Tailoring Electrocatalytic Properties of sp2-Bonded Carbon Nanoforms Through Doping
Abstract
:1. Introduction
2. Results
2.1. Density of π-Electronic States of Electrodes and Alignment of the Redox States
2.2. HET Reaction Rate
2.2.1. Graphene
2.2.2. Carbon Nanotubes
2.3. ORR, HER, and OER
3. Discussion
4. Materials and Methods
5. Conclusions
- If we want both anodic and cathodic reactions to occur at lower electrode potentials, we use acceptor-doped nanocarbons as the electrode material. This is particularly true for OER, which should start at the lowest possible anode potential;
- If we want both anodic and cathodic reactions to occur at higher electrode potentials, we use donor doping. This guideline is particularly applicable to ORR and HER catalysis, where we are concerned that the onset of the ORR and HER reaction should occur at the highest possible cathode potential;
- If we want the anodic reaction to primarily occur at lower electrode potentials, we use functionalized nanocarbons (functionalization with a -COOH group is more effective than -OH). This tip, in particular, is applicable to OER catalysis;
- If we do not care about the selectivity of the reaction and focus only on the efficiency, we use electrodes with intrinsic defects (point defects, edges, etc.).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HET | Heterogeneous electron transfer |
DOS | Density of states |
CNT | Carbon nanotube |
SHE | Standard hydrogen electrode |
ORR | Oxygen reduction reaction |
HER | Hydrogen evolution reaction |
OER | Oxygen evolution reaction |
References
- Walcarius, A. Electrocatalysis, sensors and biosensors in analytical chemistry based on ordered mesoporous and macroporous carbon-modified electrodes. TrAC Trends Anal. Chem. 2012, 38, 79–97. [Google Scholar] [CrossRef]
- Paul, R.; Zhu, L.; Chen, H.; Qu, J.; Dai, L. Recent advances in carbon-based metal-free electrocatalysts. Adv. Mater. 2019, 31, 1806403. [Google Scholar] [CrossRef]
- Kamedulski, P.; Lukaszewicz, J.P.; Witczak, L.; Szroeder, P.; Ziolkowski, P. The importance of structural factors for the electrochemical performance of graphene/carbon nanotube/melamine powders towards the catalytic activity of oxygen reduction reaction. Materials 2021, 14, 2448. [Google Scholar] [CrossRef]
- Wang, J.; Kong, H.; Zhang, J.; Hao, Y.; Shao, Z.; Ciucci, F. Carbon-based electrocatalysts for sustainable energy applications. Prog. Mater. Sci. 2021, 116, 100717. [Google Scholar] [CrossRef]
- Macchi, S.; Denmark, I.; Le, T.; Forson, M.; Bashiru, M.; Jalihal, A.; Siraj, N. Recent advancements in the synthesis and application of carbon-based catalysts in the ORR. Electrochem 2021, 3, 1–27. [Google Scholar] [CrossRef]
- Das, S.; Ghosh, S.; Kuila, T.; Murmu, N.C.; Kundu, A. Biomass-Derived advanced carbon-based electrocatalysts for oxygen reduction reaction. Biomass 2022, 2, 155–177. [Google Scholar] [CrossRef]
- Gwóźdź, M.; Brzęczek-Szafran, A. Carbon-based electrocatalyst design with phytic acid—A versatile biomass-derived modifier of functional materials. Int. J. Mol. Sci. 2022, 23, 11282. [Google Scholar] [CrossRef]
- Yadav, S.; Ahmad, A.; Priyadarshini, M.; Dubey, B.K.; Ghangrekar, M.M. Transition towards renewable nano-carbon-based electrocatalysts in electrochemical and bio-electrochemical technologies. FlatChem 2024, 44, 100623. [Google Scholar] [CrossRef]
- Radchenko, T.; Tatarenko, V.; Sagalianov, I.; Prylutskyy, Y.; Szroeder, P.; Biniak, S. On adatomic-configuration-mediated correlation between electrotransport and electrochemical properties of graphene. Carbon 2016, 101, 37–48. [Google Scholar] [CrossRef]
