In Vitro CO-Releasing and Antioxidant Properties of Sulfonamide-Based CAI-CORMs in a H2O2-Stimulated Human Achilles Tendon-Derived Cell Model
Abstract
1. Introduction
2. Results and Discussion
2.1. Design and Synthesis
2.2. In Vitro Biological Evaluation
2.2.1. CO Release
2.2.2. CA Inhibition
2.2.3. Cellular Assays on Human Achilles Tendon-Derived Cells
3. Conclusions
4. Experimental Protocols
4.1. General
4.2. Chemistry
4.2.1. General Procedure for the Preparation of Final Compounds 1–3 (a–c) and the Reference Compounds CO-(A-C)
4.2.2. Characterisation Data of Final Compounds 1–3 (a–c) and the Reference Compounds CO-(A-C)
4.3. CA Inhibition
4.4. CO-Release Assay
4.5. Cellular Assays
4.5.1. Cell Culture
4.5.2. Cell Exposure to Compounds
4.5.3. Cell Metabolic Activity (MTT Test)
4.5.4. Cell Cycle Analysis
4.5.5. Collagen Type I Secretion
4.5.6. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Najafi, Z.; Rahmanian-Devin, P.; Baradaran Rahimi, V.; Nokhodchi, A.; Askari, V.R. Challenges and Opportunities of Medicines for Treating Tendon Inflammation and Fibrosis: A Comprehensive and Mechanistic Review. Fundam. Clin. Pharmacol. 2024, e12999. [Google Scholar] [CrossRef] [PubMed]
- Lui, P.P.Y.; Zhang, X.; Yao, S.; Sun, H.; Huang, C. Roles of Oxidative Stress in Acute Tendon Injury and Degenerative Tendinopathy—A Target for Intervention. Int. J. Mol. Sci. 2022, 23, 3571. [Google Scholar] [CrossRef]
- Giancola, R.; Oliva, F.; Gallorini, M.; Michetti, N.; Gissi, C.; Moussa, F.; Antonetti Lamorgese Passeri, C.; Colosimo, A.; Berardi, A.C. CD200 as a Potential New Player in Inflammation during Rotator Cuff Tendon Injury/Repair: An In Vitro Model. Int. J. Mol. Sci. 2022, 23, 5165. [Google Scholar] [CrossRef]
- Aicale, R.; Bisaccia, R.D.; Oliviero, A.; Oliva, F.; Maffulli, N. Current Pharmacological Approaches to the Treatment of Tendinopathy. Expert. Opin. Pharmacother. 2020, 21, 1467–1477. [Google Scholar] [CrossRef] [PubMed]
- Llombart, R.; Mariscal, G.; Barrios, C.; Llombart-Ais, R. The Best Current Research on Patellar Tendinopathy: A Review of Published Meta-Analyses. Sports 2024, 12, 46. [Google Scholar] [CrossRef] [PubMed]
- Byrne, J.D.; Gallo, D.; Boyce, H.; Becker, S.L.; Kezar, K.M.; Cotoia, A.T.; Feig, V.R.; Lopes, A.; Csizmadia, E.; Longhi, M.S.; et al. Delivery of Therapeutic Carbon Monoxide by Gas-Entrapping Materials. Sci. Transl. Med. 2022, 14, abl4135. [Google Scholar] [CrossRef]
- Chai, J.; Zhu, J.; Tian, Y.; Yang, K.; Luan, J.; Wang, Y. Carbon Monoxide Therapy: A Promising Strategy for Cancer. J. Mater. Chem. B 2023, 11, 1849–1865. [Google Scholar] [CrossRef] [PubMed]
- Mu, Y.; Yang, X.; Xie, Y.; Luo, J.; Wu, S.; Yang, J.; Zhao, W.; Chen, J.; Weng, Y. Carbon monoxide-releasing Vehicle CO@TPyP-FeMOFs modulating macrophages phenotype in inflammatory wound healing. Nitric Oxide 2024, 149, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo-Pereira, C.; Villarejo-Zori, B.; Cipriano, P.C.; Tavares, D.; Ramírez-Pardo, I.; Boya, P.; Vieira, H.L.A. Carbon Monoxide Stimulates Both Mitophagy And Mitochondrial Biogenesis to Mediate Protection Against Oxidative Stress in Astrocytes. Mol. Neurobiol. 2023, 60, 851–863. [Google Scholar] [CrossRef] [PubMed]
