Novel Fe(II)-Based Supramolecular Film Prepared by Interfacial Self-Assembly of an Asymmetric Polypyridine Ligand and Its Electrochromic Performance
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of the TPY-Ph-BPY Ligand
2.2. Continuous Titration Analysis
2.3. Preparation and Characterization of the TPY-Ph-BPY-Fe(II) Film
2.4. Electrochemical Performance of the TPY-Ph-BPY-Fe(II) Film
2.5. Electrochromic Properties of the TPY-Ph-BPY-Fe(II) Film
2.6. Electrochromic Performances of the Solid-State Device
3. Experimental
3.1. Materials
3.2. Instrumentation
3.3. Synthesis of the Target Ligand
3.4. Preparation of the Supramolecular Film
3.5. Gel Electrolyte Preparation
3.6. Solid-State EC Device Fabrication
3.7. Electrochemical and Spectroelectrochemical Testing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, S.I.; Quan, Y.J.; Kim, S.H.; Kim, H.; Kim, S.; Chun, D.M.; Lee, C.S.; Taya, M.; Chu, W.S.; Ahn, S.H. A Review on Fabrication Processes for Electrochromic Devices. Int. J. Precis. Eng. Manuf. Green Technol. 2016, 3, 397–421. [Google Scholar] [CrossRef]
- Li, W.J.; Zhang, X.; Yan, D.K.; Wang, L.B.; Sun, W.H.; Li, Z.T.; Deng, J.B.; Zhao, J.P.; Li, Y. Rejuvenation of Electrochromic Devices. Small Methods 2024, 8, 2300850. [Google Scholar] [CrossRef] [PubMed]
- Bai, T.; Li, W.Z.; Fu, G.X.; Zhang, Q.Q.; Zhou, K.L.; Wang, H. Dual-Band Electrochromic Smart Windows Towards Building Energy Conservation. Sol. Energy Mater. Sol. Cells 2023, 256, 112320. [Google Scholar] [CrossRef]
- Fernandes, M.; Freitas, V.; Pereira, S.; Leones, R.; Silva, M.M.; Carlos, L.D.; Fortunato, E.; Ferreira, R.A.S.; Rego, R.; Bermudez, V.D. Luminescent Electrochromic Devices for Smart Windows of Energy-Efficient Buildings. Energies 2018, 11, 3513. [Google Scholar] [CrossRef]
- Deng, B.; Zhu, Y.A.; Wang, X.W.; Zhu, J.L.; Liu, M.Y.; Liu, M.Q.; He, Y.W.; Zhu, C.Z.; Zhang, C.H.; Meng, H. An Ultrafast, Energy-Efficient Electrochromic and Thermochromic Device for Smart Windows. Adv. Mater. 2023, 35, 2302685. [Google Scholar] [CrossRef]
- Hu, Q.Z.; Yang, Y.; Jin, Q.Y.; Yuan, C.; Xie, Z.L.; Song, W.J. Achieving Neutral-tinted and Energy-Efficient Electrochromic Device Enabled by Sputtered Tungsten-Niobium-Oxygen Film for Smart Windows. Ceram. Int. 2024, 50, 10817–10824. [Google Scholar] [CrossRef]
- Tittl, A. Tunable Structural Colors on Display. Light Sci. Appl. 2022, 11, 155. [Google Scholar] [CrossRef]
- Gu, C.; Jia, A.B.; Zhang, Y.M.; Zhang, S.X.A. Emerging Electrochromic Materials and Devices for Future Displays. Chem. Rev. 2022, 122, 14679–14721. [Google Scholar] [CrossRef]
- Li, J.S.; Li, J.J.; Li, H.B.; Wang, C.C.; Sheng, M.F.; Zhang, L.P.; Fu, S.H. Bistable Elastic Electrochromic Ionic Gels for Energy-Saving Displays. ACS Appl. Mater. Interfaces 2021, 13, 27200–27208. [Google Scholar] [CrossRef]
- Say, M.G.; Brett, C.J.; Edberg, J.; Roth, S.; Soderberg, L.D.; Engquist, I.; Berggren, M. Scalable Paper Supercapacitors for Printed Wearable Electronics. ACS Appl. Mater. Interfaces 2022, 14, 55850–55863. [Google Scholar] [CrossRef]
