Impact of Cooking Techniques on the Dietary Fiber Profile in Selected Cruciferous Vegetables
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Vegetable Material and Sample Preparation
3.2. Analysis of Total Dietary Fiber, Soluble Dietary Fiber, and Insoluble Dietary Fiber
- α-Amylase treatment: The sample was suspended in 40 mL of MES-TRIS buffer (pH 8.2) and treated with 50 µL of α-amylase (thermostable). The mixture was incubated at 98–100 °C for 30 min with continuous shaking to solubilize and hydrolyze starch.
- Protease treatment: After cooling to 60 °C, 100 µL of protease was added to digest proteins. The sample was incubated for 30 min at 60 °C in a shaking water bath.
- Amyloglucosidase treatment: First, 5 mL of 0.561 M HCl was added, and the pH was adjusted to 4.0–4.6 using 1 M NaOH or 1 M HCl at 60 °C. Subsequently, 300 µL of amyloglucosidase was added while continuously mixing. The flasks were covered with aluminum foil and incubated for 30 min at 60 °C in a shaking water bath to hydrolyze residual starch into glucose.
- R—mass of the residue after filtration (mg);
- P—mass of ash in the sample (mg);
- A—mass of protein in the sample (mg);
- B—mass of the blank sample residue (mg);
- m—mass of the sample (mg).
3.3. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Katagiri, R.; Goto, A.; Shimazu, T.; Yamaji, T.; Sawada, N.; Iwasaki, M.; Inoue, M.; Tsugane, S. Dietary fiber intake and risk of gastric cancer: The Japan Public Health Center based prospective study. Int. J. Cancer 2021, 148, 2664–2673. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, O.; Menkovska, M. Dietary Fibers-Classification, Properties, Analysis and Function: A Review. Adv. Biosci. Biotechnol. 2022, 13, 527–544. [Google Scholar] [CrossRef]
- Louis, P.; Flint, H.J. Formation of propionate and butyrate by the human colonic microbiota. Environ. Microbiol. 2017, 19, 29–41. [Google Scholar] [CrossRef]
- O’Grady, J.; O’Connor, E.M.; Shanahan, F. Review article: Dietary fibre in the era of microbiome science. Aliment. Pharm. Ther. 2019, 49, 506–515. [Google Scholar] [CrossRef]
- Raji, Z.; Karim, A.; Karam, A.; Khalloufi, S. A review on the heavy metal adsorption capacity of dietary fibers derived from agro-based wastes: Opportunities and challenges for practical applications in the food industry. Trends Food Sci. Technol. 2023, 137, 74–91. [Google Scholar] [CrossRef]
- Alba, K.; MacNaughtan, W.; Laws, A.P.; Foster, T.J.; Campbell, G.M.; Kontogiorgos, V. Fractionation and characterisation of dietary fibre from blackcurrant pomace. Food Hydrocolloid. 2018, 81, 398–408. [Google Scholar] [CrossRef]
- Zhong, L.; Fang, Z.; Wahlqvist, M.L.; Hodgson, J.M.; Johnson, S.K. Extrusion cooking increases soluble dietary fibre of lupin seed coat. Food Sci. Technol. 2018, 99, 547–554. [Google Scholar] [CrossRef]
- Kalmpourtzidou, A.; Eilander, A.; Talsma, E.F. Global Vegetable Intake and Supply Compared to Recommendations: A Systematic Review. Nutrients 2020, 12, 1558. [Google Scholar] [CrossRef]
- Favela-González, K.M.; Hernández-Almanza, A.Y.; De la Fuente-Salcido, N.M. The value of bioactive compounds of cruciferous vegetables (Brassica) as antimicrobials and antioxidants: A review. J. Food Biochem. 2020, 44, e13414. [Google Scholar] [CrossRef]
- Morrison, I.M.; Burrows, S.E. The fibre yield, composition and cellulase degradability of brassica cultivars and chemically treated brassica cultivars. Ind. Crops Prod. 1994, 2, 171–177. [Google Scholar] [CrossRef]