- Damasceno, R.O.S.; Soares, P.M.G.; Barbosa, A.L.D.R.; Nicolau, L.A.D.; Medeiros, J.R.; Souza, M.H.L.P. Modulatory Role of Carbon Monoxide on the Inflammatory Response and Oxidative Stress Linked to Gastrointestinal Disorders. Antioxid. Redox Signal 2022, 37, 98–114. [Google Scholar] [CrossRef] [PubMed]
- Otterbein, L.E.; Bach, F.H.; Alam, J.; Soares, M.; Tao Lu, H.; Wysk, M.; Davis, R.J.; Flavell, R.A.; Choi, A.M.K. Carbon Monoxide Has Anti-Inflammatory Effects Involving the Mitogen-Activated Protein Kinase Pathway. Nat. Med. 2000, 6, 422–428. [Google Scholar] [CrossRef]
- Lin, C.C.; Hsiao, L.D.; Cho, R.L.; Yang, C.M. Carbon Monoxide Releasing Molecule-2-Upregulated ROS-Dependent Heme Oxygenase-1 Axis Suppresses Lipopolysaccharide-Induced Airway Inflammation. Int. J. Mol. Sci. 2019, 20, 3157. [Google Scholar] [CrossRef] [PubMed]
- Cepinskas, G.; Katada, K.; Bihari, A.; Potter, R.F. Carbon monoxide liberated from carbon monoxide-releasing molecule CORM-2 attenuates inflammation in the liver of septic mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2008, 294, G184–G191. [Google Scholar] [CrossRef] [PubMed]
- Bani-Hani, M.G.; Greenstein, D.; Mann, B.E.; Green, C.J.; Motterlini, R. A carbon monoxide-releasing molecule (CORM-3) attenuates lipopolysaccharide- and interferon-gamma-induced inflammation in microglia. Pharmacol. Rep. 2006, 58, 132–144. [Google Scholar]
- Pachori, A.S.; Smith, A.; McDonald, P.; Zhang, L.; Dzau, V.J.; Melo, L.G. Heme-Oxygenase-1-Induced Protection against Hypoxia/Reoxygenation Is Dependent on Biliverdin Reductase and Its Interaction with PI3K/Akt Pathway. J. Mol. Cell Cardiol. 2007, 43, 580–592. [Google Scholar] [CrossRef]
- Liao, Y.F.; Zhu, W.; Li, D.P.; Zhu, X. Heme Oxygenase-1 and Gut Ischemia/Reperfusion Injury: A Short Review. World J. Gastroenterol. 2013, 19, 3555–3561. [Google Scholar] [CrossRef]
- McGarry, T.; Biniecka, M.; Veale, D.J.; Fearon, U. Hypoxia, Oxidative Stress and Inflammation. Free Radic. Biol. Med. 2018, 125, 15–24. [Google Scholar] [CrossRef]
- Swenson, E.R. Hypoxia and Its Acid–Base Consequences: From Mountains to Malignancy. In Advances in Experimental Medicine and Biology; Springer: New York, NY, USA, 2016; Volume 903, pp. 301–323. [Google Scholar]
- Kim, J.H.; Parkkila, S.; Shibata, S.; Fujimiya, M.; Murakami, G.; Cho, B.H. Expression of Carbonic Anhydrase IX in Human Fetal Joints, Ligaments and Tendons: A Potential Marker of Mechanical Stress in Fetal Development? Anat. Cell Biol. 2013, 46, 272. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Shen, P.; Li, H.; Yang, Y.; Guo, J.; Chen, S.; Ma, Y.; Sheng, J.; Shen, S.; Liu, G.; et al. Carbonic Anhydrase 12 Protects Endplate Cartilage from Degeneration Regulated by IGF-1/PI3K/CREB Signaling Pathway. Front. Cell Dev. Biol. 2020, 8, 595969. [Google Scholar] [CrossRef] [PubMed]
