Phytochemical Insights and Therapeutic Potential of Chamaenerion angustifolium and Chamaenerion latifolium
Abstract
:1. Introduction
2. Results
2.1. Taxonomic Classification and Botanical Description
2.2. Phytochemicals
2.2.1. Primary Metabolites
Compounds | Molecular Weight, g/mol | Plant | Identification Method | Extraction Method | Extract Type | Ref. |
---|---|---|---|---|---|---|
Fatty acids | ||||||
n-Hexadecanoic | 256.43 | CL | GC-MS | Maceration | Hexane | [35] |
Tetradecanoic | 228.37 | CL | GC-MS | Maceration | Hexane | [35] |
Linoleic | 280.45 | CA | GC-MS | Maceration | Methanol | [35] |
Palmitic | 256.43 | CA | C-MS | Reflux | Methanol | [44] |
Capric | 172.26 | CA | C-MS | Reflux | MTBE | [44] |
Myristic | 228.37 | CA | C-MS | Reflux | MTBE | [44] |
Lauric | 200.32 | CA | C-MS | Reflux | MTBE | [44] |
Pentadecanoic | 242.41 | CA | C-MS | Reflux | MTBE | [44] |
Pentadecenic | 240.39 | CA | C-MS | Reflux | MTBE | [44] |
Palmitoleic | 254.41 | CA | C-MS | Reflux | MTBE | [44] |
Margaric | 270.46 | CA | C-MS | Reflux | MTBE | [44] |
γ-Linolenic | 278.43 | CA | C-MS | Reflux | MTBE | [44] |
Nonadecanoic | 298.5 | CA | C-MS | Reflux | MTBE | [44] |
Tetracosanic | 368.63 | CA | C-MS | Reflux | MTBE | [44] |
Heneicosanic | 326.57 | CA | C-MS | Reflux | MTBE | [44] |
2-Hydroxyoctacosanic | 440.74 | CA | C-MS | Reflux | MTBE | [44] |
2-Hydroxytriacontanic | 468.78 | CA | C-MS | Reflux | MTBE | [44] |
Hexadecandioic | 286.35 | CA | C-MS | Reflux | MTBE | [44] |
Octadecanedioic | 314.47 | CA | C-MS | Reflux | MTBE | [44] |
Eicosandioic | 342.52 | CA | C-MS | Reflux | MTBE | [44] |
Hexacosanic | 394.66 | CA | C-MS | Reflux | MTBE | [44] |
2-Hydroxyhexacosanic | 410.68 | CA | C-MS | Reflux | MTBE | [48] |
2-Hydroxytetracosanic | 382.63 | CA | C-MS | Reflux | MTBE | [44] |
2-Hydroxytricosanic | 368.61 | CA | C-MS | Reflux | MTBE | [44] |
Pentacosanic | 396.66 | CA | C-MS | Reflux | MTBE | [44] |
Triacontanic | 452.79 | CA | C-MS | Reflux | MTBE | [44] |
Octacosanic | 424.73 | CA | C-MS | Reflux | MTBE | [44] |
Nonacosanic | 438.76 | CA | C-MS | Reflux | MTBE | [44] |
Heptacosanic | 410.71 | CA | C-MS | Reflux | MTBE | [44] |
Behenic | 340.57 | CA | C-MS | Reflux | MTBE | [44] |
Arachic | 312.52 | CA | C-MS | Reflux | MTBE | [44] |
Tricosanic | 366.64 | CA | C-MS | Reflux | MTBE | [44] |
Amino acids | ||||||
L-Alanine | 89.09 | CA | GC-MS, | SPE | Methanol | [47,48] |
L-Phenylalanine | 165.19 | CA | GC-MS | UAE | Methanol | [47,48] |
L-Leucine | 131.18 | CA | GC-MS | UAE | Methanol | [47,48] |
L-Isoleucine | 131.18 | CA | GC-MS | UAE | Methanol | [47,48] |
L-Proline | 115.13 | CA | GC-MS | SPE | Methanol | [48] |
L-Serine | 105.09 | CA | GC-MS | SPE | Methanol | [48] |
L-Threonine | 119.12 | CA | GC-MS | SPE | Methanol | [48] |
L-Phenylalanine | 165.19 | CA | GC-MS | SPE | Methanol | [48] |
L-Aspartic acid | 133.1 | CA | GC-MS | SPE | Methanol | [48] |
L-Glutamic acid | 147.13 | CA | GC-MS | SPE | Methanol | [48] |
Carbohydrates | ||||||
D-Glucose | 180.16 | CA | GC-MS | SPE | Methanol | [48] |
D-Galactose | 180.16 | CA | GC-MS | SPE | Methanol | [48] |
Myo-Inositol | 180.16 | CA | GC-MS | Reflux | Methanol | [44] |
D-Mannose | 180.16 | CA | GC-MS | Reflux | Methanol | [44] |
D-Arabinose | 150.13 | CA | GC-MS | Reflux | Methanol | [44] |
D-Ribose | 150.13 | CA | GC-MS | Reflux | Methanol | [44] |
Glucose | 180.16 | CL | PC | Maceration | Aqueous | [45] |
Galactose | 180.16 | CL | PC | Maceration | Aqueous | [45] |
Xylose | 150.13 | CL | PC | Maceration | Aqueous | [45] |
2.2.2. Volatile and Lipophilic Constituents
Compounds | Molecular Weight, g/mol | Plant | Plant Part | Extraction Method | Extract Type | Ref. |
---|---|---|---|---|---|---|
Sesquiterpene | ||||||
Caryophyllenes (α) | 893.51 | CA | Leaves | SPME | Methanol (aq.) | [23,53] |
Caryophyllenes (β) | 907.49 | CA | Leaves | SPME, | Methanol (aq.) | [23,53] |
Phenylpropanoids | ||||||
Anethole | 148.20 | CA | Leaves | SPME | Methanol (aq.) | [23,53] |
Monoterpene Hydrocarbon | ||||||
α-Pinene | 136.23 | CA | Flowers | Hydrodistillation | EO | [30] |
Camphene | 136.23 | CA | Flowers | Hydrodistillation | EO | [30] |
Linalyl propionate | 210.31 | CA | Flowers | Hydrodistillation | EO | [30] |
Terpineol | 154.25 | CA | Flowers | Hydrodistillation | EO | [30] |
Oxygenated Monoterpene | ||||||
Linalool | 154.25 | CA | Flowers | Hydrodistillation | EO | [30] |
Eugenol | 164.20 | CA | Flowers | Hydrodistillation | EO | [30] |
Alkanes | ||||||
Tricosane | 324.63 | CA | Aerial parts | Percolation | Lipophilic | [52] |
Tetradecane | 198.39 | CA | Aerial parts | Percolation | Lipophilic | [52] |
Hexadecane | 226.44 | CA | Aerial parts | Percolation | Lipophilic | [52] |
Heptadecane | 240.47 | CA | Aerial parts | Percolation | Lipophilic | [52] |
Pentadecane | 212.42 | CA | Aerial parts | Percolation | Lipophilic | [52] |
Tetracosane | 338.65 | CL | Leaves and Stems | Maceration | Hexane | [35] |
Pentacosane | 352.69 | CL | Leaves and Stems | Maceration | Hexane | [35] |
Hexacosane | 366.70 | CL | Leaves and Stems | Maceration | Hexane | [35] |
n-Octacosane | 394.77 | CL | Leaves and Stems | Maceration | Hexane | [35] |
Nonacosane | 408.60 | CL | Leaves and Stems | Maceration | Hexane | [35] |
Hentriacontane | 436.85 | CL | Leaves and Stems | Maceration | Hexane | [35] |
Ester | ||||||
β-Amyrenyl acetate | 468.80 | CL | Leaves and Stems | Maceration | Hexane | [35] |
Icosylhexadecanoate | 536.96 | CL | Leaves and Stems | Maceration | Hexane | [35] |
Bis(2-ethylhexyl) phthalate | 390.55 | CL | Leaves and Stems | Maceration | Hexane | [35] |
Alcohols | ||||||
