Simultaneous Determination of 20 Nitrogen-Containing Heterocyclic Compounds in Soil by Supercritical Fluid Chromatography–Tandem Mass Spectrometry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Screening of SFC Stationary Phases and Optimization of Separation Conditions
2.2. Optimization of Mass Spectrometry Detection
2.3. Optimization of Extraction Procedure
2.4. Validation of the Developed Method
2.5. Analysis of Real Samples
3. Materials and Methods
3.1. Analytes, Reagents and Materials
3.2. Real Objects and Sample Preparation
- −
- Sample I—river sand sampled in the bed of the Northern Dvina River (Arkhangelsk region, Russia);
- −
- Sample II—sandy soil collected at the rocket stage fall site (Kazakhstan);
- −
- Sample III—peat soil sampled far from the rocket stage fall (Arkhangelsk region, Russia);
- −
- Sample IV—peat soil collected at the rocket stage fall site (Arkhangelsk region, Russia).
3.3. Supercritical Fluid Chromatography–Tandem Mass Spectrometry
- −
- Acquity UPC2 HSS Cyano, 150 × 3.0 mm, 1.8 µm (Waters, USA);
- −
- Acquity UPC2 BEH, 150 × 3.0 mm, 1.7 µm (Waters, USA);
- −
- Acquity UPC2 BEH 2-EP, 150 × 3.0 mm, 1.7 µm (Waters, USA);
- −
- Acquity UPC2 CSH Fluoro-Phenyl, 150 × 3.0 mm, 1.7 µm (Waters, USA)
- −
- Acquity UPC2 HSS C18 SB, 150 × 3.0 mm, 1.7 µm (Waters, USA);
- −
- Nucleodur NH2-RP, 125 × 2.0 mm, 3.0 µm (Macherey-Nagel, Duren, Germany).
3.4. Method Validation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, Y.; Wang, M.-X.; Zhang, D.; Hou, Y.-W.; Gao, S.; Zhao, L.-X.; Ye, F. Design, synthesis, and herbicidal activity of pyrazole benzophenone derivatives. RSC Adv. 2017, 7, 46858–46865. [Google Scholar] [CrossRef]
- Guan, A.-Y.; Liu, C.-L.; Sun, X.-F.; Xie, Y.; Wang, M.-A. Discovery of pyridine-based agrochemicals by using intermediate derivatization methods. Bioorg. Med. Chem. 2016, 24, 342–353. [Google Scholar] [CrossRef]
- Matin, M.M.; Matin, P.; Rahman, M.R.; Ben Hadda, T.; Almalki, F.A.; Mahmud, S.; Ghoneim, M.M.; Alruwaily, M.; Alshehri, S. Triazoles and Their Derivatives: Chemistry, Synthesis, and Therapeutic Applications. Front. Mol. Biosci. 2022, 9, 864286. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Fan, L.; Shi, L.; Wang, C.; Pan, Z.; Xu, C.; Yang, G. Synthesis, characterization and antifungal activity of imidazole chitosan derivatives. Carbohydr. Res. 2024, 544, 109238. [Google Scholar] [CrossRef] [PubMed]
- Ouakki, M.; Galai, M.; Cherkaoui, M. Imidazole derivatives as efficient and potential class of corrosion inhibitors for metals and alloys in aqueous electrolytes: A review. J. Mol. Liq. 2022, 345, 117815. [Google Scholar] [CrossRef]
- Zhan, N.; He, C.; Niu, X.; Zhang, N.; Zou, Y.; Liu, J.; Dong, C.; Li, X.; Zhou, J. Effects of pyrazine and its derivatives as inhibitors on copper film chemical-mechanical polishing properties for ruthenium-based copper interconnect. Colloids Surf. A Physicochem. Eng. Asp. 2024, 688, 133609. [Google Scholar] [CrossRef]