- Margheri, F.; Ceruso, M.; Carta, F.; Laurenzana, A.; Maggi, L.; Lazzeri, S.; Simonini, G.; Annunziato, F.; Del Rosso, M.; Supuran, C.T.; et al. Overexpression of the Transmembrane Carbonic Anhydrase Isoforms IX and XII in the Inflamed Synovium. J. Enzyme Inhib. Med. Chem. 2016, 31, 60–63. [Google Scholar] [CrossRef]
- Berrino, E.; Milazzo, L.; Micheli, L.; Vullo, D.; Angeli, A.; Bozdag, M.; Nocentini, A.; Menicatti, M.; Bartolucci, G.; Di Cesare Mannelli, L.; et al. Synthesis and Evaluation of Carbonic Anhydrase Inhibitors with Carbon Monoxide Releasing Properties for the Management of Rheumatoid Arthritis. J. Med. Chem. 2019, 62, 7233–7249. [Google Scholar] [CrossRef] [PubMed]
- Berrino, E.; Carradori, S.; Angeli, A.; Carta, F.; Supuran, C.T.; Guglielmi, P.; Coletti, C.; Paciotti, R.; Schweikl, H.; Maestrelli, F.; et al. Dual Carbonic Anhydrase Ix/Xii Inhibitors and Carbon Monoxide Releasing Molecules Modulate LPS-Mediated Inflammation in Mouse Macrophages. Antioxidants 2021, 10, 56. [Google Scholar] [CrossRef] [PubMed]
- Gallorini, M.; Berardi, A.C.; Ricci, A.; Passeri, C.A.L.; Zara, S.; Oliva, F.; Cataldi, A.; Carta, F.; Carradori, S. Dual Acting Carbon Monoxide Releasing Molecules and Carbonic Anhydrase Inhibitors Differentially Modulate Inflammation in Human Tenocytes. Biomedicines 2021, 9, 141. [Google Scholar] [CrossRef] [PubMed]
- Vanti, G.; Micheli, L.; Berrino, E.; Mannelli, L.D.C.; Bogani, I.; Carta, F.; Bergonzi, M.C.; Supuran, C.T.; Ghelardini, C.; Bilia, A.R. Escinosome thermosensitive gel optimizes efficacy of CAI-CORM in a rat model of rheumatoid arthritis. J. Control Release 2023, 358, 171–189. [Google Scholar] [CrossRef] [PubMed]
- Atkin, A.J.; Lynam, J.M.; Moulton, B.E.; Sawle, P.; Motterlini, R.; Boyle, N.M.; Pryce, M.T.; Fairlamb, I.J.S. Modification of the Deoxy-Myoglobin/Carbonmonoxy-Myoglobin UV-Vis Assay for Reliable Determination of CO-Release Rates from Organometallic Carbonyl Complexes. Dalton Trans. 2011, 40, 5755–5761. [Google Scholar] [CrossRef]
- Romão, C.C.; Blättler, W.A.; Seixas, J.D.; Bernardes, G.J.L. Developing Drug Molecules for Therapy with Carbon Monoxide. Chem. Soc. Rev. 2012, 41, 3571–3583. [Google Scholar] [CrossRef] [PubMed]
- Mansoldo, F.R.P.; Berrino, E.; Guglielmi, P.; Carradori, S.; Carta, F.; Secci, D.; Supuran, C.T.; Vermelho, A.B. An Innovative Spectroscopic Approach for Qualitative and Quantitative Evaluation of Mb-CO from Myoglobin Carbonylation Reaction through Chemometrics Methods. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 267, 120602. [Google Scholar] [CrossRef]
- Paciotti, R.; Coletti, C.; Berrino, E.; Arrighi, F.; Maccelli, A.; Lasalvia, A.; Crestoni, M.E.; Secci, D.; Carradori, S.; Supuran, C.T.; et al. Carbon Monoxide Release from Aryl-Propargyl Dicobalt(0)Hexacarbonyl Derivatives: A Computational and Experimental Study. Int. J. Mol. Sci. 2024, 25, 11644. [Google Scholar] [CrossRef] [PubMed]