n-Tetracosanol-1 | 354.65 | CL | Leaves and Stems | Maceration | Hexane | [35] |
Cis-3-Hexenol | 100.16 | CA | Aerial parts | SPME | Methanol (aq.) | [23] |
Aldehydes | ||||||
Nonacosanal | 422.77 | CL | Leaves and Stems | Maceration | Hexane | [35] |
Pentacosanal | 366.66 | CA | Aerial parts | Percolation | Lipophilic | [52] |
Tricosanal | 338.60 | CA | Aerial parts | Percolation | Lipophilic | [52] |
Trans-2-Hexenal | 98.14 | CA | Leaves | SPME | Methanol (aq.) | [23] |
Benzacetaldehyde | 120.15 | CA | Flowers | Hydrodistillation | EO | [30] |
Triterpenoids | ||||||
α-Amyrin | 426.72 | CL, CA | Leaves | Maceration | Hexane | [35,52] |
β-Amyrenol | 426.72 | CL, CA | Steams | Maceration | Hexane | [35,52] |
2.2.3. Polyphenolic Compounds
Compounds | Molecular Weight, g/mol | Plant | Identification Method | Extraction Method | Extract Type | Ref. |
---|---|---|---|---|---|---|
Phenolic acids | ||||||
Gallic acid | 170.12 | CA CL | HPLC-DAD-MSn, HPLC-UV, HPLC-UV-ESI/MS | Hydrodistillation, Reflux | Methanol (aq.), Methanol, Ethanol | [9,30,53] |
Chlorogenic acid | 354.31 | CL | HPLC-UV, HPLC-DAD, HPLC-UV-ESI/MS | Hydrodistillation, Reflux | Methanol (aq.), Methanol, Ethanol | [9,30,53] |
Caffeic Acid | 180.16 | CL | HPLC-UV-ESI/MS | Reflux | Ethanol | [9] |
Ellagic Acid | 302.20 | CA | HPLC-UV-ESI/MS | UAE | Methanol | [67] |
p-Coumaric Acid | 164.04 | CL | HPLC-UV-ESI/MS | Reflux | Ethanol | [9] |
Ferulic Acid | 194.18 | CA | HPLC-UV-ESI/MS | UAE | Methanol | [67] |
Flavonoids | ||||||
Rutin | 610.52 | CA, CL | HPLC-UV, HPLC-UV-ESI/MS | UAE, Reflux | Methanol (aq.), Ethanol | [9,67] |
Quercitin | 302.24 | CL, CA | HPLC-UV | Reflux, SPME | Methanol (aq.) | [23,66] |
Quercetin-3-O-Glucoside | 464.38 | CL | HPLC-UV-ESI/MS | Reflux | Ethanol | [9] |
Quercetin-3-O-Arabinoside | 434.35 | CA | HPLC-DAD-MSn | Hydrodistillation | Methanol | [66] |
Quercetin 3-O-Glucuronide | 478.36 | CL, CA | HPLC-DAD, UPLC-MS/MS | SPE, Reflux | Methanol | [30,53,65] |
Quercetin-3-O-Rhamnoside | 448.38 | CA | HPLC-DAD, HPLC-MS/MS | UAE, | Methanol | [67] |
Myricetin | 318.24 | CL, CA | HPLC-UV-ESI/MS, HPLC-UV | Reflux, SPME | Ethanol, Methanol (aq.) | [9,23] |
Myricetin-3-O-Rhamnoside | 464.38 | CA | HPLC-UV-ESI/MS | UAE | Methanol | [67] |
Myricetin-3-O-Glucuronide | 494.36 | CA | HPLC-UV-ESI/MS | UAE | Methanol | [67] |
Myricetin-7-O-Glucoside | 480.38 | CA | HPLC-DAD-MSn | UAE | Methanol | [67] |
Kaempferol | 286.24 | CL | HPLC-UV | SPME | Methanol (aq.) | [23] |
Kaempferol-3-O-Glucuronide | 462.36 | CA | HPLC-UV-ESI/MS | UAE | Methanol | [67] |
Kaempferol-3-O-Rhamnoside | 432.38 | CA | HPLC-UV-ESI/MS | UAE | Methanol | [65] |
Kaempferol-7-O-Glucoside | 448.38 | CA | HPLC-DAD-MSn | SPE | Methanol | [67] |
Kaempferol-3-O-Glucoside | 448.48 | CA | HPLC-DAD-MSn | SPE | Methanol | [66] |
Hyperoside | 464.38 | CL | HPLC-UV | SPME | Methanol (aq.), | [23] |
Tannins | ||||||
Oenothein B | 1569.10 | CA | HPLC-DAD-MSn, HPLC-DAD, HPLC-UV | SPE, UAE, SPME, | Methanol, Methanol (aq.) | [23,65,67] |
2.2.4. Impact of Fermentation on the Chemical Composition of C. angustifolium
Classes | Components | Fermentation Status | Time (h) | Concentration (mg/100 g DW) | Ref. |
---|---|---|---|---|---|
Phenolic Acids | Gallic Acid | Non-Fermented | 0 | 29.14 | [76] |
Fermented(Aerobic) | 24 | 135.20 | [76] | ||
Chlorogenic Acid | Non-Fermented | 0 | 56.79 | [80] | |
Fermented (natural) | 24 | 47.37 | [80] | ||
p-Coumaric Acid | Non-Fermented | 0 | 213.81 | [76] | |
Fermented (Anaerobic) | 72 | 255.73 | [76] | ||
Ellagic Acid | Non-Fermented) | 0 | 1246.56 | [75] | |
Fermented (Aerobic | 48 | 2588.25 | [75] | ||
Benzoic Acid | Non-Fermented | 0 | 3.00 | [77] | |
Fermented | 48 | 29.81 | [77] | ||
Tannins | Oenothein B | Non-Fermented | 0 | 1442.22 | [77] |
Fermented | 24 | 1753.65 | [77] | ||
Flavonoids | Myricetin | Non-Fermented | 0 | 11.31 | [75] |
Fermented (Aerobic) | 48 | 25.83 | [75] | ||
Quercetin-3-O-Rutinoside | Non-Fermented | 0 | 20.85 | [80] | |
Fermented (organic) | 24 | 79.19 | [80] | ||
Quercetin-3-O-Glucoside | Non-Fermented | 0 | 55.61 | [80] | |
Fermented | 24 | 66.20 | [80] | ||
Quercetin | Non-Fermented | 0 | 2.45 | [21] | |
Fermented | 24 | 10.65 | [21] | ||
Luteolin | Non-Fermented | 0 | 6.33 | [77] | |
Fermented | 24 | 2.40 | [77] | ||
Kaempferol | Non-Fermented | 0 | 3.87 | [77] | |
Fermented | 24 | 2.70 | [77] | ||
Carotenoids | Lutein | Non-Fermented | 0 | 33.16 | [80] |
Fermented (Biodynamic) | 24 | 35.59 | [80] | ||
Zeaxanthin | Non-Fermented | 0 | 14.89 | [80] | |
Fermented | 48 | 17.66 | [80] | ||
Beta-Carotene | Non-Fermented) | 0 | 15.28 | [80] | |
Fermented (Biodynamic | 24 | 15.90 | [80] | ||
Chlorophylls | Chlorophyll B | Non-Fermented | 0 | 172.43 | [80] |
Fermented | 24 | 156.98 | [80] | ||
Chlorophyll A | Non-Fermented | 0 | 153.97 | [80] | |
Fermented (Biodynamic) | 24 | 127.33 | [80] | ||
Carbohydrates | Total Sugars | Non-Fermented | 0 | 7.08 | [81] |
Fermented | 48 | 4.23 | [81] | ||
Organic acids | Vitamin C | Non-Fermented | 0 | 247.19 | [81] |
Fermented | 48 | 534.70 | [81] |
2.2.5. Sterols
2.2.6. Tentatively Isolated and Identified Secondary Metabolites from C. angustifolium
2.3. Biological Activity
2.3.1. Diverse Biological Activities of Isolated Compounds from C. angustifolium
2.3.2. Bioactivity of C. angustifolium and C. latifolium Extracts
Antioxidant Properties
Antimicrobial Activities
Anticancer and Cytotoxic Activities
3. Methods
3.1. Search Strategy
3.2. Inclusion and Exclusion Criteria
3.3. Data Extraction and Analysis
3.4. Addressing Publication Bias
- Comprehensive database search: inclusion of multiple scientific databases.
