Facile Growing of Ni-MOFs on Ni Foam by Self-Dissociation Strategy for Electrochemical Energy Storage
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, W.; Li, W.; Li, S. Self-template activated carbons for aqueous supercapacitors. Sustain. Mater. Technol. 2023, 36, 00582. [Google Scholar] [CrossRef]
- Liang, Z.; Shen, J.; Xu, X.; Li, F.; Liu, J.; Yuan, B.; Yu, Y.; Zhu, M. Advances in the development of single-atom catalysts for high-energy-density lithium-sulfur batteries. Adv. Mater. 2022, 34, 2200102. [Google Scholar] [CrossRef]
- Zhang, L.; Qin, X.; Zhao, S.; Wang, A.; Luo, J.; Wang, Z.L.; Kang, F.; Lin, Z.; Li, B. Advanced matrixes for binder-free nanostructured electrodes in lithium-ion batteries. Adv. Mater. 2020, 32, 1908445. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Yuan, K.; Chen, Y. Wide voltage aqueous asymmetric supercapacitors: Advances, strategies, and challenges. Adv. Funct. Mater. 2022, 32, 2108107. [Google Scholar] [CrossRef]
- Shi, X.; Zheng, S.; Wu, Z.S.; Bao, X. Recent advances of graphene-based materials for high-performance and new-concept supercapacitors. J. Energy Chem. 2018, 27, 25–42. [Google Scholar] [CrossRef]
- Jiang, L.; Sheng, L.; Fan, Z. Biomass-derived carbon materials with structural diversities and their applications in energy storage. Sci. China Mater. 2018, 61, 133–158. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Q.; Bai, T.; Wang, W.; He, F.; Ye, M. Nickel and cobalt sulfide-based nanostructured materials for electrochemical energy storage devices. Chem. Eng. J. 2021, 409, 127237. [Google Scholar] [CrossRef]
- Sreejesh, M.; Dhanush, S.; Rossignol, F.; Nagaraja, H.S. Microwave assisted synthesis of rGO/ZnO composites for non-enzymatic glucose sensing and supercapacitor applications. Ceram. Int. 2017, 43, 4895–4903. [Google Scholar] [CrossRef]
- Zhai, T.; Wan, L.; Sun, S.; Chen, Q.; Sun, J.; Xia, Q.; Xia, H. Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudocapacitors. Adv. Mater. 2017, 29, 1604167. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Musharavati, F.; Zalenezhad, E.; Chen, X.; Hui, K.N.; Hui, K.S. Electrodeposited Ni-Co layered double hydroxides on titanium carbide as a binder-free electrode for supercapacitors. Electrochim. Acta. 2018, 261, 178–187. [Google Scholar] [CrossRef]
- Lee, D.; Mathur, S.; Kim, K.H. Bilayered NiZn(CO3)(OH)2-Ni2(CO3)(OH)2 nanocomposites as positive electrode for supercapacitors. Nano Energy 2021, 86, 106076. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, G.; Sun, S.; Xu, B.; Zhou, J.; Zhang, Y.; Yao, J. Decoration of carbon nanofibers with NiCo2S4 nanoparticles for flexible asymmetric supercapacitors. J. Alloys Compd. 2018, 731, 560–568. [Google Scholar] [CrossRef]
- Zhao, W.; Zheng, Y.; Cui, L.; Jia, D.; Wei, D.; Zheng, R.; Barrow, C.; Yang, W.; Liu, J. MOF derived Ni-Co-S nanosheets on electrochemically activated carbon cloth via an etching/ion exchange method for wearable hybrid supercapacitors. Chem. Eng. J. 2019, 371, 461–469. [Google Scholar] [CrossRef]
- Zhang, X.; Tian, Y.; Lu, W.; Yang, S.; Qu, N.; Zhang, Q.; Lei, D.; Liu, A. Design of oxygen-doped Co3S4 hollow nanosheets by suppressed sulfurization for supercapacitors. Chemelectrochem 2021, 8, 3629–3636. [Google Scholar] [CrossRef]
- Yang, B.; Li, B.; Xiang, Z. Advanced MOF-based electrode materials for supercapacitors and electrocatalytic oxygen reduction. Nano Res. 2022, 16, 1338–1361. [Google Scholar] [CrossRef]