- Mandrich, L.; Caputo, E. Brassicaceae-Derived Anticancer Agents: Towards a Green Approach to Beat Cancer. Nutrients 2020, 12, 868. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, R.; Jiménez, A.; Fernández-Bolaños, J.; Guillén, R.; Heredia, A. Dietary fibre from vegetable products as source of functional ingredients. Trends Food Sci. Tech. 2006, 17, 3–15. [Google Scholar] [CrossRef]
- Ağagündüz, D.; Şahin, T.Ö.; Yılmaz, B.; Ekenci, K.D.; Duyar Özer, Ş.; Capasso, R. Cruciferous Vegetables and Their Bioactive Metabolites: From Prevention to Novel Therapies of Colorectal Cancer. Evid. Based Complement. Alternat. Med. 2022, 11, 1534083. [Google Scholar] [CrossRef] [PubMed]
- Mehmood, A.; Zeb, A. Effects of different cooking techniques on bioactive contents of leafy vegetables. Int. J. Gastron. Food Sci. 2020, 22, 100246. [Google Scholar] [CrossRef]
- Doniec, J.; Florkiewicz, A.; Duliński, R.; Filipiak-Florkiewicz, A. Impact of Hydrothermal Treatments on Nutritional Value and Mineral Bioaccessibility of Brussels Sprouts (Brassica oleracea var. gemmifera). Molecules 2022, 27, 1861. [Google Scholar] [CrossRef]
- Kapusta-Duch, J.; Kusznierewicz, B.; Leszczyńska, T.; Borczak, B. Effect of cooking on the contents of glucosinolates and their degradation products in selected Brassica vegetables. J. Funct. Food 2016, 23, 412–422. [Google Scholar] [CrossRef]
- Soares, A.; Carrascosa, C.; Raposo, A. Influence of different cooking methods on the concentration of glucosinolates and vitamin C in broccoli. Food Bioprocess Technol. 2017, 10, 1387–1411. [Google Scholar] [CrossRef]
- Hanschen, F.S.; Lamy, E.; Schreiner, M.; Rohn, S. Reactivity and stability of glucosinolates and their breakdown products in foods. Angew. Chem. 2014, 53, 11430–11450. [Google Scholar] [CrossRef]
- Wennberg, M.S.; Engqvist, G.M.; Nyman, E.M.G.-L. Effects of Boiling on Dietary Fiber Components in Fresh and Stored White Cabbage (Brassica oleracea var. capitata). J. Food Sci. 2003, 68, 1615–1621. [Google Scholar] [CrossRef]
- Hedges, L.J.; Lister, C.E. Nutritional Attributes of Brassica Vegetables; Report No.: 1618; New Zealand Institute for Crop & Food Research Limited: Christchurch, New Zealand, 2002. [Google Scholar]
- Kalala, G.; Kambashi, B.; Everaert, N.; Beckers, Y.; Richel, A.; Pachikian, B.; Neyrinck, A.M.; Delzenne, N.M.; Bindelle, J. Characterization of fructans and dietary fibre profiles in raw and steamed vegetables. Int. J. Food Sci. Nutr. 2018, 69, 682–689. [Google Scholar] [CrossRef]
- Lafarga, T.; Bobo, G.; Viñas, I.; Collazo, C.; Aguiló-Aguayo, I. Effects of thermal and non-thermal processing of cruciferous vegetables on glucosinolates and its derived forms. J. Food Sci. Techol. 2018, 55, 1973–1981. [Google Scholar] [CrossRef] [PubMed]
- Melim, C.; Lauro, M.R.; Pires, I.M.; Oliveira, P.J.; Cabral, C. The Role of Glucosinolates from Cruciferous Vegetables (Brassicaceae) in Gastrointestinal Cancers: From Prevention to Therapeutics. Pharmaceutics 2022, 14, 190. [Google Scholar] [CrossRef] [PubMed]
- Kapusta-Duch, J.; Szeląg-Sikora, A.; Sikora, J.; Niemiec, M.; Gródek-Szostak, Z.; Kuboń, M.; Leszczyńska, T.; Borczak, B. Health-Promoting Properties of Fresh and Processed Purple Cauliflower. Sustainability 2019, 11, 4008. [Google Scholar] [CrossRef]
- Khanum, F.; Swamy, M.S.; Sudarshana Krishna, K.R.; Santhanam, K.; Viswanathan, K.R. Dietary fiber content of commonly fresh and cooked vegetables consumed in India. Plant Foods Hum. Nutr. 2000, 55, 207–218. [Google Scholar] [CrossRef]
- Núñez-Gómez, V.; González-Barrio, R.; Periago, M.J. Interaction between Dietary Fibre and Bioactive Compounds in Plant By-Products: Impact on Bioaccessibility and Bioavailability. Antioxidants 2023, 12, 976. [Google Scholar] [CrossRef]