- Evaluation of publication trends: analysis of temporal publication patterns to identify biases.
- Assessing methodological consistency: evaluation of study designs and experimental procedures to ensure data reliability.
3.5. Study Selection and Quality Assessment
3.6. Screening and Selection of Relevant Studies
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
5-LOX | 5-Lipoxygenase |
α-SMA | Alpha-Smooth Muscle Actin |
AMP | Adenosine Monophosphate |
BMI | Body Mass Index |
CA; C. angustifolium | Chamaenerion angustifolium |
CL; C. latifolium | Chamaenerion latifolium |
COX-2 | Cyclooxygenase-2 |
C-MS | Chromatography-Mass Spectrometry |
DNA | Deoxyribonucleic Acid |
DPPH | 2,2-Diphenyl-1-picrylhydrazyl |
DM | Dry Mass |
DW | Dry Weight |
FRAP | Ferric Reducing Antioxidant Power |
GC-MS | Gas Chromatography-Mass Spectrometry |
HPLC | High-Performance Liquid Chromatography |
HPLC-DAD | High-Performance Liquid Chromatography with Diode Array Detection |
HPLC-DAD-MSn | High-Performance Liquid Chromatography with Diode Array Detection and Multi-Stage Mass Spectrometry |
HPLC-UV | High-Performance Liquid Chromatography with Ultraviolet Detection |
HPLC-UV-ESI/MS | High-Performance Liquid Chromatography with Ultraviolet Detection and Electrospray Ionization Mass Spectrometry |
IC50 | Half-Maximal Inhibitory Concentration |
IL-6 | Interleukin-6 |
iNOS | Inducible Nitric Oxide Synthase |
IR | Infrared Spectroscopy |
IZD | Inhibition Zone Diameters |
MCF7 | Michigan Cancer Foundation-7 (Human Breast Cancer Cell Line) |
MDA-MB-231 | Human Triple-Negative Breast Cancer Cell Line |
MDA-MB-468 | Human Triple-Negative Breast Cancer Cell Line |
MeSH | Medical Subject Headings |
mPGES1 | Microsomal Prostaglandin E Synthase-1 |
MTBE | Methyl tert-butyl ether |
NMR | Nuclear Magnetic Resonance |
NF-κB | Nuclear Factor Kappa B |
PC | Paper Chromatography |
PMs | Primary Metabolites |
Ref. | References |
SPME | Solid-Phase Microextraction |
SSF | Solid-Phase Fermentation |
TEAC | Trolox Equivalent Antioxidant Capacity |
T-cell | T Lymphocyte (a type of immune cell) |
TNF-α | Tumor Necrosis Factor Alpha |
U-87 MG | Human Glioblastoma Cell Line |
UAE | Ultrasonic-Assisted Extraction |
References
- Ostrovska, H.; Oleshchuk, O.; Vannini, S.; Cataldi, S.; Albi, E.; Codini, M.; Moulas, A.; Marchyshyn, S.; Beccari, T.; Ceccarini, M.R. Epilobium angustifolium L.: A Medicinal Plant with Therapeutic Properties. EuroBiotech J. 2017, 1, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Kalle, R.; Belichenko, O.; Kuznetsova, N.; Kolosova, V.; Prakofjewa, J.; Stryamets, N.; Mattalia, G.; Šarka, P.; Simanova, A.; Prūse, B.; et al. Gaining Momentum: Popularization of Epilobium angustifolium as Food and Recreational Tea on the Eastern Edge of Europe. Appetite 2020, 150, 104638. [Google Scholar] [CrossRef]
- Adamczak, A.; Dreger, M.; Seidler-Łożykowska, K.; Wielgus, K. Fireweed (Epilobium angustifolium L.): Botany, Phytochemistry and Traditional Uses. A Review. Herba Pol. 2019, 65, 51–63. [Google Scholar] [CrossRef]
- Granica, S.; Piwowarski, J.P.; Czerwińska, M.E.; Kiss, A.K. Phytochemistry, pharmacology and traditional uses of different Epilobium species (Onagraceae): A review. J. Ethnopharmacol. 2014, 156, 316–346. [Google Scholar] [CrossRef] [PubMed]
- Shawky, E.M.; Elgindi, M.R.; Ibrahim, H.A.; Baky, M.H. The potential and outgoing trends in traditional, phytochemical, economical, and ethnopharmacological importance of family Onagraceae: A comprehensive review. J. Ethnopharmacol. 2021, 281, 114450. [Google Scholar] [CrossRef]
- Wagner, W.L.; Hoch, P.C. Onagraceae. In Steyermark’s Flora of Missouri; Yatskievych, G., Ed.; Missouri Botanical Garden Press: St. Louis, MO, USA, 2013. [Google Scholar]
- Stolarczyk, M.; Naruszewicz, M.; Kiss, A.K. Extracts from Epilobium sp. herbs induce apoptosis in human hormone-dependent prostate cancer cells by activating the mitochondrial pathway. J. Pharm. Pharmacol. 2013, 65, 1044–1054. [Google Scholar] [CrossRef] [PubMed]
- Perużyńska, M.; Nowak, A.; Birger, R.; Ossowicz-Rupniewska, P.; Konopacki, M.; Rakoczy, R.; Kucharski, Ł.; Wenelska, K.; Klimowicz, A.; Droździk, M.; et al. Anticancer properties of bacterial cellulose membrane containing ethanolic extract of Epilobium angustifolium L. Front. Bioeng. Biotechnol. 2023, 11, 1133345. [Google Scholar] [CrossRef]
- Kozhantayeva, A.; Tursynova, N.; Kolpek, A.; Aibuldinov, Y.; Tursynova, A.; Mashan, T.; Mukazhanova, Z.; Ibrayeva, M.; Zeinuldina, A.; Nurlybayeva, A. Phytochemical Profiling, Antioxidant and Antimicrobial Potentials of Ethanol and Ethyl Acetate Extracts of Chamaenerion latifolium L. Pharmaceuticals 2024, 17, 996. [Google Scholar] [CrossRef]
- Sõukand, R.; Mattalia, G.; Kolosova, V.; Stryamets, N.; Prakofjewa, J.; Belichenko, O.; Kuznetsova, N.; Minuzzi, S.; Keedus, L.; Prūse, B. Inventing a herbal tradition: The complex roots of the current popularity of Epilobium angustifolium in Eastern Europe. J. Ethnopharmacol. 2020, 247, 112254. [Google Scholar] [CrossRef]
- Gorbachev, V.; Nikitin, I.; Velina, D.; Klokonos, M.; Mutallibzoda, S.; Tefikova, S.; Orlovtseva, O.; Ivanova, N.; Posnova, G.; Bychkova, T. Rosebay Willowherb (Chamerion angustifolium) in food products: Evaluation of the residual anti-radical activity of polyphenol compounds and N-acetylcysteine. Curr. Nutr. Food Sci. 2024, 20, 220–226. [Google Scholar] [CrossRef]