- He, F.; Qi, T.; Guo, S.; Wang, H.; Zhang, Z.; Liu, R.; Zong, W. Mechanistic insights into pyridine exposure induced toxicity in model Eisenia fetida species: Evidence from whole-animal, cellular, and molecular-based perspectives. Chemosphere 2023, 335, 139139. [Google Scholar] [CrossRef]
- Siciliano, A.; Russo, D.; Spasiano, D.; Marotta, R.; Race, M.; Fabbricino, M.; Galdiero, E.; Guida, M. Chronic toxicity of treated and untreated aqueous solutions containing imidazole-based ionic liquids and their oxydized by-products. Ecotoxicol. Environ. Saf. 2019, 180, 466–472. [Google Scholar] [CrossRef]
- Huang, T.; Jiang, H.; Zhao, Y.; He, J.; Cheng, H.; Martyniuk, C.J. A comprehensive review of 1,2,4-triazole fungicide toxicity in zebrafish (Danio rerio): A mitochondrial and metabolic perspective. Sci. Total Environ. 2022, 809, 151177. [Google Scholar] [CrossRef]
- Sims, G.K.; O’Loughlin, E.J.; Crawford, R.L. Degradation of pyridines in the environment. Crit. Rev. Environ. Sci. Technol. 1989, 19, 309–340. [Google Scholar] [CrossRef]
- Ma, Y.; Hays, M.D. Thermal extraction–two-dimensional gas chromatography–mass spectrometry with heart-cutting for nitrogen heterocyclics in biomass burning aerosols. J. Chromatogr. A 2008, 1200, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Hatch, L.E.; Luo, W.; Pankow, J.F.; Yokelson, R.J.; Stockwell, C.E.; Barsanti, K.C. Identification and quantification of gaseous organic compounds emitted from biomass burning using two-dimensional gas chromatography–time-of-flight mass spectrometry. Atmos. Chem. Phys. 2015, 15, 1865–1899. [Google Scholar] [CrossRef]
- Padoley, K.V.; Mudliar, S.N.; Pandey, R.A. Heterocyclic nitrogenous pollutants in the environment and their treatment options–an overview. Bioresour. Technol. 2008, 99, 4029–4043. [Google Scholar] [CrossRef] [PubMed]
- Albers, C.N.; Johnsen, A.R.; Bollmann, U.E. Urban areas as sources of the groundwater contaminants N, N-dimethylsulfamide (N,N-DMS) and 1,2,4-triazole. Sci. Total Environ. 2023, 881, 163377. [Google Scholar] [CrossRef]
- Blondel, A.; Krings, B.; Ducat, N.; Pigeon, O. Validation of an analytical method for 1,2,4-triazole in soil using liquid chromatography coupled to electrospray tandem mass spectrometry and monitoring of propiconazole degradation in a batch study. J. Chromatogr. A 2018, 1562, 123–127. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, Y.; Zhou, Y.; Liu, Z.; Feng, X. Unsymmetrical dimethylhydrazine and related compounds in the environment: Recent updates on pretreatment, analysis, and removal techniques. J. Hazard. Mater. 2022, 432, 128708. [Google Scholar] [CrossRef]
- Kenessov, B.N.; Koziel, J.A.; Grotenhuis, T.; Carlsen, L. Screening of transformation products in soils contaminated with unsymmetrical dimethylhydrazine using headspace SPME and GC–MS. Anal. Chim. Acta 2010, 674, 32–39. [Google Scholar] [CrossRef]