- Sagalianov, I.Y.; Radchenko, T.M.; Prylutskyy, Y.I.; Tatarenko, V.A.; Szroeder, P. Mutual influence of uniaxial tensile strain and point defect pattern on electronic states in graphene. Eur. Phys. J. B 2017, 90, 112. [Google Scholar] [CrossRef]
- Szroeder, P.; Sagalianov, I.Y.; Radchenko, T.M.; Tatarenko, V.A.; Prylutskyy, Y.I.; Strupiński, W. Effect of uniaxial stress on the electrochemical properties of graphene with point defects. Appl. Surf. Sci. 2018, 442, 185–188. [Google Scholar] [CrossRef]
- Szroeder, P.; Sahalianov, I.; Radchenko, T.; Tatarenko, V.; Prylutskyy, Y. The strain-and impurity-dependent electron states and catalytic activity of graphene in a static magnetic field. Opt. Mater. 2019, 96, 109284. [Google Scholar] [CrossRef]
- Talla, J.A.; Salman, S.A. Electronic structure tuning and band gap engineering of carbon nanotubes: Density functional theory. Nanosci. Nanotechnol. Lett. 2015, 7, 381–386. [Google Scholar] [CrossRef]
- Qian, L.; Xie, Y.; Zhang, S.; Zhang, J. Band engineering of carbon nanotubes for device applications. Matter 2020, 3, 664–695. [Google Scholar] [CrossRef]
- Sur, U.K. Graphene: A rising star on the horizon of materials science. Int. J. Electrochem. 2012, 2012, 237689. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200. [Google Scholar] [CrossRef]
- Rizzi, L.; Zienert, A.; Schuster, J.; Köhne, M.; Schulz, S.E. Electrical conductivity modeling of graphene-based conductor materials. ACS Appl. Mater. Interfaces 2018, 10, 43088–43094. [Google Scholar] [CrossRef]
- Mazánek, V.; Luxa, J.; Matějková, S.; Kučera, J.; Sedmidubský, D.; Pumera, M.; Sofer, Z. Ultrapure graphene is a poor electrocatalyst: Definitive proof of the key role of metallic impurities in graphene-based electrocatalysis. ACS Nano 2019, 13, 1574–1582. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, S. Defect-and dopant-controlled carbon nanotubes fabricated by self-assembly of graphene nanoribbons. Nano Res. 2015, 8, 2988–2997. [Google Scholar] [CrossRef]
- Liu, Y.; Shen, Y.; Sun, L.; Li, J.; Liu, C.; Ren, W.; Li, F.; Gao, L.; Chen, J.; Liu, F.; et al. Elemental superdoping of graphene and carbon nanotubes. Nat. Commun. 2016, 7, 10921. [Google Scholar] [CrossRef]
- Ha, S.; Choi, G.B.; Hong, S.; Kim, D.W.; Kim, Y.A. Substitutional boron doping of carbon materials. Carbon Lett. 2018, 27, 1–11. [Google Scholar]
- Bekyarova, E.; Sarkar, S.; Wang, F.; Itkis, M.E.; Kalinina, I.; Tian, X.; Haddon, R.C. Effect of covalent chemistry on the electronic structure and properties of carbon nanotubes and graphene. Acc. Chem. Res. 2013, 46, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Gerber, I.C. Theoretical study of the interaction of electron donor and acceptor molecules with graphene. J. Phys. Chem. C 2013, 117, 2411–2420. [Google Scholar] [CrossRef]
- Banhart, F.; Kotakoski, J.; Krasheninnikov, A.V. Structural defects in graphene. ACS Nano 2011, 5, 26–41. [Google Scholar] [CrossRef]
- Farjam, M. Visualizing the influence of point defects on the electronic band structure of graphene. J. Phys. Condens. Matter 2014, 26, 155502. [Google Scholar] [CrossRef]
- Wehling, T.; Katsnelson, M.; Lichtenstein, A. Impurities on graphene: Midgap states and migration barriers. Phys. Rev. B-Condens. Matter Mater. Phys. 2009, 80, 085428. [Google Scholar] [CrossRef]
- Berger, D.; Ratsch, C. Line defects in graphene: How doping affects the electronic and mechanical properties. Phys. Rev. B 2016, 93, 235441. [Google Scholar] [CrossRef]
- Cortijo, A.; Vozmediano, M.A. Effects of topological defects and local curvature on the electronic properties of planar graphene. Nucl. Phys. B 2007, 763, 293–308. [Google Scholar] [CrossRef]