- Paniagua-Zambrana, N.Y.; Jan, H.A.; Bussmann, R.W. Epilobium angustifolium L. Epilobium collinum C. C. Gmelin Epilobium hirsutum L. Epilobium montanum L. Epilobium palustre L. Epilobium parviflorum Schreber Onagraceae. In Ethnobotany of the Mountain Regions of Eastern Europe. Ethnobotany of Mountain Regions; Bussmann, R.W., Paniagua-Zambrana, N.Y., Kikvidze, Z., Eds.; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Süntar, I. Importance of ethnopharmacological studies in drug discovery: Role of medicinal plants. Phytochem. Rev. 2020, 19, 1199–1209. [Google Scholar] [CrossRef]
- Velu, G.; Palanichamy, V.; Rajan, A.P. Phytochemical and pharmacological importance of plant secondary metabolites in modern medicine. In Bioorganic Phase in Natural Food: An Overview; Springer: Berlin/Heidelberg, Germany, 2018; pp. 135–156. [Google Scholar]
- Nowak, A.; Zielonka-Brzezicka, J.; Perużyńska, M.; Klimowicz, A. Epilobium angustifolium L. as a potential herbal component of topical products for skin care and treatment—A review. Molecules 2022, 27, 3536. [Google Scholar] [CrossRef] [PubMed]
- Tita, B.; Abdel-Haq, H.; Vitalone, A.; Mazzanti, G.; Saso, L. Analgesic properties of Epilobium angustifolium, evaluated by the hot plate test and the writhing test. Farmaco 2001, 56, 341–343. [Google Scholar] [CrossRef]
- Ruszová, E.; Cheel, J.; Pávek, S.; Moravcová, M.; Hermannová, M.; Matějková, I.; Spilková, J.; Velebný, V.; Kubala, L. Epilobium angustifolium extract demonstrates multiple effects on dermal fibroblasts in vitro and skin photo-protectionin vivo. Gen. Physiol. Biophys. 2013, 32, 347. [Google Scholar]
- Majtan, J.; Bucekova, M.; Jesenak, M. Natural Products and Skin Diseases. Molecules 2021, 26, 4489. [Google Scholar] [CrossRef]
- Kozhantayeva, A.; Tashenov, Y.; Tosmaganbetova, K.; Tazhkenova, G.; Mashan, T.; Bazarkhankyzy, A.; Iskakova, Z.; Sapiyeva, A.; Gabbassova, A. Circaea lutetiana (L) plant and its chemical composition. Rasayan J. Chem. 2022, 15, 1653–1659. [Google Scholar] [CrossRef]
- Kozhantayeva, A.; Rakhmadiyeva, S.; Gulmira, O. Investigation of polyphenolic compounds of Chamaenerion latifolium (L.) plant. Rasayan J. Chem. 2020, 13, 2474–2482. [Google Scholar] [CrossRef]
- Lasinskas, M.; Jariene, E.; Vaitkeviciene, N.; Kulaitiene, J.; Najman, K.; Hallmann, E. Studies of the variability of polyphenols and carotenoids in different methods fermented organic leaves of willowherb (Chamerion angustifolium (L.) Holub). Appl. Sci. 2020, 10, 5254. [Google Scholar] [CrossRef]
- Jürgenson, S.; Matto, V.; Raal, A. Vegetational variation of phenolic compounds in Epilobium angustifolium. Nat. Prod. Res. 2012, 26, 1951–1953. [Google Scholar] [CrossRef]
- Kaškonienė, V.; Stankevičius, M.; Drevinskas, T.; Akuneca, I.; Kaškonas, P.; Bimbiraitė-Survilienė, K.; Maruška, A.; Ragažinskienė, O.; Kornyšova, O.; Briedis, V. Evaluation of phytochemical composition of fresh and dried raw material of introduced Chamerion angustifolium L. using chromatographic, spectrophotometric and chemometric techniques. Phytochemistry 2015, 115, 184–193. [Google Scholar] [CrossRef]
- Muscolo, A.; Mariateresa, O.; Giulio, T.; Mariateresa, R. Oxidative stress: The role of antioxidant phytochemicals in the prevention and treatment of diseases. Int. J. Mol. Sci. 2024, 25, 3264. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.-H.; Jaremko, M. Important flavonoids and their role as a therapeutic agent. Molecules 2020, 25, 5243. [Google Scholar] [CrossRef] [PubMed]
- Armonavičius, D.; Stankevičius, M.; Maruška, A. Extraction of bioactive compounds and influence of storage conditions of raw material Chamaenerion angustifolium (L.) Holub using different strategies. Molecules 2024, 29, 5530. [Google Scholar] [CrossRef] [PubMed]
- Satapathy, T.; Kumar, D. A comprehensive review and recent advancement in the application of tannins for treating Parkinson disease. Pharmacol. Res.-Mod. Chin. Med. 2024, 12, 100499. [Google Scholar] [CrossRef]
- Molnar, M.; Jakovljević Kovač, M.; Pavić, V. A comprehensive analysis of diversity, structure, biosynthesis, and extraction of biologically active tannins from various plant-based materials using deep eutectic solvents. Molecules 2024, 29, 2615. [Google Scholar] [CrossRef]
- Ibáñez, F.; Mujica, V. Enhancing ellagitannin production in pecans and strawberry fruits through pre-harvest biotic stresses. Curr. Food Sci. Technol. Rep. 2024, 2, 27–35. [Google Scholar] [CrossRef]
- Tsarev, V.N.; Bazarnova, N.G.; Dubenskii, M.M. Chamerion angustifolium L.: Chemical composition and biological activity (review). Khimiya Rastit. Syr’ya 2016, 4, 15–26. [Google Scholar]
- Brinker, S.R. Discovery of Chamaenerion latifolium (L.) Holub (Onagraceae) in the Great Lakes Region. Great Lakes Bot. 2019, 55, 3–9. [Google Scholar]
- Pavlov, N.V. Flora of Kazakhstan; Publishing House of the Academy of Sciences of the Kazakh SSR: Alma-Ata, Kazakhstan, 1956; Volume 5. [Google Scholar]
- Komarov, V.L. Flora of the USSR; Nauka: Leningrad-Moscow, Russia, 1949; Volume 15, 742p. [Google Scholar]
- Wan, L.; Xing, Z.; Chang, X.; Liu, J.; Zhang, G. Research on light response curve fitting model of four Chamaenerion plants on the Serzilla Mountains. Am. J. Plant Sci. 2018, 9, 1630–1645. [Google Scholar] [CrossRef]
- Iskakova, Z.; Kozhantayeva, A.; Tazhkenova, G.; Mashan, T.; Tosmaganbetova, K.; Tashenov, Y. Investigation of chemical constituents of Chamaenerion latifolium L. Antiinflamm. Antiallergy Agents Med. Chem. 2022, 21, 173–178. [Google Scholar] [CrossRef]
- Fredskild, B. Distribution and occurrence of Onagraceae in Greenland. Nord. J. Bot. 1984, 4, 475–480. [Google Scholar]
- Kadam, P.; Patil, M.; Yadav, K. A review on phytopharmacopial potential of Epilobium angustifolium. Pharmacogn. J. 2018, 10. [Google Scholar] [CrossRef]