- Berrino, E.; Carradori, S.; Carta, F.; Melfi, F.; Gallorini, M.; Poli, G.; Tuccinardi, T.; Fernández-Bolaños, J.G.; López, Ó.; Petzer, J.P.; et al. A Multitarget Approach against Neuroinflammation: Alkyl Substituted Coumarins as Inhibitors of Enzymes Involved in Neurodegeneration. Antioxidants 2023, 12, 2044. [Google Scholar] [CrossRef] [PubMed]
- Khalifah, R.G. The Carbon Dioxide Hydration Activity of Carbonic Anhydrase. J. Biol. Chem. 1971, 246, 2561–2573. [Google Scholar] [CrossRef]
- Neri, D.; Supuran, C.T. Interfering with PH Regulation in Tumours as a Therapeutic Strategy. Nat. Rev. Drug Discov. 2011, 10, 767–777. [Google Scholar] [CrossRef] [PubMed]
- Berrino, E.; Micheli, L.; Carradori, S.; di Cesare Mannelli, L.; Guglielmi, P.; De Luca, A.; Carta, F.; Ghelardini, C.; Secci, D.; Supuran, C.T. Novel Insights on CAI-CORM Hybrids: Evaluation of the CO Releasing Properties and Pain-Relieving Activity of Differently Substituted Coumarins for the Treatment of Rheumatoid Arthritis. J. Med. Chem. 2023, 66, 1892–1908. [Google Scholar] [CrossRef]
- Merino-Casallo, F.; Gomez-Benito, M.J.; Hervas-Raluy, S.; Garcia-Aznar, J.M. Unravelling cell migration: Defining movement from the cell surface. Cell Adh. Migr. 2022, 16, 25–64. [Google Scholar] [CrossRef]
- Zhu, J.; Thompson, C.B. Metabolic regulation of cell growth and proliferation. Nat. Rev. Mol. Cell Biol. 2019, 20, 436–450. [Google Scholar] [CrossRef] [PubMed]
- Gallorini, M.; Berardi, A.C.; Gissi, C.; Cataldi, A.; Osti, L. Nrf2-mediated cytoprotective effect of four different hyaluronic acids by molecular weight in human tenocytes. J. Drug Target 2020, 28, 212–224. [Google Scholar] [CrossRef]
- Darrieutort-Laffite, C.; Blanchard, F.; Soslowsky, L.J.; Le Goff, B. Biology and physiology of tendon healing. Jt. Bone Spine 2024, 91, 105696. [Google Scholar] [CrossRef]
- Chen, J.; Wang, J.; Hart, D.A.; Zhou, Z.; Ackermann, P.W.; Ahmed, A.S. Complement factor D regulates collagen type I expression and fibroblast migration to enhance human tendon repair and healing outcomes. Front. Immunol. 2023, 14, 122595. [Google Scholar] [CrossRef] [PubMed]
- Maffulli, N.; Moller, H.D.; Evans, C.H. Tendon healing: Can it be optimised? Br. J. Sports Med. 2002, 36, 315–316. [Google Scholar] [CrossRef] [PubMed]
- Mencarelli, N.; Arena, D.; Salamone, M.; Pietrangelo, L.; Berardi, A.C.; Cataldi, A.; Carradori, S.; Gallorini, M. The combination of hyaluronic acids and collagen boosts human Achilles tendon-derived cell escape from inflammation and matrix remodeling in vitro. Inflamm. Res. 2025, 74, 4. [Google Scholar] [CrossRef] [PubMed]
- Schimler, S.D.; Hall, D.J.; Debbert, S.L. Anticancer (Hexacarbonyldicobalt)Propargyl Aryl Ethers: Synthesis, Antiproliferative Activity, Apoptosis Induction, and Effect on Cellular Oxidative Stress. J. Inorg. Biochem. 2013, 119, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Angeli, A.; Micheli, L.; Turnaturi, R.; Pasquinucci, L.; Parenti, C.; Alterio, V.; Di Fiore, A.; De Simone, G.; Monti, S.M.; Carta, F.; et al. Discovery of a Novel Series of Potent Carbonic Anhydrase Inhibitors with Selective Affinity for μ Opioid Receptor for Safer and Long-Lasting Analgesia. Eur. J. Med. Chem. 2023, 260, 115783. [Google Scholar] [CrossRef]