- Fujimoto, Y. Formation, energetics, and electronic properties of graphene monolayer and bilayer doped with heteroatoms. Adv. Condens. Matter Phys. 2015, 2015, 571490. [Google Scholar] [CrossRef]
- Liu, J.; Liang, T.; Tu, R.; Lai, W.; Liu, Y. Redistribution of π and σ electrons in boron-doped graphene from DFT investigation. Appl. Surf. Sci. 2019, 481, 344–352. [Google Scholar] [CrossRef]
- Tison, Y.; Lagoute, J.; Repain, V.; Chacon, C.; Girard, Y.; Rousset, S.; Joucken, F.; Sharma, D.; Henrard, L.; Amara, H.; et al. Electronic interaction between nitrogen atoms in doped graphene. ACS Nano 2015, 9, 670–678. [Google Scholar] [CrossRef] [PubMed]
- Joucken, F.; Tison, Y.; Le Fèvre, P.; Tejeda, A.; Taleb-Ibrahimi, A.; Conrad, E.; Repain, V.; Chacon, C.; Bellec, A.; Girard, Y.; et al. Charge transfer and electronic doping in nitrogen-doped graphene. Sci. Rep. 2015, 5, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Tonel, M.; Lara, I.V.; Zanella, I.; Fagan, S.B. The influence of the concentration and adsorption sites of different chemical groups on graphene through first principles simulations. Phys. Chem. Chem. Phys. 2017, 19, 27374–27383. [Google Scholar] [CrossRef]
- Singla, R.; Kottantharayil, A. Stable hydroxyl functionalization and p-type doping of graphene by a non-destructive photo-chemical method. Carbon 2019, 152, 267–273. [Google Scholar] [CrossRef]
- Szroeder, P.; Ziółkowski, P.; Sahalianov, I.; Madajski, P.; Trzcinski, M. The Hydroxylated Carbon Nanotubes as the Hole Oxidation System in Electrocatalysis. Materials 2024, 17, 3532. [Google Scholar] [CrossRef]
- Sreeprasad, T.; Berry, V. How do the electrical properties of graphene change with its functionalization? Small 2013, 9, 341–350. [Google Scholar] [CrossRef]
- Velický, M.; Bissett, M.A.; Toth, P.S.; Patten, H.V.; Worrall, S.D.; Rodgers, A.N.J.; Hill, E.W.; Kinloch, I.A.; Novoselov, K.S.; Georgiou, T.; et al. Electron transfer kinetics on natural crystals of MoS2 and graphite. Phys. Chem. Chem. Phys. 2015, 17, 17844–17853. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Kozbial, A.; Shenoy, G.; Zhou, F.; McGinley, R.; Ireland, P.; Morganstein, B.; Kunkel, A.; Surwade, S.P.; et al. Effect of airborne contaminants on the wettability of supported graphene and graphite. Nat. Mater. 2013, 12, 925–931. [Google Scholar] [CrossRef]
- Szroeder, P.; Ziółkowski, P.; Mosińska, L.; Trykowski, G. Boosting electrochemical performance of single-walled carbon nanotube three-dimensional architectures through appropriate selection of organic dispersant. Diam. Relat. Mater. 2024, 148, 111440. [Google Scholar] [CrossRef]
- Asefa, T.; Huang, X. Heteroatom-Doped carbon materials for electrocatalysis. Chem. Eur. J. 2017, 23, 10703–10713. [Google Scholar] [CrossRef]
- Hu, C.; Dai, L. Doping of carbon materials for metal-free electrocatalysis. Adv. Mater. 2019, 31, 1804672. [Google Scholar] [CrossRef]
- Zhao, R.; Chen, Y.; Huang, S. Doping engineering on carbons as electrocatalysts for oxygen reduction reaction. Fundam. Res. 2021, 1, 807–823. [Google Scholar] [CrossRef]
- He, Q.; Qiao, S.; Zhou, Y.; Vajtai, R.; Li, D.; Ajayan, P.M.; Ci, L.; Song, L. Carbon Nanotubes-Based Electrocatalysts: Structural Regulation, Support Effect, and Synchrotron-Based Characterization. Adv. Funct. Mater. 2022, 32, 2106684. [Google Scholar] [CrossRef]
- Chattopadhyay, J.; Pathak, T.S.; Pak, D. Heteroatom-doped metal-free carbon nanomaterials as potential electrocatalysts. Molecules 2022, 27, 670. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Shi, M.; Wu, M.; Zhao, N.; Shi, P.; Zhu, Y.; Wang, A.; Ye, C.; Lin, C.-T.; Fu, L. Optimizing Graphene Dopants for Direct Electrocatalytic Quantification of Small Molecules and Ions. Catalysts 2023, 14, 8. [Google Scholar] [CrossRef]