- Van Andel, J.; Bos, W.; Ernst, W. An experimental study on two populations of Chamaenerion angustifolium (L.) Scop. (= Epilobium angustifolium L.) occurring on contrasting soils, with particular reference to the response to bicarbonate. New Phytol. 1978, 81, 763–772. [Google Scholar]
- Raven, P.H. The generic subdivision of Onagraceae, tribe Onagreae. Brittonia 1964, 16, 276–288. [Google Scholar]
- Güven, S.; Makbul, S.; Mertayak, F.; Coşkunçelebi, K. Anatomical properties of Epilobium and Chamaenerion from a taxonomical perspective in Turkey. Protoplasma 2021, 258, 827–847. [Google Scholar]
- Kundakçi, S.; Makbul, S.; Gültepe, M.; Güzel, M.E.; Okur, S.; Coşkunçelebi, K. Improvements in the phylogeny of Epilobium and Chamaenerion inferred from nrDNA and cpDNA data focusing on Türkiye. Turk. J. Bot. 2023, 47, 152–168. [Google Scholar]
- Salam, U.; Ullah, S.; Tang, Z.-H.; Elateeq, A.A.; Khan, Y.; Khan, J.; Khan, A.; Ali, S. Plant metabolomics: An overview of the role of primary and secondary metabolites against different environmental stress factors. Life 2023, 13, 706. [Google Scholar] [CrossRef] [PubMed]
- Adetunji, C.O.; Palai, S.; Ekwuabu, C.P.; Egbuna, C.; Adetunji, J.B.; Ehis-Eriakha, C.B.; Kesh, S.S.; Mtewa, A.G. General principles of primary and secondary plant metabolites: Biogenesis, metabolism, and extraction. In Preparation of Phytopharmaceuticals for the Management of Disorders; Elsevier: Amsterdam, Netherlands, 2021; pp. 3–23. [Google Scholar]
- Slobodianiuk, L.; Budniak, L.; Feshchenko, H.; Sverstiuk, A.; Palaniza, Y. Quantitative analysis of fatty acids and monosaccharides composition in Chamerion angustifolium L. by GC/MS method. Pharmacia 2022, 69, 167–174. [Google Scholar]
- Kozhantayeva, A.; Rakhmadiyeva, S. Chemical sciences. Annali d’Italia 2020, 6, 6. [Google Scholar]
- Mishra, S.; Levengood, H.; Fan, J.; Zhang, C. Plants under stress: Exploring physiological and molecular responses to nitrogen and phosphorus deficiency. Plants 2024, 13, 3144. [Google Scholar] [CrossRef]
- Uminska, K.; Gudžinskas, Z.; Georgiyants, V. Amino acid profiling in wild Chamaenerion angustifolium populations applying chemometric analysis. J. Appl. Pharm. Sci. 2023, 13, 171–180. [Google Scholar]
- Frolova, T.S.; Sal’Nikova, O.I.; Dudareva, T.A.; Kukina, T.P.; Sinitsyna, O.I. Isolation of pomolic acid from Chamaenerion angustifolium and the evaluation of its potential genotoxicity in bacterial test systems. Russ. J. Bioorg. Chem. 2014, 40, 82–88. [Google Scholar]
- Rowan, D.D. Volatile metabolites. Metabolites 2011, 1, 41–63. [Google Scholar] [CrossRef]
- Maffei, M.E.; Gertsch, J.; Appendino, G. Plant volatiles: Production, function, and pharmacology. Nat. Prod. Rep. 2011, 28, 1359–1380. [Google Scholar] [PubMed]
- Costa, R.; Dugo, P.; Santi, L.; Dugo, G.; Mondello, L. Advances of modern gas chromatography and hyphenated techniques for analysis of plant extracts. Curr. Org. Chem. 2010, 14, 1752–1768. [Google Scholar]
- Kukina, T.P.; Frolova, T.S.; Sal’nikova, O.I. Neutral constituents of Chamaenerion angustifolium leaves. Chem. Nat. Compd. 2014, 50, 233–236. [Google Scholar]
- Kaškonienė, V.; Maruška, A.; Akuņeca, I.; Stankevičius, M.; Ragažinskienė, O.; Bartkuvienė, V.; Kornyšova, O.; Briedis, V.; Ugenskienė, R. Screening of antioxidant activity and volatile compounds composition of Chamerion angustifolium (L.) Holub ecotypes grown in Lithuania. Nat. Prod. Res. 2016, 30, 1373–1381. [Google Scholar] [CrossRef]
- Beale, D.J.; Pinu, F.R.; Kouremenos, K.A.; Poojary, M.M.; Narayana, V.K.; Boughton, B.A.; Kanojia, K.; Dayalan, S.; Jones, O.A.H.; Dias, D.A. Review of recent developments in GC–MS approaches to metabolomics-based research. Metabolomics 2018, 14, 152. [Google Scholar]
- Chemat, F.; Abert Vian, M.; Ravi, H.K.; Khadhraoui, B.; Hilali, S.; Perino, S.; Fabiano Tixier, A.-S. Review of alternative solvents for green extraction of food and natural products: Panorama, principles, applications, and prospects. Molecules 2019, 24, 3007. [Google Scholar] [CrossRef]
- Marčac Duraković, N.; Cegledi, E.; Elez Garofulić, I.; Balbino, S.; Pedisić, S.; Jokić, S.; Dragović-Uzelac, V.; Repajić, M. Recovery of fennel non-polar bioactives via supercritical carbon dioxide extraction. Processes 2024, 12, 1764. [Google Scholar] [CrossRef]
- Figueiredo, C.R.; Matsuo, A.L.; Pereira, F.V.; Rabaca, A.N.; Farias, C.F.; Girola, N.; Massaoka, M.H.; Azevedo, R.A.; Scutti, J.A.B.; Arruda, D.C. Pyrostegia venusta heptane extract containing saturated aliphatic hydrocarbons induces apoptosis on B16F10-Nex2 melanoma cells and displays antitumor activity in vivo. Pharmacogn. Mag. 2014, 10 (Suppl. S2), S363. [Google Scholar] [CrossRef] [PubMed]
- Sabulal, B.; Dan, M.; Kurup, R.; Pradeep, N.S.; Valsamma, R.K.; George, V. Caryophyllene-rich rhizome oil of Zingiber nimmonii from South India: Chemical characterization and antimicrobial activity. Phytochemistry 2006, 67, 2469–2473. [Google Scholar] [PubMed]
- Bhatti, M.Z.; Ismail, H.; Kayani, W.K. Plant secondary metabolites: Therapeutic potential and pharmacological properties. In Secondary Metabolites-Trends and Reviews; IntechOpen: London, UK, 2022. [Google Scholar]
- Sobhani, M.; Farzaei, M.H.; Kiani, S.; Khodarahmi, R. Immunomodulatory; anti-inflammatory/antioxidant effects of polyphenols: A comparative review on the parental compounds and their metabolites. Food Rev. Int. 2021, 37, 759–811. [Google Scholar] [CrossRef]
- Sehaki, C.; Jullian, N.; Ayati, F.; Fernane, F.; Gontier, E. A review of Pistacia lentiscus polyphenols: Chemical diversity and pharmacological activities. Plants 2023, 12, 279. [Google Scholar] [CrossRef]