- Kenessov, B.; Alimzhanova, M.; Sailaukhanuly, Y.; Baimatova, N.; Abilev, M.; Batyrbekova, S.; Carlsen, L.; Tulegenov, A.; Nauryzbayev, M. Transformation products of 1,1-dimethylhydrazine and their distribution in soils of fall places of rocket carriers in Central Kazakhstan. Sci. Total. Environ. 2012, 427–428, 78–85. [Google Scholar] [CrossRef]
- Ul’yanovskii, N.V.; Kosyakov, D.S.; Popov, M.S.; Shavrina, I.S.; Ivakhnov, A.D.; Kenessov, B.; Lebedev, A.T. Rapid quantification and screening of nitrogen-containing rocket fuel transformation products by vortex assisted liquid-liquid microextraction and gas chromatography—High-resolution Orbitrap mass spectrometry. Microchem. J. 2021, 17, 106821. [Google Scholar] [CrossRef]
- Zhakupbekova, A.; Baimatova, N.; Psillakis, E.; Kenessov, B. Quantification of trace transformation products of rocket fuel unsymmetrical dimethylhydrazine in sand using vacuum-assisted headspace solid-phase microextraction. Environ. Sci. Pollut. Res. Int. 2022, 29, 33645–33656. [Google Scholar] [CrossRef]
- Popov, M.S.; Ul’yanovskii, N.V.; Kosyakov, D.S. Direct quantification of 1,1-dimethylhydrazine transformation products in sandy soil by thermal desorption gas chromatography–Tandem mass spectrometry. Microchem. J. 2024, 197, 109833. [Google Scholar] [CrossRef]
- Popov, M.S.; Kosyakov, D.S.; Ul’yanovskii, N.V. Analysis of nitrogen-containing rocket fuel transformation products in loamy soil by thermal desorption gas chromatography-tandem mass spectrometry. J. Sep. Sci. 2024, 47, 2400383. [Google Scholar] [CrossRef] [PubMed]
- Kosyakov, D.S.; Ul’yanovskii, N.V.; Pokryshkin, S.A.; Lakhmanov, D.E.; Shpigun, O.A. Rapid determination of 1,1-dimethylhydrazine transformation products in soil by accelerated solvent extraction coupled with gas chromatography–tandem mass spectrometry. Int. J. Environ. Anal. Chem. 2015, 95, 1321–1337. [Google Scholar] [CrossRef]
- Yegemova, S.; Bakaikina, N.V.; Kenessov, B.; Koziel, J.A.; Nauryzbayev, M. Determination of 1-methyl-1H-1,2,4-triazole in soils contaminated by rocket fuel using solid-phase microextraction, isotope dilution and gas chromatography-mass spec-trometry. Talanta 2015, 143, 226–233. [Google Scholar] [CrossRef]
- Orazbayeva, D.; Kenessov, B.; Zhakupbekova, A. Quantification of transformation products of unsymmetrical dimethylhydrazine in aqueous extracts from soil based on vacuum-assisted headspace solid-phase microextraction. Chem. Bull. Kaz. 2018, 89, 4–11. [Google Scholar] [CrossRef]
- Bakaikina, N.V.; Kenessov, B.; Ul’yanovskii, N.V.; Kosyakov, D.S. Quantification of transformation products of rocket fuel unsymmetrical dimethylhydrazine in soils using SPME and GC-MS. Talanta 2018, 184, 332–337. [Google Scholar] [CrossRef]