- Wang, D.-W.; Su, D. Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ. Sci. 2014, 7, 576–591. [Google Scholar] [CrossRef]
- Raza, A.; Hassan, J.Z.; Qumar, U.; Zaheer, A.; Babar, Z.U.D.; Iannotti, V.; Cassinese, A. Strategies for robust electrocatalytic activity of 2D materials: ORR, OER, HER, and CO2RR. Mater. Today Adv. 2024, 22, 100488. [Google Scholar] [CrossRef]
- Dillon, R.; Woollam, J.A.; Katkanant, V. Use of Raman scattering to investigate disorder and crystallite formation in as-deposited and annealed carbon films. Phys. Rev. B 1984, 29, 3482. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095. [Google Scholar] [CrossRef]
- Pimenta, M.; Dresselhaus, G.; Dresselhaus, M.S.; Cançado, L.G.; Jorio, A.; Saito, R. Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276–1290. [Google Scholar] [CrossRef]
- Dresselhaus, M.; Jorio, A.; Filho, A.G.S.; Saito, R. Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 5355–5377. [Google Scholar] [CrossRef]
- Rebelo, S.L.; Guedes, A.; Szefczyk, M.E.; Pereira, A.M.; Araújo, J.P.; Freire, C. Progress in the Raman spectra analysis of covalently functionalized multiwalled carbon nanotubes: Unraveling disorder in graphitic materials. Phys. Chem. Chem. Phys. 2016, 18, 12784–12796. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.M.; Eklund, P.C.; Bandow, S.; Thess, A.; Smalley, R.E. Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering. Nature 1997, 388, 257–259. [Google Scholar] [CrossRef]
- McGuire, K.; Gothard, N.; Gai, P.; Dresselhaus, M.; Sumanasekera, G.; Rao, A. Synthesis and Raman characterization of boron-doped single-walled carbon nanotubes. Carbon 2005, 43, 219–227. [Google Scholar] [CrossRef]
- Suzuki, S.; Hibino, H. Characterization of doped single-wall carbon nanotubes by Raman spectroscopy. Carbon 2011, 49, 2264–2272. [Google Scholar] [CrossRef]
- Brownson, D.A.; Kampouris, D.K.; Banks, C.E. Graphene electrochemistry: Fundamental concepts through to prominent applications. Chem. Soc. Rev. 2012, 41, 6944–6976. [Google Scholar] [CrossRef]
- Trasatti, S. The absolute electrode potential: An explanatory note (Recommendations 1986). Pure Appl. Chem. 1986, 58, 955–966. [Google Scholar] [CrossRef]
- Bard, A.J.; Parsons, R.; Jordan, J. Standard Potentials in Aqueous Solution; Routledge: Abingdon-on-Thames, UK, 2017. [Google Scholar]
- Zubair, M.; Hassan, M.M.U.; Mehran, M.T.; Baig, M.M.; Hussain, S.; Shahzad, F. 2D MXenes and their heterostructures for HER, OER and overall water splitting: A review. Int. J. Hydrogen Energy 2022, 47, 2794–2818. [Google Scholar] [CrossRef]
- Liang, S.; Gao, P.; Wang, A.; Zeng, C.; Bao, G.; Tian, D. Insights into the influence of functional groups on the properties of graphene from first-principles calculations. J. Phys. Org. Chem. 2022, 35, e4387. [Google Scholar] [CrossRef]
- Ferrari, A.C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401. [Google Scholar] [CrossRef] [PubMed]
- Lucchese, M.M.; Stavale, F.; Ferreira, E.H.M.; Vilani, C.; Moutinho, M.V.O.; Capaz, R.B.; Achete, C.A.; Jorio, A. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 2010, 48, 1592–1597. [Google Scholar] [CrossRef]
- Cançado, L.G.; Jorio, A.; Ferreira, E.H.M.; Stavale, F.; Achete, C.A.; Capaz, R.B.; Moutinho, M.V.d.O.; Lombardo, A.; Kulmala, T.S.; Ferrari, A.C. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 2011, 11, 3190–3196. [Google Scholar] [CrossRef]
- Basko, D.; Piscanec, S.; Ferrari, A. Electron-electron interactions and doping dependence of the two-phonon Raman intensity in graphene. Phys. Rev. B-Condens. Matter Mater. Phys. 2009, 80, 165413. [Google Scholar] [CrossRef]
- Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S.K.; Waghmare, U.V.; Novoselov, K.S.; Krishnamurthy, H.R.; Geim, A.K.; Ferrari, A.C.; et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210–215. [Google Scholar] [CrossRef]
- Ott, A.K.; Ferrari, A.C. Raman spectroscopy of graphene and related materials. In Encyclopedia of Condensed Matter Physics, 2nd ed.; Chakraborty, T., Ed.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 233–247. [Google Scholar]
- Santos, N.F.; Pereira, S.O.; Moreira, A.; Girão, A.V.; Carvalho, A.F.; Fernandes, A.J.S.; Costa, F.M. IR and UV Laser-Induced Graphene: Application as Dopamine Electrochemical Sensors. Adv. Mater. Technol. 2021, 6, 2100007. [Google Scholar] [CrossRef]
- Chee, S.Y.; Poh, H.L.; Chua, C.K.; Šaněk, F.; Sofer, Z.; Pumera, M. Influence of parent graphite particle size on the electrochemistry of thermally reduced graphene oxide. Phys. Chem. Chem. Phys. 2012, 14, 12794–12799. [Google Scholar] [CrossRef]
- Zhong, J.-H.; Zhang, J.; Jin, X.; Liu, J.-Y.; Li, Q.; Li, M.-H.; Cai, W.; Wu, D.-Y.; Zhan, D.; Ren, B. Quantitative correlation between defect density and heterogeneous electron transfer rate of single layer graphene. J. Am. Chem. Soc. 2014, 136, 16609–16617. [Google Scholar] [CrossRef]
- Tian, H.; Sofer, Z.; Pumera, M.; Bonanni, A. Investigation on the ability of heteroatom-doped graphene for biorecognition. Nanoscale 2017, 9, 3530–3536. [Google Scholar] [CrossRef]
- Ye, J.; Lu, J.; Ma, T.; Wen, D. Untangling the effects of doping carbon with diverse heteroatoms on the bioelectrochemistry of glucose oxidase. Anal. Chem. 2023, 95, 7685–7692. [Google Scholar] [CrossRef]
- Higgins, D.C.; Meza, D.; Chen, Z. Nitrogen-doped carbon nanotubes as platinum catalyst supports for oxygen reduction reaction in proton exchange membrane fuel cells. J. Phys. Chem. C 2010, 114, 21982–21988. [Google Scholar] [CrossRef]
- Davodi, F.; Tavakkoli, M.; Lahtinen, J.; Kallio, T. Straightforward synthesis of nitrogen-doped carbon nanotubes as highly active bifunctional electrocatalysts for full water splitting. J. Catal. 2017, 353, 19–27. [Google Scholar] [CrossRef]
- Cheng, Y.; Tian, Y.; Fan, X.; Liu, J.; Yan, C. Boron doped multi-walled carbon nanotubes as catalysts for oxygen reduction reaction and oxygen evolution reactionin in alkaline media. Electrochim. Acta 2014, 143, 291–296. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, W.; Dai, J.; Sun, M.; Zhao, J.; Ji, L.; Chen, L.; Zeng, F.; Yang, F.; Huang, B.; et al. Carboxylated carbon nanotubes with high electrocatalytic activity for oxygen evolution in acidic conditions. InfoMat 2022, 4, e12273. [Google Scholar] [CrossRef]
- Hobson, J.; Nierenberg, W. The statistics of a two-dimensional, hexagonal net. Phys. Rev. 1953, 89, 662. [Google Scholar] [CrossRef]
- Castro Neto, A.H.; Guinea, F.; Peres, N.M.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162. [Google Scholar] [CrossRef]
- Huang, B.-L.; Chang, M.-C.; Mou, C.-Y. Density of states of graphene in the presence of strong point defects. Phys. Rev. B Condens. Matter Mater. Phys. 2010, 82, 155462. [Google Scholar] [CrossRef]
- Gierz, I.; Riedl, C.; Starke, U.; Ast, C.R.; Kern, K. Atomic hole doping of graphene. Nano Lett. 2008, 8, 4603–4607. [Google Scholar] [CrossRef]
- Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef]
- Sahalianov, I.; Singh, S.K.; Tybrandt, K.; Berggren, M.; Zozoulenko, I. The intrinsic volumetric capacitance of conducting polymers: Pseudo-capacitors or double-layer supercapacitors? RSC Adv. 2019, 9, 42498–42508. [Google Scholar] [CrossRef]