- Zheng, S.; Zhou, H.; Xue, H.; Braunstein, P.; Pang, H. Pillared-layer Ni-MOF nanosheets anchored on Ti3C2 MXene for enhanced electrochemical energy storage. J. Colloid Interface Sci. 2022, 614, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, S.; Lu, W.; Lei, D.; Tian, Y.; Guo, M.; Mi, P.; Qu, N.; Zhao, Y. MXenes induced formation of Ni-MOF microbelts for high-performance supercapacitors. J. Colloid Interface Sci. 2021, 592, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Bai, Y.L.; Xu, J.; Zhao, H.; Zhang, L.; Li, X.; Zhang, J. Advanced metal-organic frameworks (MOFs) and their derived electrode materials for supercapacitors. J. Power Sources 2018, 402, 281–295. [Google Scholar] [CrossRef]
- Gao, X.; Dong, Y.; Li, S.W.; Zhou, J.W.; Wang, L.; Wang, B. MOFs and COFs for Batteries and Supercapacitors. Electrochem. Energy Rev. 2020, 3, 81–126. [Google Scholar] [CrossRef]
- Liu, X.; Shi, C.; Zhai, C.; Cheng, M.; Liu, Q.; Wang, G. Cobalt-based layered metal-organic framework as an ultrahigh capacity supercapacitor electrode material. ACS Appl. Mater. Interfaces 2016, 8, 4585–4591. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Chen, D.; Quan, H.; Zou, R.; Wang, W.; Luo, X.; Guo, L. Fabrication of hierarchical porous metal-organic framework electrode for aqueous asymmetric supercapacitor. ACS Sustain. Chem. Eng. 2017, 5, 4144–4153. [Google Scholar] [CrossRef]
- Rong, H.R.; Song, P.; Gao, G.X.; Jiang, Q.Y.; Chen, X.J.; Su, L.X.; Liu, W.L.; Liu, Q. A three-dimensional Mn-based MOF as a high-performance supercapacitor electrode. Dalton Trans. 2023, 52, 1962–1969. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.W.; Sui, Y.W.; Wei, F.X.; Qi, J.Q.; Meng, Q.K.; He, Y.Z. Facile synthesis of cuboid Ni-MOF for high-performance supercapacitors. J. Mater. Sci. Lett. 2018, 53, 6807–6818. [Google Scholar] [CrossRef]
- Zhou, Y.J.; Mao, Z.M.; Wang, W.; Yang, Z.K.; Liu, X. In-Situ Fabrication of Graphene Oxide Hybrid Ni-Based Metal-Organic Framework (Ni-MOFs@GO) with Ultrahigh Capacitance as Electrochemical Pseudocapacitor Materials. ACS Appl. Mater. Interfaces 2016, 8, 28904–28916. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, S.; Elanthamilan, E.; Evangeline, J.N.I.; Sharmila, L.; Princy, M.J. Enhanced electrochemical behaviour of Co-MOF/PANI composite electrode for supercapacitors. Inorganica Chim. Acta 2020, 502, 119393. [Google Scholar]
- Pan, Y.; Han, Y.H.; Chen, Y.J.; Li, D.; Tian, Z.; Guo, L.; Wang, Y.Z. Benzoic acid-modified 2D Ni-MOF for high-performance supercapacitors. Electrochim. Acta 2022, 403, 139679. [Google Scholar] [CrossRef]
- Chu, X.; Meng, F.; Deng, T.; Lu, Y.; Bondarchuk, O.; Sui, M.; Feng, M.; Li, H.; Zhang, W. Mechanistic insight into bimetallic CoNi-MOF arrays with enhanced performance for supercapacitors. Nanoscale 2020, 12, 5669–5677. [Google Scholar] [CrossRef]
- Liu, X.J.; Zhang, X.L.; Liu, R.M.; Li, C.P.; Xu, C.Y.; Ding, H.H.; Xing, T.; Dai, Z.R.; Zhu, X.D. A Ni-doped Mn-MOF decorated on Ni-foam as an electrode for high-performance supercapacitors. J. Nanoparticle Res. 2022, 24, 23. [Google Scholar] [CrossRef]
- Wei, X.; Li, N.; Liu, N. Ultrathin NiFeZn-MOF nanosheets containing few metal oxide nanoparticles grown on nickel foam for efficient oxygen evolution reaction of electrocatalytic water splitting. Electrochim. Acta 2019, 318, 957–965. [Google Scholar] [CrossRef]
- Tang, P.P.; Lin, X.; Yin, H.; Zhang, D.X.; Wen, H.; Wang, J.J.; Wang, P. Hierarchically nanostructured nickel-cobalt alloy supported on nickel foam as a highly efficient electrocatalyst for hydrazine oxidation. ACS Sustain. Chem. Eng. 2020, 8, 16583–16590. [Google Scholar] [CrossRef]