- Abdighahroudi, M.S.; Lutze, H.V.; Schmidt, T.C. Development of an LC-MS method for determination of nitrogen-containing heterocycles using mixed-mode liquid chromatography. Anal. Bioanal. Chem. 2020, 412, 4921–4930. [Google Scholar] [CrossRef] [PubMed]
- Ul’yanovskii, N.V.; Kosyakov, D.S.; Pikovskoi, I.I.; Shavrina, I.S.; Shpigun, O.A. Determination of 1,1-dimethylhydrazine and its transformation products in soil by zwitterionic hydrophilic interaction liquid chromatography/tandem mass spectrometry. Chromatographia 2018, 81, 891–900. [Google Scholar] [CrossRef]
- Kosyakov, D.S.; Ul’yanovskii, N.V.; Bogolitsyn, K.G.; Shpigun, O.A. Simultaneous determination of 1,1-dimethylhydrazine and products of its oxidative transformations by liquid chromatography–tandem mass spectrometry. Int. J. Environ. Anal. Chem. 2014, 94, 1254–1263. [Google Scholar] [CrossRef]
- Smolenkov, A.D.; Krechetov, P.P.; Pirogov, A.V.; Koroleva, T.V.; Bendryshev, A.A.; Shpigun, O.A.; Martynova, M.M. Ion chromatography as a tool for the investigation of unsymmetrical hydrazine degradation in soils. Int. J. Environ. Anal. Chem. 2005, 85, 1089–1100. [Google Scholar] [CrossRef]
- Ul’yanovskii, N.V.; Kosyakov, D.S.; Popov, M.S.; Pikovskoi, I.I.; Khoroshev, O.Y. Using a stationary phase based on porous graphitized carbon for the determination of 1,1-dimethylhydrazine transformation products by liquid chromatography–mass spectrometry. J. Anal. Chem. 2020, 75, 510–518. [Google Scholar] [CrossRef]
- Ovchinnikov, D.V.; Vakhrameev, S.A.; Falev, D.I.; Ul’yanovskii, N.V.; Kosyakov, D.S. Rapid simultaneous quantification of 1-formyl-2,2-dimethylhydrazine and dimethylurea isomers in environmental samples by supercritical fluid chromatography-tandem mass spectrometry. Molecules 2022, 27, 5025. [Google Scholar] [CrossRef] [PubMed]
- Strife, R.J.; Mangels, M.L.; Skare, J.A. Separation and analysis of dimethylaniline isomers by supercritical fluid chromatography—Electrospray ionization tandem mass spectrometry. J. Chromatogr. A 2009, 1216, 6970–6973. [Google Scholar] [CrossRef] [PubMed]
- Cafeo, G.; Satira, A.; Russo, M.; Mondello, M.; Dugo, P. Determination of oxygen heterocyclic compounds in foods using supercritical fluid chromatography-tandem mass spectrometry. Foods 2023, 12, 3408. [Google Scholar] [CrossRef]
- Parr, M.K.; Wuest, B.; Naegele, E.; Joseph, J.F.; Wenzel, M.; Schmidt, A.H.; Stanic, M.; de la Torre, X.; Botre, F. SFC-MS/MS as an orthogonal technique for improved screening of polar analytes in anti-doping control. Anal. Bioanal. Chem. 2016, 408, 6789–6797. [Google Scholar] [CrossRef]
- Sen, A.; Knappy, C.; Lewis, M.R.; Plumb, R.S.; Wilson, I.D.; Nicholson, J.K.; Smith, N.W. Analysis of polar urinary metabolites for metabolic phenotyping using supercritical fluid chromatography and mass spectrometry. J. Chromatogr. A 2016, 1449, 141–155. [Google Scholar] [CrossRef]