- Li, J.; Yang, P.H.; Li, X.Y.; Jiang, C.; Yun, J.H.; Yan, W.Q.; Liu, K.; Fan, H.J.; Lee, S.W. Ultrathin Smart Energy-Storage Devices for Skin-Interfaced Wearable Electronics. ACS Energy Lett. 2022, 8, 1–8. [Google Scholar] [CrossRef]
- Yang, G.J.; Zhang, Y.M.; Cai, Y.; Yang, B.G.; Gu, C.; Zhang, S.X.A. Advances in Nanomaterials for Electrochromic Devices. Chem. Soc. Rev. 2020, 49, 8687–8720. [Google Scholar] [CrossRef]
- Jena, S.R.; Choudhury, J. A Fast-Switching Electrochromic Device with a Surface-Confined 3D Metallo-Organic Coordination Assembly. Chem. Commun. 2020, 56, 559–562. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Chakraborty, C. Sub-Second Electrochromic Switching and Ultra-High Coloration Efficiency in Halloysite Nanoclay Incorporated Metallo-Supramolecular Polymer Nano-Hybrid Based Electrochromic Device. Sol. Energy Mater. Sol. Cells 2020, 208, 110392. [Google Scholar] [CrossRef]
- Han, J.; Sung, C.; Shin, C.W.; Kim, Y.S.; Kim, T.Y. Optimization of oxide materials in oxide-metal-oxide(OMO) electrodes for flexible electrochromic devices. Sol. Energy Mater. Sol. Cells 2023, 249, 112035. [Google Scholar] [CrossRef]
- Roy, S.; Chakraborty, C. Nanostructured metallo-supramolecular polymer-based gel-type electrochromic devices with ultrafast switching time and high colouration efficiency. J. Mater. Chem. C 2019, 7, 2871–2879. [Google Scholar] [CrossRef]
- Cong, B.; Wu, Y.Q.; Zhou, H.W.; Chen, C.H.; Zhao, X.G. Mixed-valence system with near-infrared electrochromism of Fe(II)-based metal-organic coordination polymers. Dye. Pigment. 2024, 222, 111890. [Google Scholar] [CrossRef]
- Santra, D.C.; Nad, S.; Malik, S. Electrochemical polymerization of triphenylamine end-capped dendron: Electrochromic and electrofluorochromic switching behaviors. J. Electroanal. Chem. 2018, 823, 203–212. [Google Scholar] [CrossRef]
- Mukkatt, I.; Nirmala, A.; Madhavan, N.D.; Shankar, S.; Deb, B.; Ajayaghosh, A. Ligand-Controlled Electrochromic Diversification with Multilayer Coated Metallosupramolecular Polymer Assemblies. ACS Appl. Mater. Interfaces 2021, 13, 5245–5255. [Google Scholar] [CrossRef]
- Kuai, Y.; Li, W.J.; Dong, Y.J.; Wong, W.Y.; Yan, S.A.; Daia, Y.Y.; Zhang, C. Multi-color electrochromism from coordination nanosheets based on a terpyridine-Fe(II) complex. Dalton Trans. 2019, 48, 15121–15126. [Google Scholar] [CrossRef]
- Hu, C.W.; Sato, T.; Zhang, J.; Moriyama, S.; Higuchi, M. Three-Dimensional Fe(II)-based Metallo-Supramolecular Polymers with Electrochromic Properties of Quick Switching, Large Contrast, and High Coloration Efficiency. ACS Appl. Mater. Interfaces 2014, 6, 9118–9125. [Google Scholar] [CrossRef] [PubMed]
- Maeda, H.; Sakamoto, R.; Nishihara, H. Interfacial synthesis of electrofunctional coordination nanowires and nanosheets of bis(terpyridine) complexes. Coord. Chem. Rev. 2017, 346, 139–149. [Google Scholar] [CrossRef]
- Mondal, S.; Ninomiya, Y.; Yoshida, T.; Mori, T.; Bera, M.K.; Ariga, K.; Higuchi, M. Dual-Branched Dense Hexagonal Fe(II)-Based Coordination Nanosheets with Red-to-Colorless Electrochromism and Durable Device Fabrication. ACS Appl. Mater. Interfaces 2020, 12, 31896–31903. [Google Scholar] [CrossRef]