- Berndtsson, E. Content of Dietary Fibre and Phenolic Compounds in Broccoli Side Streams. Licentiate Thesis, Swedish University of Agricultural Sciences, Alnarp, Sweden, 2020. ISBN 978-91-576-9741-7. [Google Scholar]
- Ferjančič, B.; Skrt, M.; Korošec, M.; Bertoncelj, J. Comparative analysis of dietary fibre determination by AOAC 991.43 and AOAC 2011.25 for frequently consumed foods in Slovenia. Food Chem. 2022, 397, 133753. [Google Scholar] [CrossRef]
- Ozyurt, V.H.; Ötles, S. Effect of food processing on the physicochemical properties of dietary fibre. Acta Sci. Pol. Technol. Aliment. 2016, 15, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Nyman, M.; Pålsson, K.E.; Asp, N.G. Effects of Processing on Dietary Fibre in Vegetables. Eur. J. Clin. Nutr. 1995, 49, 29–36. [Google Scholar]
- Rehman, Z.; Islam, M.; Shah, W. Effect of microwave and conventional cooking on insoluble dietary fibre components of vegetables. Food Chem. 2003, 80, 237–240. [Google Scholar] [CrossRef]
- Mansour, A.; Shekib, L.; Elshimy, N.; Sharara, M. Biological Evaluation of Raw and Steamed Broccoli and Cauliflower as Sources of Dietary Fibers. J. Food Dairy. Sci. 2017, 8, 185–190. [Google Scholar] [CrossRef]
- Puupponen-Pimiä, R.; Häkkinen, S.T.; Aarni, M.; Suortti, T.; Lampi, A.M.; Eurola, M.; Piironen, V.; Nuutila, A.M.; Oksman-Caldentey, K.M. Blanching and long-term freezing affect various bioactive compounds of vegetables in different ways. J. Sci. Food Agr. 2003, 83, 1389–1402. [Google Scholar] [CrossRef]
- Yao, F.; Ma, J.; Cui, Y.; Huang, C.; Lu, R.; Hu, F.; Zhu, X.; Qin, P. Dietary intake of total vegetable, fruit, cereal, soluble and insoluble fiber and risk of all-cause, cardiovascular, and cancer mortality: Systematic review and dose–response meta-analysis of prospective cohort studies. Front. Nutr. 2023, 10, 1153165. [Google Scholar] [CrossRef] [PubMed]
- Arayici, M.E.; Mert-Ozupek, N.; Yalcin, F.; Basbinar, Y.; Ellidokuz, H. Soluble and Insoluble Dietary Fiber Consumption and Colorectal Cancer Risk: A Systematic Review and Meta-Analysis. Nutr. Cancer 2021, 74, 2412–2425. [Google Scholar] [CrossRef] [PubMed]
- McRorie, J.W., Jr.; McKeown, N.M. Understanding the Physics of Functional Fibers in the Gastrointestinal Tract: An Evidence -Based Approach to Resolving Enduring Misconceptions about Insoluble and Soluble Fiber. J. Acad. Nutr. Diet. 2017, 117, 251–264. [Google Scholar] [CrossRef] [PubMed]
- El-Salhy, M.; Ystad, S.O.; Mazzawi, T.; Gundersen, D. Dietary fiber in irritable bowel syndrome (Review). Int. J. Mol. Med. 2017, 40, 607–613. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barber, T.M.; Kabisch, S.; Pfeiffer, A.F.H.; Weickert, M.O. The Health Benefits of Dietary Fibre. Nutrients 2020, 12, 3209. [Google Scholar] [CrossRef]
- Thomson, C.; Garcia, A.L.; Edwards, C.A. Interactions between dietary fibre and the gut microbiota. Proc. Nutr. Soc. 2021, 80, 398–408. [Google Scholar] [CrossRef]
- Mudgil, D. The Interaction Between Insoluble and Soluble Fiber. In Dietary Fiber for the Prevention of Cardiovascular Disease; Samaan, R.A., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 35–59. [Google Scholar] [CrossRef]
- AOAC Official Method 991.43; Total, Soluble, and Insoluble Dietary Fiber in Foods. Enzymatic-Gravimetric Method, MES-TRIS Buffer. AOAC International: Gaithersburg, MD, USA, 2000.
- ISO 16634-1:2008; Food Products. Determination of the Total Nitrogen Content by Combustion According to the Dumas Principle and Calculation of the Crude Protein Content. International Organization for Standardization (ISO): Geneva, Switzerland, 2008.