- Koroleva, T.V.; Krechetov, P.P.; Semenkov, I.N.; Sharapova, A.V.; Lednev, S.A.; Karpachevskiy, A.M.; Kondratyev, A.D.; Kasimov, N.S. The environmental impact of space transport. Transp. Res. D 2018, 58, 54–69. [Google Scholar] [CrossRef]
- West, C.; Melin, J.; Ansouri, H.; Metogo, M.M. Unravelling the effects of mobile phase additives in supercritical fluid chromatography. Part I: Polarity and acidity of the mobile phase. J. Chromatogr. A 2017, 1492, 136–143. [Google Scholar] [CrossRef]
- Gonzalez, J.A.; Mozo, I.; Garcia de la Fuente, I.; Cobos, J.C.; Riesco, N. Thermodynamics of mixtures containing amines: VII. Systems containing dimethyl or trimethylpyridines. Thermochim. Acta 2008, 467, 30–43. [Google Scholar] [CrossRef]
- Jug, K.; Chiodo, S.; Calaminici, P.; Avramopoulos, A.; Papadopoulos, M.G. Electronic and vibrational polarizabilities and hyperpolarizabilities of azoles: A comparative study of the structure−polarization relationship. J. Phys. Chem. A 2003, 107, 4172–4183. [Google Scholar] [CrossRef]
- Pinkston, J.D.; Stanton, D.T.; Wen, D. Elution and preliminary structure-retention modeling of polar and ionic substances in supercritical fluid chromatography using volatile ammonium salts as mobile phase additives. J. Sep. Sci. 2004, 27, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Ventura, M.; Murphy, B.; Goetzinger, W. Ammonia as a preferred additive in chiral and achiral applications of supercritical fluid chromatography for small, drug-like molecules. J. Chromatogr. A 2012, 1220, 147–155. [Google Scholar] [CrossRef]
- Cazenave-Gassiot, A.; Boughtflower, R.; Caldwell, J.; Hitzel, L.; Holyoak, C.; Lane, S.; Oakley, P.; Pullen, F.; Richardson, S.; Langley, G.J. Effect of increasing concentration of ammonium acetate as an additive in supercritical fluid chromatography using CO2-methanol mobile phase. J. Chromatogr. A 2009, 1216, 6441–6450. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Mistri, R.; Ray, B.C. Determination of pyridine, 2-picoline, 4-picoline and quinoline from mainstream cigarette smoke by solid-phase extraction liquid chromatography/electrospray ionization tandem mass spectrometry. J. Chromatogr. A 2010, 1217, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Ren, H.; Wei, Y.; Bie, Z.; Ji, L. Determination of Imidazole, 4-Methylimidazole, and 2-Methylimidazole in Cigarette Additives by Ultra-High Performance Liquid Chromatography. Anal. Lett. 2015, 48, 2708–2714. [Google Scholar] [CrossRef]
Analyte | Retention Coefficient, k | |||||
---|---|---|---|---|---|---|
BEH | HSS C18 SB | CSH FP | HSS Cyano | BEH 2-EP | NH2-RP | |
Pz | 0.89 | 0.74 | 0.44 | 0.29 | 0.41 | 0.81 |
1-Pz | 0.44 | 0.36 | 0.24 | 0.11 | * | * |
3-Pz | 0.89 | 0.89 | 0.47 | 0.27 | 0.37 | 0.75 |
4-Pz | 0.89 | 0.97 | 0.51 | 0.36 | 0.37 | 0.75 |
Im | 12.7 | 10.2 | 6.30 | 4.36 | 3.33 | 8.94 |
1-Im | 4.84 | 5.61 | 3.36 | 2.04 | 0.83 | 1.31 |
2-Im | ** | ** | 13.3 | 9.43 | 5.41 | 22.8 |
4-Im | ** | 17.1 | 9.24 | 6.11 | 3.90 | 12.8 |
1,2-Im | 19.0 | 16.4 | 6.11 | 3.87 | 1.34 | 2.69 |
