegawa, D.; Ukiya, M.; Kimura, Y.; Enjo, F.; Suzuki, T.; Nishino, H. Chalcones and other compounds from the exudates of Angelica keiskei and their cancer chemopreventive effects. J. Nat. Prod. 2006, 69, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Aldini, G.; Carini, M.; Chen, C.Y.O.; Chun, H.-K.; Cho, S.-M.; Park, K.-M.; Correa, C.R.; Russell, R.M.; Blumberg, J.B.; et al. Characterisation, extraction efficiency, stability and antioxidant activity of phytonutrients in Angelica keiskei. Food Chem. 2009, 115, 227–232. [Google Scholar]
- Asamenew, G.; Kim, H.W.; Lee, M.K.; Lee, S.H.; Lee, S.; Cha, Y.S.; Lee, S.H.; Yoo, S.M.; Kim, J.B. Comprehensive characterization of hydroxycinnamoyl derivatives in green and roasted coffee beans: A new group of methyl hydroxycinnamoyl quinate. Food Chem. X 2019, 2, 100033. [Google Scholar]
- Ding, M.; Bai, Y.; Li, J.; Yang, X.; Wang, H.; Gao, X.; Chang, Y.-X. A diol-based-matrix solid-phase dispersion method for the simultaneous extraction and determination of 13 compounds from Angelicae Pubescentis Radix by ultra high-performance liquid chromatography. Front. Pharmacol. 2019, 10, 227. [Google Scholar]
- Wang, K.; Liu, X.; Cai, G.; Gong, J.; Guo, Y.; Gao, W. Chemical composition analysis of Angelica sinensis (Oliv.) Diels and its four processed products by ultra-high-performance liquid chromatography coupled with quadrupole-orbitrap mass spectrometry combining with nontargeted metabolomics. J. Sep. Sci. 2023, 46, 2300473. [Google Scholar]
- Shao, X.; Chen, H.; Zhu, Y.; Sedighi, R.; Ho, C.-T.; Sang, S. Essential Structural Requirements and Additive Effects for Flavonoids to Scavenge Methylglyoxal. J. Agric. Food Chem. 2014, 62, 3202–3210. [Google Scholar] [CrossRef]
- Sato, N.; Li, W.; Tsubaki, M.; Higai, K.; Takemoto, M.; Sasaki, T.; Onoda, T.; Suzuki, T.; Koike, K. Flavonoid glycosides from Japanese Camellia oil cakes and their inhibitory activity against advanced glycation end-products formation. J. Funct. Foods 2017, 35, 159–165. [Google Scholar]
- Chen, M.; Zhou, H.; Huang, C.; Liu, P.; Fei, J.; Ou, J.; Ou, S.; Zheng, J. Identification and cytotoxic evaluation of the novel rutin-methylglyoxal adducts with dione structures in vivo and in foods. Food Chem. 2022, 377, 132008. [Google Scholar]
- Zhou, H.; Huang, X.; Luo, Y.; Tan, T. Scavenging of Methylglyoxal by the Total Flavonoids of Apocyni Veneti Folium in Mice. J. Agric. Food Chem. 2024, 72, 20374–20382. [Google Scholar]
Molecular | ESI-MS (+) | ESI-MS (−) | Identification | ||||
---|---|---|---|---|---|---|---|
No. | tR (min) | Formula | m/z | Adduct Ion | Mass (m/z) | Adduct Ion | |
1 | 3.25 | C16H18O9 | 355.1020 | [M + H]+ | 353.0880 | [M − H]− | chlorogenic acid c |
2 | 4.19 | C17H20O9 | 369.1177 | [M + H]+ | 367.1035 | [M − H]− | feruloylquinic acid |
3 | 4.38 | C20H24O9 | 409.1490 | [M + H]+ | 453.1407 | [M + HCOO]− | Nodakenin a |
4 | 4.56 | C20H24O9 | 409.1490 | [M + H]+ | 453.1407 | [M + HCOO]− | Marmesinin a |
5 | 4.67 | C27H30O15 | 595.1655 | [M + H]+ | 593.1516 | [M − H]− | luteolin 7-O-rutinoside |
6 | 4.82 | C21H20O12 | 465.1028 | [M + H]+ | 463.0886 | [M − H]− | quercetin 3-O-glucoside c |
7 | 4.86 | C21H20O11 | 449.1070 | [M + H]+ | 447.0935 | [M − H]− | luteolin 7-O-glucoside |
8 | 5.04 | C25H24O12 | 517.1343 | [M + H]+ | 515.1198 | [M − H]− | 3,4-dicaffeoylquinic acid |
9 | 5.22 | C20H18O11 | 435.0919 | [M + H]+ | 433.0778 | [M − H]− | quaijaverin |
10 | 5.30 | C25H24O12 | 517.1342 | [M + H]+ | 515.1199 | [M − H]− | 3,5-dicaffeoylquinic acid |
11 | 5.45 | C24H22O14 | 535.1084 449.1077 | [M + H]+ [M − Mal + H]+ | 533.0942 | [M − H]− | luteolin 7-O-(6″-malonylglucoside) |
12 | 5.49 | C25H24O12 | 517.1339 | [M + H]+ | 515.1196 | [M − H]− | 4,5-dicaffeoylquinic acid |
13 | 5.94 | C14H14O5 | 263.0912 | [M + H]+ | - | - | khellactone |
14 | 6.92 | C21H22O6 | 371.1488 | [M + H]+ | 369.1344 | [M − H]− | xanthoangelol E |
15 | 8.06 | C12H8O4 | 217.0496 | [M + H]+ | - | - | bergapten or methoxsalen |
16 | 8.85 | C21H22O5 | 355.1538 | [M + H]+ | 353.1396 | [M − H]− | xanthoangelol D |
17 | 9.98 | C14H14O3 | 231.1015 | [M + H]+ | 229.0871 | [M − H]− | osthenol |
18 | 10.23 | C19H20O6 | 362.1595 | [M + NH4]+ | - | - | (+)-laserpitin or (−)-isolaserpitin |
19 | 10.59 | C19H20O6 | 362.1595 | [M + NH4]+ | - | - | daucoidin A b |
20 | 10.78 | C19H20O6 | 362.1595 | [M + NH4]+ | - | - | daucoidin B b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takemoto, Y.; Kikuchi, T.; Qi, W.; Zhang, M.; Otsuki, K.; Li, W. Anti-Glycation Activities of Angelica keiskei Leaves. Molecules 2025, 30, 1394. https://doi.org/10.3390/molecules30061394
Takemoto Y, Kikuchi T, Qi W, Zhang M, Otsuki K, Li W. Anti-Glycation Activities of Angelica keiskei Leaves. Molecules. 2025; 30(6):1394. https://doi.org/10.3390/molecules30061394
Chicago/Turabian StyleTakemoto, Yuno, Takashi Kikuchi, Wenjun Qi, Mi Zhang, Kouharu Otsuki, and Wei Li. 2025. "Anti-Glycation Activities of Angelica keiskei Leaves" Molecules 30, no. 6: 1394. https://doi.org/10.3390/molecules30061394
APA StyleTakemoto, Y., Kikuchi, T., Qi, W., Zhang, M., Otsuki, K., & Li, W. (2025). Anti-Glycation Activities of Angelica keiskei Leaves. Molecules, 30(6), 1394. https://doi.org/10.3390/molecules30061394