- Donno, D.; Mellano, M.G.; Gamba, G.; Riondato, I.; Beccaro, G.L. Analytical strategies for fingerprinting of antioxidants, nutritional substances, and bioactive compounds in foodstuffs based on high performance liquid chromatography–mass spectrometry: An overview. Foods 2020, 9, 1734. [Google Scholar] [CrossRef]
- Khoddami, A.; Wilkes, M.A.; Roberts, T.H. Techniques for Analysis of Plant Phenolic Compounds. Molecules 2013, 18, 2328–2375. [Google Scholar] [CrossRef] [PubMed]
- Aliaño-González, M.J.; Ferreiro-González, M.; Espada-Bellido, E.; Carrera, C.; Palma, M.; Álvarez, J.A.; Ayuso, J.; Barbero, G. Extraction of Anthocyanins and Total Phenolic Compounds from Açai (Euterpe oleracea Mart.) Using an Experimental Design Methodology. Part 1: Pressurized Liquid Extraction. Agronomy 2020, 10, 183. [Google Scholar] [CrossRef]
- Gryszczyńska, A.; Dreger, M.; Piasecka, A.; Piotr, K.; Witaszak, N.; Sawikowska, A.; Ożarowski, M.; Opala, B.; Łowicki, Z.; Pietrowiak, A.; et al. Qualitative and quantitative analyses of bioactive compounds from ex vitro Chamaenerion angustifolium (L.) (Epilobium angustifolium) herb in different harvest times. Ind. Crops Prod. 2018, 123, 208–220. [Google Scholar]
- Maruška, A.; Ragažinskiene, O.; Vyšniauskas, O.; Kaškoniene, V.; Bartkuviene, V.; Kornyšova, O.; Briedis, V.; Ramanauskiene, K. Flavonoids of willow herb (Chamerion angustifolium (L.) Holub) and their radical scavenging activity during vegetation. Adv. Med. Sci. 2014, 59, 136–141. [Google Scholar] [CrossRef]
- Dreger, M.; Seidler-Łożykowska, K.; Szalata, M.; Adamczak, A.; Wielgus, K. Phytochemical variability during vegetation of Chamerion angustifolium (L.) Holub genotypes derived from in vitro cultures. Plant Cell Tissue Organ Cult. 2021, 147, 619–633. [Google Scholar] [CrossRef]
- Ramanan, M.; Sinha, S.; Sudarshan, K.; Aidhen, I.S.; Doble, M. Inhibition of the enzymes in the leukotriene and prostaglandin pathways in inflammation by 3-aryl isocoumarins. Eur. J. Med. Chem. 2016, 124, 428–434. [Google Scholar]
- Esposito, C.; Santarcangelo, C.; Masselli, R.; Buonomo, G.; Nicotra, G.; Insolia, V.; D’Avino, M.; Caruso, G.; Buonomo, A.R.; Sacchi, R.; et al. Epilobium angustifolium L. Extract with High Content in Oenothein B on Benign Prostatic Hyperplasia: A Monocentric, Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Biomed. Pharmacother. 2021, 138, 111414. [Google Scholar]
- Nakajima, S.; Abe, T.; Aoshima, Y.; Haruta, T.; Tagami, T.; Tomimatsu, A.; Sakai, H.; Miyashita, M.; Fujioka, M.; Yokoyama, S. Anti-Obesity Effects of Eucalyptus Leaf Extract Containing Oenothein B: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Funct. Foods Health Dis. 2021, 11, 180–193. [Google Scholar]
- Sudarshan, K.; Aidhen, I.S. Convenient synthesis of 3-glycosylated isocoumarins. Eur. J. Org. Chem. 2017, 1, 34–38. [Google Scholar] [CrossRef]
- Zhou, M.; Fakayode, O.A.; Li, H. Green Extraction of Polyphenols via Deep Eutectic Solvents and Assisted Technologies from Agri-Food By-Products. Molecules 2023, 28, 6852. [Google Scholar] [CrossRef] [PubMed]
- Pant, P.; Pandey, S.; Dall’Acqua, S. The influence of environmental conditions on secondary metabolites in medicinal plants: A literature review. Chem. Biodivers. 2021, 18, e2100345. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Garg, P.; Kumar, P.; Bhatia, S.K.; Kulshrestha, S. Microbial fermentation and its role in quality improvement of fermented foods. Fermentation 2020, 6, 106. [Google Scholar] [CrossRef]
- Jariene, E.; Lasinskas, M.; Danilcenko, H.; Vaitkeviciene, N.; Slepetiene, A.; Najman, K.; Hallmann, E. Polyphenols, antioxidant activity, and volatile compounds in fermented leaves of medicinal plant rosebay willowherb (Chamerion angustifolium (L.) Holub). Plants 2020, 9, 1683. [Google Scholar] [CrossRef]
- Lasinskas, M.; Jariene, E.; Vaitkeviciene, N.; Kulaitiene, J.; Adamaviciene, A.; Hallmann, E. The impact of solid-phase fermentation on flavonoids, phenolic acids, tannins, and antioxidant activity in Chamerion angustifolium (L.) Holub (fireweed) leaves. Plants 2023, 12, 277. [Google Scholar] [CrossRef]
- Lasinskas, M.; Jariene, E.; Vaitkeviciene, N.; Hallmann, E.; Najman, K. Effect of different durations of solid-phase fermentation for fireweed (Chamerion angustifolium (L.) Holub) leaves on the content of polyphenols and antioxidant activity in vitro. Molecules 2020, 25, 1011. [Google Scholar] [CrossRef]
- Ponzio, C.; Gangatharan, R.; Neri, D. Organic and Biodynamic Agriculture: A Review in Relation to Sustainability. Int. J. Plant Soil Sci. 2013, 2, 95–110. [Google Scholar]
- Santoni, M.; Ferretti, L.; Migliorini, P.; Vazzana, C.; Pacini, G.C. A review of scientific research on biodynamic agriculture. Org. Agric. 2022, 12, 373–396. [Google Scholar]
- Lasinskas, M.; Jariene, E.; Kulaitiene, J.; Vaitkeviciene, N.; Jakiene, E.; Skiba, D.; Hallmann, E. Studies of the variability of biologically active compounds and antioxidant activity in organically, biodynamically, and naturally grown and fermented fireweed (Chamerion angustifolium (L.) Holub) leaves. Plants 2023, 12, 2345. [Google Scholar] [CrossRef]
- Lasinskas, M.; Jariene, E.; Vaitkeviciene, N.; Kulaitiene, J.; Trumbeckaite, S.; Velicka, A.; Hallmann, E. The variability of proximate composition, sugars, and vitamin C in natural, organic, and biodynamic, and fermented leaves of fireweed (Chamerion angustifolium (L.) Holub). Horticulturae 2023, 9, 1245. [Google Scholar] [CrossRef]
- Lasinskas, M.; Hallmann, E.; Najman, K. Flavonoids, phenolic acids, and tannin quantities and their antioxidant activity in fermented fireweed leaves grown in different systems. Plants 2024, 13, 1922. [Google Scholar] [CrossRef]