2,4-Im | ** | ** | ** | 15.5 | 7.09 | 37.3 |
Tr | 2.96 | 2.39 | 1.39 | 0.99 | 1.24 | 3.31 |
1-Tr | 1.11 | 1.30 | 0.64 | 0.40 | 0.24 | 0.38 |
3-Tr | 3.24 | 2.71 | 1.63 | 0.89 | 1.13 | 2.38 |
2-Py | 0.53 | 0.94 | 0.59 | 0.19 | 0.24 | 0.19 |
3-Py | 0.53 | 0.94 | 0.67 | 0.30 | 0.24 | 0.19 |
4-Py | 0.64 | 1.13 | 0.86 | 0.37 | 0.24 | 0.19 |
2,4-Py | 0.51 | 1.04 | 0.80 | 0.27 | 0.24 | 0.19 |
3,5-Py | 0.61 | 1.17 | 0.86 | 0.33 | 0.24 | 0.19 |
2,4,6-Py | 0.59 | 1.29 | 0.86 | 0.23 | 0.24 | 0.25 |
2,3,5-Py | 0.70 | 1.29 | 0.94 | 0.27 | 0.24 | 0.25 |
Isomer Pair | Selectivity, α | |||||
---|---|---|---|---|---|---|
BEH | HSS C18 SB | CSH FP | HSS Cyano | BEH 2-EP | NH2-RP | |
3-Pz/1-Pz | 2.02 | 2.47 | 1.96 | 2.45 | 12.3 | 1.75 |
4-Pz/3-Pz | 1.00 | 1.09 | 1.09 | 1.33 | 1.00 | 1.00 |
3-Py/2-Py | 1.00 | 1.00 | 1.14 | 1.58 | 1.00 | 1.00 |
4-Py/3-Py | 1.21 | 1.20 | 1.28 | 1.23 | 1.00 | 1.00 |
3,5-Py/2,4-Py | 1.20 | 1.13 | 1.08 | 1.22 | 1.00 | 1.00 |
2,3,5-Py/2,4,6-Py | 1.19 | 1.00 | 1.09 | 1.17 | 1.00 | 1.38 |
Analyte | Precursor Ion, m/z | Product Ion, m/z | Declustering Potential, V | Collision Energy, eV |
---|---|---|---|---|
Pz | 69 | 42 (41 *) | 30 | 10 |
1-Pz | 83 | 56 (42 *) | 20 | 50 |
3-Pz | 83 | 56 (42 *) | 20 | 50 |
4-Pz | 83 | 56 (42 *) | 30 | 50 |
Im | 69 | 42 (41 *) | 30 | 10 |
1-Im | 83 | 42 (56 *) | 30 | 50 |
2-Im | 83 | 42 (56 *) | 30 | 50 |
4-Im | 83 | 56 (42 *) | 20 | 50 |
1,2-Im | 97 | 56 (42 *) | 20 | 40 |
2,4-Im | 97 | 56 (42 *) | 20 | 40 |
Tr | 70 | 43 (42 *) | 30 | 20 |
1-Tr | 84 | 57 (43 *) | 30 | 30 |
3-Tr | 84 | 57 (42 *) | 30 | 30 |
2-Py | 94 | 78 (79 *) | 20 | 40 |
3-Py | 94 | 78 (79 *) | 20 | 40 |
4-Py | 94 | 79 (78 *) | 40 | 30 |
2,4-Py | 108 | 65 (67 *) | 30 | 30 |
3,5-Py | 108 | 65 (67 *) | 30 | 30 |
2,4,6-Py | 122 | 79 (106 *) | 30 | 50 |
2,3,5-Py | 122 | 79 (106 *) | 30 | 50 |
Analyte | a | R2 | Linear Concentration Range, µg L−1 | LOQ, mg kg−1 | |
---|---|---|---|---|---|
Sandy Soil | Peaty Soil | ||||
Pz | 0.127 | 0.9998 | 40–4000 | 0.31 | 0.57 |
1-Pz | 0.491 | 0.9998 | 15–1500 | 0.08 | 0.14 |
3-Pz | 0.380 | 0.9999 | 15–1500 | 0.10 | 0.19 |
4-Pz | 0.418 | 0.9995 | 10–1000 | 0.09 | 0.17 |
Im | 0.189 | 0.9999 | 40–4000 | 0.48 | 0.88 |
1-Im | 0.280 | 0.9997 | 25–2500 | 0.19 | 0.34 |
2-Im | 0.503 | 0.9997 | 20–2000 | 0.48 | 0.88 |
4-Im | 0.685 | 0.9999 | 15–1500 | 0.24 | 0.44 |
1,2-Im | 0.556 | 0.9999 | 20–2000 | 0.38 | 0.69 |
2,4-Im | 0.798 | 0.9998 | 20–2000 | 0.35 | 0.64 |
Tr | 0.134 | 0.9998 | 25–2500 | 0.68 | 1.23 |
1-Tr | 0.489 | 0.9998 | 10–1000 | 0.25 | 0.45 |
3-Tr | 0.200 | 0.9999 | 10–1000 | 0.32 | 0.59 |
2-Py | 0.397 | 0.9997 | 20–2000 | 0.35 | 0.64 |
3-Py | 0.929 | 0.9999 | 10–1000 | 0.30 | 0.54 |
4-Py | 1.254 | 0.9996 | 10–1000 | 0.25 | 0.45 |
2,4-Py | 0.777 | 0.9999 | 10–1000 | 0.12 | 0.22 |
3,5-Py | 0.930 | 0.9999 | 10–1000 | 0.13 | 0.24 |
2,4,6-Py | 1.831 | 0.9999 | 10–1000 | 0.12 | 0.21 |