- Bera, M.K.; Mori, T.; Yoshida, T.; Ariga, K.; Higuchi, M. Construction of Coordination Nanosheets Based on Tris(2,2′-bipyridine)-Iron-(Fe2+) Complexes as Potential Electrochromic Materials. ACS Appl. Mater. Interfaces 2019, 11, 11893–11903. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Chakraborty, C. Interfacial Coordination Nanosheet Based on Nonconjugated Three-Arm Terpyridine: A Highly Color-Efficient Electrochromic Material to Converge Fast Switching with Long Optical Memory. ACS Appl. Mater. Interfaces 2020, 12, 35181–35192. [Google Scholar] [CrossRef]
- Tripathi, S.; Halder, S.; Prusti, B.; Chakraborty, C.; Chakravarty, M. Flexibility-driven 1D-structural preference in a bis-terpyridine-Fe(Ⅱ)-metallo-supramolecular polymer possessing potential tricolor electrochromism. Polym. Chem. 2023, 14, 1359–1368. [Google Scholar] [CrossRef]
- Phien, T.D.; Shlykov, S.A.; Shainyan, B.A. Molecular structure and conformational behavior of 1-methyl-1-phenylsilacyclohexane studied by gas electron diffraction, IR spectroscopy and quantum chemical calculations. Tetrahedron 2017, 73, 1127–1134. [Google Scholar] [CrossRef]
- Liu, S.Y.; Wei, C.Y.; Wang, H.; Yang, W.L.; Zhang, J.; Wang, Z.P.; Zhao, W.L.; Lee, P.S.; Cai, G.F. Processable nanoarchitectonics of two-dimensional metallo-supramolecular polymer for electrochromic energy storage devices with high coloration efficiency and stability. Nano Energy 2023, 110, 108337. [Google Scholar] [CrossRef]
- Xing, J.N.; Yue, Y.F.; Zhang, R.; Liu, J. Molecular engineering of head-tail terpyridine-Fe(II) coordination polymers employing alkyl chain linkers toward enhanced electrochromic performance. Dye. Pigment. 2021, 189, 109233. [Google Scholar] [CrossRef]
- Chen, L.X.; Liu, T.; Chao, D.B. An electrochromic coordination nanosheet for robust CO2 photoreduction via ligand-based electron transfer. Nano Res. 2022, 15, 5902–5911. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Sun, X.; Dai, T.; Wang, H.; Zhao, Q.; Yang, C.; Du, X.; Xing, X.; Cheng, X.; Qiu, D. Novel Fe(II)-Based Supramolecular Film Prepared by Interfacial Self-Assembly of an Asymmetric Polypyridine Ligand and Its Electrochromic Performance. Molecules 2025, 30, 1376. https://doi.org/10.3390/molecules30061376
Chen X, Sun X, Dai T, Wang H, Zhao Q, Yang C, Du X, Xing X, Cheng X, Qiu D. Novel Fe(II)-Based Supramolecular Film Prepared by Interfacial Self-Assembly of an Asymmetric Polypyridine Ligand and Its Electrochromic Performance. Molecules. 2025; 30(6):1376. https://doi.org/10.3390/molecules30061376
Chicago/Turabian StyleChen, Xiya, Xiaomeng Sun, Tingting Dai, Hongwei Wang, Qian Zhao, Chunxia Yang, Xianchao Du, Xiaojing Xing, Xinfeng Cheng, and Dongfang Qiu. 2025. "Novel Fe(II)-Based Supramolecular Film Prepared by Interfacial Self-Assembly of an Asymmetric Polypyridine Ligand and Its Electrochromic Performance" Molecules 30, no. 6: 1376. https://doi.org/10.3390/molecules30061376
APA StyleChen, X., Sun, X., Dai, T., Wang, H., Zhao, Q., Yang, C., Du, X., Xing, X., Cheng, X., & Qiu, D. (2025). Novel Fe(II)-Based Supramolecular Film Prepared by Interfacial Self-Assembly of an Asymmetric Polypyridine Ligand and Its Electrochromic Performance. Molecules, 30(6), 1376. https://doi.org/10.3390/molecules30061376