- Cataldi, A.; Gallorini, M.; Di Giulio, M.; Guarnieri, S.; Mariggiò, M.A.; Traini, T.; Di Pietro, R.; Cellini, L.; Marsich, E.; Sancilio, S. Adhesion of Human Gingival Fibroblasts/Streptococcus Mitis Co-Culture on the Nanocomposite System Chitlac-NAg. J. Mater. Sci. Mater. Med. 2016, 27, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Berrino, E.; Angeli, A.; Zhdanov, D.D.; Kiryukhina, A.P.; Milaneschi, A.; De Luca, A.; Bozdag, M.; Carradori, S.; Selleri, S.; Bartolucci, G.; et al. Azidothymidine “Clicked” into 1,2,3-Triazoles: First Report on Carbonic Anhydrase–Telomerase Dual-Hybrid Inhibitors. J. Med. Chem. 2020, 63, 7392–7409. [Google Scholar] [CrossRef] [PubMed]
KI (nM) * | |||||||
---|---|---|---|---|---|---|---|
X | R | hCA I | hCA II | hCA IX | hCA XII | ||
1a | N | H | 900.9 a | 215.4 | 10,000 | 10,000 | |
2a | Me | 957.6 | 2349 | 27.8 | 4.6 | ||
3a | Et | 3010 | 4245 | 26.5 | 2.1 | ||
1b | O | H | 1345 a | 40.9 | 5.4 | 0.9 | |
2b | Me | 560.5 | 7.0 | 19.3 | 93.5 | ||
3b | Et | 930.3 | 600.7 | 29.1 | 3.8 | ||
1c | N | H | 876 a | 165 | 6.2 | 7.5 | |
2c | Me | 6191 | 9.5 | 25.8 | 27.8 | ||
3c | Et | 716.7 | 9.5 | 47.5 | 93.1 | ||
AAZ | 250 | 12 | 25.8 | 5.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berrino, E.; Guglielmi, P.; Carta, F.; Carradori, S.; Campestre, C.; Angeli, A.; Arrighi, F.; Pontecorvi, V.; Chimenti, P.; Secci, D.; et al. In Vitro CO-Releasing and Antioxidant Properties of Sulfonamide-Based CAI-CORMs in a H2O2-Stimulated Human Achilles Tendon-Derived Cell Model. Molecules 2025, 30, 593. https://doi.org/10.3390/molecules30030593
Berrino E, Guglielmi P, Carta F, Carradori S, Campestre C, Angeli A, Arrighi F, Pontecorvi V, Chimenti P, Secci D, et al. In Vitro CO-Releasing and Antioxidant Properties of Sulfonamide-Based CAI-CORMs in a H2O2-Stimulated Human Achilles Tendon-Derived Cell Model. Molecules. 2025; 30(3):593. https://doi.org/10.3390/molecules30030593
Chicago/Turabian StyleBerrino, Emanuela, Paolo Guglielmi, Fabrizio Carta, Simone Carradori, Cristina Campestre, Andrea Angeli, Francesca Arrighi, Virginia Pontecorvi, Paola Chimenti, Daniela Secci, and et al. 2025. "In Vitro CO-Releasing and Antioxidant Properties of Sulfonamide-Based CAI-CORMs in a H2O2-Stimulated Human Achilles Tendon-Derived Cell Model" Molecules 30, no. 3: 593. https://doi.org/10.3390/molecules30030593
APA StyleBerrino, E., Guglielmi, P., Carta, F., Carradori, S., Campestre, C., Angeli, A., Arrighi, F., Pontecorvi, V., Chimenti, P., Secci, D., Supuran, C. T., & Gallorini, M. (2025). In Vitro CO-Releasing and Antioxidant Properties of Sulfonamide-Based CAI-CORMs in a H2O2-Stimulated Human Achilles Tendon-Derived Cell Model. Molecules, 30(3), 593. https://doi.org/10.3390/molecules30030593