2,3,5-Py | 2.374 | 0.9998 | 10–1000 | 0.13 | 0.24 |
Analytes | Matrix | Sample Pretreatment | Method | Analysis Time, min | LOQ, µg kg−1 | Reference |
---|---|---|---|---|---|---|
Pz, 1-Pz, 1-Tr (5 UDMH TPs) | sand | vacuum-assisted headspace solid phase microextraction | GC-MS | 23 | 0.56–12 | [20] |
2-Py, 2,6-Py, 2,4,6-Py, 1-Pz, 1-Im (15 UDMH TPs) | sand | direct thermal desorption | GC-MS/MS | 16 | 1.0–7.7 | [21] |
2-Py, 2,6-Py, 2,4,6-Py, 1-Pz, 1-Im (15 UDMH TPs) | loamy soil | direct thermal desorption | GC-MS/MS | 16 | 0.8–50 | [22] |
3-Py, Tr, 1-Tr, Im, 1-Im, 1-Pz, 3-Pz (22 UDMH TPs) | sand, loamy soil | pressurized liquid extraction, solid phase microextraction | GC-MS/MS | 57 | 0.7–1000 | [26] |
1-Tr (UDMH + 6 TPs) | peaty soil | pressurized liquid extraction | HPLC-MS/MS | 9 | 132 | [28] |
1-Tr (UDMH + 6 TPs) | peaty soil | acid extraction | HPLC-MS/MS | 20 | 12.6 | [29] |
20 UDMH TPs | sand, peaty soil | pressurized liquid extraction | SFC-MS/MS | 6 | 80–680, 140–1230 | This work |
Analyte | Content, mg kg−1 | |
---|---|---|
Sample II (Sand) | Sample IV (Peat) | |
Pz | 2.17 ± 0.11 | <LOD |
1-Pz | <LOD | 1.26 ± 0.10 |
3-Pz | <LOD | <LOD |
4-Pz | 0.16 ± 0.01 | <LOD |
Im | 10.9 ± 0.7 | 1.66 ± 0.06 |
1-Im | 24.8 ± 1.5 | 1.61 ± 0.10 |
2-Im | 3.73 ± 0.25 | 1.08 ± 0.05 |
4-Im | 0.91 ± 0.05 | 0.98 ± 0.03 |
1,2-Im | 9.90 ± 0.62 | 0.93 ± 0.04 |
2,4-Im | <LOD | <LOD |
Tr | 39.0 ± 2.4 | <LOD |
1-Tr | 101 ± 8 | 9.52 ± 0.83 |
3-Tr | 5.56 ± 0.34 | <LOD |
2-Py | <LOD | <LOD |
3-Py | <LOD | <LOD |
4-Py | <LOD | <LOD |
2,4-Py | <LOD | <LOD |
3,5-Py | <LOD | <LOD |
2,4,6-Py | <LOD | <LOD |
2,3,5-Py | <LOD | <LOD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vakhrameev, S.A.; Ovchinnikov, D.V.; Ul’yanovskii, N.V.; Kosyakov, D.S. Simultaneous Determination of 20 Nitrogen-Containing Heterocyclic Compounds in Soil by Supercritical Fluid Chromatography–Tandem Mass Spectrometry. Molecules 2025, 30, 1236. https://doi.org/10.3390/molecules30061236
Vakhrameev SA, Ovchinnikov DV, Ul’yanovskii NV, Kosyakov DS. Simultaneous Determination of 20 Nitrogen-Containing Heterocyclic Compounds in Soil by Supercritical Fluid Chromatography–Tandem Mass Spectrometry. Molecules. 2025; 30(6):1236. https://doi.org/10.3390/molecules30061236
Chicago/Turabian StyleVakhrameev, Sergey A., Denis V. Ovchinnikov, Nikolay V. Ul’yanovskii, and Dmitry S. Kosyakov. 2025. "Simultaneous Determination of 20 Nitrogen-Containing Heterocyclic Compounds in Soil by Supercritical Fluid Chromatography–Tandem Mass Spectrometry" Molecules 30, no. 6: 1236. https://doi.org/10.3390/molecules30061236
APA StyleVakhrameev, S. A., Ovchinnikov, D. V., Ul’yanovskii, N. V., & Kosyakov, D. S. (2025). Simultaneous Determination of 20 Nitrogen-Containing Heterocyclic Compounds in Soil by Supercritical Fluid Chromatography–Tandem Mass Spectrometry. Molecules, 30(6), 1236. https://doi.org/10.3390/molecules30061236