- Sahalianov, I.; Hynynen, J.; Barlow, S.; Marder, S.R.; Müller, C.; Zozoulenko, I. UV-to-IR absorption of molecularly p-doped polythiophenes with alkyl and oligoether side chains: Experiment and interpretation based on density functional theory. J. Phys. Chem. B 2020, 124, 11280–11293. [Google Scholar] [CrossRef]
- Sahalianov, I.; Say, M.G.; Abdullaeva, O.S.; Ahmed, F.; Glowacki, E.; Engquist, I.; Berggren, M.; Zozoulenko, I. Volumetric double-layer charge storage in composites based on conducting polymer PEDOT and cellulose. ACS Appl. Energy Mater. 2021, 4, 8629–8640. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Rev. C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- O’boyle, N.M.; Tenderholt, A.L.; Langner, K.M. Cclib: A library for package-independent computational chemistry algorithms. J. Comput. Chem. 2008, 29, 839–845. [Google Scholar] [CrossRef]
- Gerischer, H. Über den Ablauf von Redoxreaktionen an Metallen und an Halbleitern. Z. Für Phys. Chem. 1960, 26, 223–247. [Google Scholar] [CrossRef]
- Heller, I.; Kong, J.; Heering, H.A.; Williams, K.A.; Lemay, S.G.; Dekker, C. Individual single-walled carbon nanotubes as nanoelectrodes for electrochemistry. Nano Lett. 2005, 5, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Szroeder, P. Electron transfer kinetics at single-walled carbon nanotube paper: The role of band structure. Phys. E Low-Dimens. Syst. Nanostruct. 2011, 44, 470–475. [Google Scholar] [CrossRef]
- Bard, A.J.; Faulkner, L.R.; White, H.S. Electrochemical Methods: Fundamentals and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2022. [Google Scholar]
- Zhang, G.; Cuharuc, A.S.; Güell, A.G.; Unwin, P.R. Electrochemistry at highly oriented pyrolytic graphite (HOPG): Lower limit for the kinetics of outer-sphere redox processes and general implications for electron transfer models. Phys. Chem. Chem. Phys. 2015, 17, 11827–11838. [Google Scholar] [CrossRef]
- Sakaushi, K.; Kumeda, T.; Hammes-Schiffer, S.; Melander, M.M.; Sugino, O. Advances and challenges for experiment and theory for multi-electron multi-proton transfer at electrified solid–liquid interfaces. Phys. Chem. Chem. Phys. 2020, 22, 19401–19442. [Google Scholar] [CrossRef]
- Gerischer, H. The impact of semiconductors on the concepts of electrochemistry. Electrochim. Acta 1990, 35, 1677–1699. [Google Scholar] [CrossRef]
- Szroeder, P.; Górska, A.; Tsierkezos, N.; Ritter, U.; Strupiński, W. The role of band structure in electron transfer kinetics in low-dimensional carbon. Mater. Und Werkst. 2013, 44, 226–230. [Google Scholar] [CrossRef]
- Chakrapani, V.; Sumanasekera, G.U.; Abeyweera, B.; Sherehiy, A.; Angus, J.C. Electrochemically induced p-type conductivity in carbon nanotubes. ECS Solid State Lett. 2013, 2, M57. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szroeder, P.; Banaszak-Piechowska, A.; Sahalianov, I. Tailoring Electrocatalytic Properties of sp2-Bonded Carbon Nanoforms Through Doping. Molecules 2025, 30, 1265. https://doi.org/10.3390/molecules30061265
Szroeder P, Banaszak-Piechowska A, Sahalianov I. Tailoring Electrocatalytic Properties of sp2-Bonded Carbon Nanoforms Through Doping. Molecules. 2025; 30(6):1265. https://doi.org/10.3390/molecules30061265
Chicago/Turabian StyleSzroeder, Paweł, Agnieszka Banaszak-Piechowska, and Ihor Sahalianov. 2025. "Tailoring Electrocatalytic Properties of sp2-Bonded Carbon Nanoforms Through Doping" Molecules 30, no. 6: 1265. https://doi.org/10.3390/molecules30061265
APA StyleSzroeder, P., Banaszak-Piechowska, A., & Sahalianov, I. (2025). Tailoring Electrocatalytic Properties of sp2-Bonded Carbon Nanoforms Through Doping. Molecules, 30(6), 1265. https://doi.org/10.3390/molecules30061265