- Dreger, M.; Gryszczyńska, A.; Szalata, M.; Wielgus, K. Content of sterols in in vitro propagated Chamerion angustifolium (L.) Holub plants. Herba Pol. 2022, 68, 33. [Google Scholar]
- Mishra, B.; Mishra, A.K.; Kumar, S.; Mandal, S.K.; NSV, L.; Kumar, V.; Baek, K.-H.; Mohanta, Y.K. Antifungal Metabolites as Food Bio-Preservative: Innovation, Outlook, and Challenges. Metabolites 2022, 12, 12. [Google Scholar] [CrossRef]
- Movsumov, I.S.; Yusifova, D.Y.; Suleimanov, T.A.; Mahiou-Leddet, V.; Herbette, G.; Baghdikian, B.; Garayev, E.E.; Ollivier, E.; Garayev, E.A. Biologically active compounds from Chamaenerion angustifolium and Stachys annua growing in Azerbaidzhan. Chem. Nat. Compd. 2016, 52, 324–325. [Google Scholar] [CrossRef]
- Ulusoy, H.G.; Sanlier, N. A minireview of quercetin: From its metabolism to possible mechanisms of its biological activities. Crit. Rev. Food Sci. Nutr. 2020, 60, 3290–3303. [Google Scholar] [CrossRef]
- Jan, R.; Khan, M.; Asaf, S.; Lubna; Asif, S.; Kim, K.-M. Bioactivity and Therapeutic Potential of Kaempferol and Quercetin: New Insights for Plant and Human Health. Plants 2022, 11, 2623. [Google Scholar] [CrossRef]
- Alizadeh, S.R.; Savadkouhi, N.; Ebrahimzadeh, M.A. Drug design strategies that aim to improve the low solubility and poor bioavailability conundrum in quercetin derivatives. Expert Opin. Drug Discov. 2023, 18, 1117–1132. [Google Scholar] [PubMed]
- Periferakis, A.; Periferakis, K.; Badarau, I.A.; Petran, E.M.; Popa, D.C.; Caruntu, A.; Costache, R.S.; Scheau, C.; Caruntu, C.; Costache, D.O. Kaempferol: Antimicrobial Properties, Sources, Clinical, and Traditional Applications. Int. J. Mol. Sci. 2022, 23, 15054. [Google Scholar] [CrossRef] [PubMed]
- Alam, W.; Khan, H.; Shah, M.A.; Cauli, O.; Saso, L. Kaempferol as a Dietary Anti-Inflammatory Agent: Current Therapeutic Standing. Molecules 2020, 25, 4073. [Google Scholar] [CrossRef]
- Čižmáriková, M.; Michalková, R.; Mirossay, L.; Mojžišová, G.; Zigová, M.; Bardelčíková, A.; Mojžiš, J. Ellagic Acid and Cancer Hallmarks: Insights from Experimental Evidence. Biomolecules 2023, 13, 1653. [Google Scholar] [CrossRef] [PubMed]
- Woźniak, Ł.; Skąpska, S.; Marszałek, K. Ursolic Acid—A Pentacyclic Triterpenoid with a Wide Spectrum of Pharmacological Activities. Molecules 2015, 20, 19721. [Google Scholar] [CrossRef]
- Mlala, S.; Oyedeji, A.O.; Gondwe, M.; Oyedeji, O.O. Ursolic Acid and Its Derivatives as Bioactive Agents. Molecules 2019, 24, 2751. [Google Scholar] [CrossRef]
- Salazar, J.R.; Loza-Mejía, M.A.; Soto-Cabrera, D. Chemistry, Biological Activities and In Silico Bioprospection of Sterols and Triterpenes from Mexican Columnar Cactaceae. Molecules 2020, 25, 1649. [Google Scholar] [CrossRef]
- Martins, C.D.A.; Rocha, G.D.G.; Gattass, C.R.; Takiya, C.M. Pomolic Acid Exhibits Anticancer Potential against a Docetaxel-Resistant PC3 Prostate Cell Line. Oncol. Rep. 2019, 42, 328–338. [Google Scholar] [CrossRef]
- Frolova, T.S.; Lipeeva, A.V.; Baev, D.S.; Tsepilov, Y.A.; Sinitsyna, O.I. Apoptosis as the Basic Mechanism of Cytotoxic Action of Ursolic and Pomolic Acids in Glioma Cells. Mol. Biol. 2017, 51, 705–711. [Google Scholar]
- Park, J.-H.; Jang, K.M.; An, H.J.; Kim, J.-Y.; Gwon, M.-G.; Gu, H.; Park, B.; Park, K.-K. Pomolic Acid Ameliorates Fibroblast Activation and Renal Interstitial Fibrosis through Inhibition of SMAD-STAT Signaling Pathways. Molecules 2018, 23, 2236. [Google Scholar] [CrossRef]
- Formagio, A.S.N.; Kassuya, C.A.L.; Neto, F.F.; Volobuff, C.R.F.; Iriguchi, E.K.K.; Vieira, M.D.C.; Foglio, M.A. The flavonoid content and antiproliferative, hypoglycaemic, anti-inflammatory and free radical scavenging activities of Annona dioica St. Hill. BMC Complement. Altern. Med. 2013, 13, 14. [Google Scholar]
- Roy, A.; Gupta, N.; Yadav, P.; Varma, A. Flavonoids: A bioactive compound from medicinal plants and its therapeutic applications. Biomed. Res. Int. 2022, 2022, 5445291. [Google Scholar] [CrossRef]
- Krishnaiah, D.; Sarbatly, R.; Nithyanandam, R. A review of the antioxidant potential of medicinal plant species. Food Bioprod. Processb 2011, 89, 217–233. [Google Scholar]
- Sun, W.; Shahrajabian, M.H. Therapeutic potential of phenolic compounds in medicinal plants—Natural health products for human health. Molecules 2023, 28, 1845. [Google Scholar] [CrossRef] [PubMed]
- Marrelli, M. Medicinal plants. Plants 2021, 10, 1355. [Google Scholar] [PubMed]
- Meenakumari, K.; Bupesh, G.; Phukan, M.M. Determination of in vitro antioxidant activity of the leaves extracts of Ehretia pubescens. Int. J. Res. Pharm. Sci. 2020, 11, 6262–6267. [Google Scholar] [CrossRef]
- Rani, A.; Saini, K.C.; Bast, F.; Mehariya, S.; Bhatia, S.K.; Lavecchia, R.; Zuorro, A. Microorganisms: A potential source of bioactive molecules for antioxidant applications. Molecules 2021, 26, 1142. [Google Scholar] [CrossRef]
- Saraiva, A.; Carrascosa, C.; Raheem, D.; Ramos, F.; Raposo, A. Natural sweeteners: The relevance of food naturalness for consumers, food security aspects, sustainability, and health impacts. Int. J. Environ. Res. Public Health 2020, 17, 6285. [Google Scholar] [CrossRef]
- Vaitkeviciene, N.; Jariene, E.; Kulaitiene, J.; Lasinskas, M.; Blinstrubiene, A.; Hallmann, E. Effect of solid-state fermentation on vitamin C, photosynthetic pigments, and sugars in willow herb (Chamerion angustifolium (L.) Holub) leaves. Plants 2022, 11, 3300. [Google Scholar] [CrossRef]