- ISO 2171:2007; Cereals, Pulses and by-Products. Determination of Ash Yield by Incineration. International Organization for Standardization (ISO): Geneva, Switzerland, 2007.
- ISO 712:2010; Cereals and Cereal Products. Determination of the Moisture Content. Gravimetric Method. International Organization for Standardization (ISO): Geneva, Switzerland, 2010.
- R Foundation for Statistical Computing. R Core Team: A language and Environment for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 2 June 2024).
Parameter | Vegetable | Type of Processing | Linear Mixed Models | |||||
---|---|---|---|---|---|---|---|---|
Raw | Steam Cooking | Water Cooking | Steam Cooking vs. Raw | Water Cooking vs. Raw | Water Cooking vs. Steam Cooking | |||
Total dietary fiber (DF) | Broccoli | SD | 38.72 ± 0.26 | 36.81 ± 0.4 | 39.7 ± 0.17 | p < 0.001 * | p < 0.001 * | p < 0.001 * |
Brussels sprouts | SD | 39.21 ± 0.51 | 38.8 ± 0.33 | 38.39 ± 0.09 | p = 0.059 | p = 0.001 * | p = 0.004 * | |
White cauliflower | SD | 33.93 ± 2.49 | 34.81 ± 0.02 | 36.21 ± 0.27 | p = 0.291 | p = 0.017 * | p < 0.001 * | |
Insoluble dietary fiber (IDF) | Broccoli | SD | 36.23 ± 0.17 | 26.38 ± 0.58 | 26.1 ± 0.09 | p < 0.001 * | p < 0.001 * | p = 0.162 |
Brussels sprouts | SD | 35.22 ± 0.20 | 27.17 ± 0.14 | 28.09 ± 0.85 | p < 0.001 * | p < 0.001 * | p = 0.007 * | |
White cauliflower | SD | 31.68 ± 2.17 | 24.52 ± 1.86 | 24.73 ± 1.34 | p < 0.001 * | p < 0.001 * | p = 0.786 | |
Soluble dietary fiber (SDF) | Broccoli | SD | 2.49 ± 0.26 | 10.43 ± 0.99 | 13.61 ± 0.08 | p < 0.001 * | p < 0.001 * | p < 0.001 * |
Brussels sprouts | SD | 3.99 ± 0.32 | 11.63 ± 0.47 | 10.31 ± 0.94 | p < 0.001 * | p < 0.001 * | p = 0.003 * | |
White cauliflower | SD | 2.21 ± 0.26 | 10.29 ± 1.84 | 11.48 ± 1.61 | p < 0.001 * | p < 0.001 * | p = 0.153 |
Parameter | Process | Linear Mixed Models | |||||
---|---|---|---|---|---|---|---|
Raw | Steam Cooking | Water Cooking | Steam Cooking vs. Raw | Water Cooking vs. Raw | Water Cooking vs. Steam Cooking | ||
Total dietary fiber (DF) | ± SD | 37.29 ± 2.85 | 36.81 ± 1.8 | 38.1 ± 1.59 | p = 0.825 | p = 0.7 | p = 0.447 |
Insoluble dietary fiber (IDF) | ± SD | 34.38 ± 2.35 | 26.02 ± 1.5 | 26.3 ± 1.67 | p = 0.006 * | p = 0.009 * | p = 0.834 |
Soluble dietary fiber (SDF) | ± SD | 2.9 ± 0.89 | 10.78 ± 1.16 | 11.8 ± 1.71 | p < 0.001 * | p = 0.001 * | p = 0.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowak, K.; Rohn, S.; Halagarda, M. Impact of Cooking Techniques on the Dietary Fiber Profile in Selected Cruciferous Vegetables. Molecules 2025, 30, 590. https://doi.org/10.3390/molecules30030590
Nowak K, Rohn S, Halagarda M. Impact of Cooking Techniques on the Dietary Fiber Profile in Selected Cruciferous Vegetables. Molecules. 2025; 30(3):590. https://doi.org/10.3390/molecules30030590
Chicago/Turabian StyleNowak, Karolina, Sascha Rohn, and Michał Halagarda. 2025. "Impact of Cooking Techniques on the Dietary Fiber Profile in Selected Cruciferous Vegetables" Molecules 30, no. 3: 590. https://doi.org/10.3390/molecules30030590
APA StyleNowak, K., Rohn, S., & Halagarda, M. (2025). Impact of Cooking Techniques on the Dietary Fiber Profile in Selected Cruciferous Vegetables. Molecules, 30(3), 590. https://doi.org/10.3390/molecules30030590