- Vlase, A.-M.; Toiu, A.; Tomuță, I.; Vlase, L.; Muntean, D.; Casian, T.; Fizeșan, I.; Nadăș, G.C.; Novac, C.Ș.; Tămaș, M.; et al. Epilobium Species: From Optimization of the Extraction Process to Evaluation of Biological Properties. Antioxidants 2023, 12, 91. [Google Scholar] [CrossRef]
- Kowalik, K.; Polak-Berecka, M.; Prendecka-Wróbel, M.; Pigoń-Zając, D.; Niedźwiedź, I.; Szwajgier, D.; Baranowska-Wójcik, E.; Waśko, A. Biological activity of an Epilobium angustifolium L. (Fireweed) infusion after in vitro digestion. Molecules 2022, 27, 1006. [Google Scholar] [CrossRef] [PubMed]
- Popov, S.; Smirnov, V.; Kvashninova, E.; Khlopin, V.; Vityazev, F.; Golovchenko, V. Isolation, chemical characterization and antioxidant activity of pectic polysaccharides of fireweed (Epilobium angustifolium L.). Molecules 2021, 26, 7290. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Martínez, F.J.; Barrajón-Catalán, E.; Micol, V. Tackling Antibiotic Resistance with Compounds of Natural Origin: A Comprehensive Review. Biomedicines 2020, 8, 405. [Google Scholar] [CrossRef] [PubMed]
- Vaou, N.; Stavropoulou, E.; Voidarou, C.; Tsigalou, C.; Bezirtzoglou, E. Towards advances in medicinal plant antimicrobial activity: A review study on challenges and future perspectives. Microorganisms 2021, 9, 2041. [Google Scholar] [CrossRef]
- Ashraf, M.V.; Pant, S.; Khan, M.A.H.; Shah, A.A.; Siddiqui, S.; Jeridi, M.; Alhamdi, H.W.S.; Ahmad, S. Phytochemicals as antimicrobials: Prospecting Himalayan medicinal plants as source of alternate medicine to combat antimicrobial resistance. Pharmaceuticals 2023, 16, 881. [Google Scholar] [CrossRef]
- Murugaiyan, J.; Kumar, P.A.; Rao, G.S.; Iskandar, K.; Hawser, S.; Hays, P.; Mohsen, Y.; Adukkadukkam, S.; Awuah, W.A.; Jose, R.A.M.; et al. Progress in alternative strategies to combat antimicrobial resistance: Focus on antibiotics. Antibiotics 2022, 11, 200. [Google Scholar] [CrossRef]
- Mani, J.; Johnson, J.; Hosking, H.; Schmidt, L.; Batley, R.; du Preez, R.; Broszczak, D.; Walsh, K.; Neilsen, P.; Naiker, M. Bioassay-guided fractionation of Pittosporum angustifolium and Terminalia ferdinandiana with liquid chromatography mass spectroscopy and gas chromatography mass spectroscopy exploratory study. Plants 2024, 13, 807. [Google Scholar] [CrossRef]
- Kochuthressia, K.P.; Britto, S.J. In Vitro Antimicrobial Evaluation of Kaempferia galanga L. Rhizome Extract. Am. J. Biotechnol. Mol. Sci. 2012, 2, 1. [Google Scholar] [CrossRef]
- Pharmacology, C.; Ternopil, I.H.; Medical, N.; Botany, M.; Ternopil, I.H.; Medical, N.; National, I.H.T. Study of antibacterial and antifungal properties of the lyophilized extract of fireweed (Chamaenerion angustifolium L.). Pharmacol. J. 2021, 2, 1464–1472. [Google Scholar]
- Wylie, M.R.; Merrell, D.S. The Antimicrobial Potential of the Neem Tree Azadirachta indica. Front. Pharmacol. 2022, 13, 1. [Google Scholar]
- Al-Sahlany, T.G.; Altemimi, A.B.; Al-Manhel, A.J.A.; Niamah, A.K.; Lakhssassi, N.; Ibrahim, S.A. Purification of bioactive peptide with antimicrobial properties produced by Saccharomyces cerevisiae. Foods 2020, 9, 324. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.H.; Nguyen, T.T.; Ma, P.C.; Ta, Q.T.H.; Duong, T.-H.; Vo, V.G. Potential antimicrobial and anticancer activities of an ethanol extract from Bouea macrophylla. Molecules 2020, 25, 1996. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Yoshimura, M.; Amakura, Y. Chemical and Biological Significance of Oenothein B and Related Ellagitannin Oligomers with Macrocyclic Structure. Molecules 2018, 23, 552. [Google Scholar] [CrossRef]
- Kiss, A.K.; Bazylko, A.; Filipek, A.; Granica, S.; Jaszewska, E.; Kiarszys, U.; Kośmider, A.; Piwowarski, J. Oenothein B’s Contribution to the Anti-Inflammatory and Antioxidant Activity of Epilobium sp. Phytomedicine 2011, 18, 557–560. [Google Scholar] [CrossRef] [PubMed]
Kingdom | Plantae |
---|---|
Family | Onagraceae |
Phylum | Tracheophyta |
Class | Magnoliopsida |
Order | Myrtales |
Subfamilies | Onagroideae |
Genus | Oenothera |
Species | Chamaenerion angustifolium Chamaenerion latifolium |
Compounds | Molecular Weight, g/mol | Identification Method | Extraction Method | Extract Type | Ref. |
---|---|---|---|---|---|
Sterols | |||||
Campesterol | 400.69 | HPLC-DAD, GC-MS | Percolation, UAE | Methanol; MTBE | [52,65,67] |
Stigmasterol | 412.70 | HPLC-DAD, GC-MS | Percolation, SPE, UAE | Methanol; MTBE | [52,65,67] |
β-sitosterol | 414.72 | HPLC-DAD, GC-MS | Percolation, UAE | Methanol; MTBE | [52,65,67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozhantayeva, A.; Iskakova, Z.; Ibrayeva, M.; Sapiyeva, A.; Arkharbekova, M.; Tashenov, Y. Phytochemical Insights and Therapeutic Potential of Chamaenerion angustifolium and Chamaenerion latifolium. Molecules 2025, 30, 1186. https://doi.org/10.3390/molecules30051186
Kozhantayeva A, Iskakova Z, Ibrayeva M, Sapiyeva A, Arkharbekova M, Tashenov Y. Phytochemical Insights and Therapeutic Potential of Chamaenerion angustifolium and Chamaenerion latifolium. Molecules. 2025; 30(5):1186. https://doi.org/10.3390/molecules30051186
Chicago/Turabian StyleKozhantayeva, Akmaral, Zhanar Iskakova, Manshuk Ibrayeva, Ardak Sapiyeva, Moldir Arkharbekova, and Yerbolat Tashenov. 2025. "Phytochemical Insights and Therapeutic Potential of Chamaenerion angustifolium and Chamaenerion latifolium" Molecules 30, no. 5: 1186. https://doi.org/10.3390/molecules30051186
APA StyleKozhantayeva, A., Iskakova, Z., Ibrayeva, M., Sapiyeva, A., Arkharbekova, M., & Tashenov, Y. (2025). Phytochemical Insights and Therapeutic Potential of Chamaenerion angustifolium and Chamaenerion latifolium. Molecules, 30(5), 1186. https://doi.org/10.3390/molecules30051186