- Zhang, X.; Qu, N.; Fan, Q.Y.; Yang, H. Surface functionalization of graphene oxide with DBU as electrode materials for supercapacitors. Mater. Res. Express 2019, 6, 085606. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, Q.Y.; Liu, S.; Qu, N.; Yang, H.; Wang, M.; Yang, J. A facile fabrication of 1D/2D nanohybrids composed of NiCo-hydroxide nanowires and reduced graphene oxide for high-performance asymmetric supercapacitors. Inorg. Chem. Front. 2020, 7, 204–211. [Google Scholar] [CrossRef]
- Yue, L.; Chen, L.; Wang, X.; Lu, D.; Zhou, W.; Shen, D.; Yang, Q.; Xiao, S.; Li, Y. Ni/Co-MOF@aminated MXene hierarchical electrodes for high-stability supercapacitors. Chem. Eng. J. 2023, 451, 138687. [Google Scholar] [CrossRef]
- Zhang, X.; Qu, N.; Yang, S.X.; Fan, Q.Y.; Lei, D.; Liu, A.M.; Chen, X. Shape-controlled synthesis of Ni-based metal-organic frameworks with albizia flower-like spheres@nanosheets structure for high performance supercapacitors. J. Colloid Interface Sci. 2020, 575, 347–355. [Google Scholar] [CrossRef]
- Zhao, S.; Zeng, L.; Cheng, G.; Yu, L.; Zeng, H. Ni/Co-based metal-organic frameworks as electrode material for high performance supercapacitors. Chin. Chem. Lett. 2019, 30, 605–609. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Liu, N.; Yu, C.; Lee, S.J.; Zhou, S.; Fu, R.; Yang, J.; Guo, W.; Huang, H.; et al. Operando revealing dynamic reconstruction of NiCo carbonate hydroxide for high-rate energy storage. Joule 2020, 4, 673–687. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, W.; Tian, Y.H.; Yang, S.X.; Zhang, Q.; Lei, D.; Zhao, Y.Y. Nanosheet-assembled NiCo-LDH hollow spheres as high-performance electrodes for supercapacitors. J. Colloid. Interface Sci. 2022, 606, 1120–1127. [Google Scholar] [CrossRef]
- Gao, S.; Sui, Y.; Wei, F.; Qi, J.; Meng, Q.; Ren, Y.; He, Y. Dandelion-like nickel/cobalt metal-organic framework based electrode materials for high performance supercapacitors. J. Colloid Interface Sci. 2018, 531, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Luo, Y.; Ma, J.; Li, B.; Xue, H.; Pang, H. Facile synthesis of vanadium metal-organic frameworks for high-performance supercapacitors. Small 2018, 14, 1801815. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Ban, X.H.; Wang, Q.; Cheng, K.; Zhu, K.; Ye, K.; Wang, G.L.; Cao, D.X.; Yan, J. Anionic P-substitution toward ternary Ni-S-P nanoparticles immobilized graphene with ultrahigh rate and long cycle life for hybrid supercapacitors. J. Mater. Chem. A 2019, 7, 24374–24388. [Google Scholar] [CrossRef]
- Wang, J.W.; Ma, Y.X.; Kang, X.Y.; Yang, H.J.; Liu, B.L.; Li, S.S.; Zhang, X.D.; Ran, F. A novel moss-like 3D Ni-MOF for high performance supercapacitor electrode material. J. Solid State Chem. 2022, 309, 122994. [Google Scholar] [CrossRef]
- Du, P.C.; Dong, Y.N.; Liu, C.; Wei, W.L.; Liu, D.; Liu, P. Fabrication of hierarchical porous nickel based metal-organic framework (Ni-MOF) constructed with nanosheets as novel pseudo-capacitive material for asymmetric supercapacitor. J. Colloid Interface Sci. 2018, 518, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Wei, W.; Zhang, M.J.; Jiao, S.; Shi, Y.C.; Ding, S.J. Facile Surface Properties Engineering of High-Quality Graphene: Toward Advanced Ni-MOF Heterostructures for High-Performance Supercapacitor Electrode. ACS Appl. Energy Mater. 2019, 2, 2169. [Google Scholar] [CrossRef]
- Zheng, W.; Sun, S.; Xu, Y.; Yu, R.; Li, H. Sulfidation of Hierarchical NiAl-LDH/Ni-MOF Composite for High-Performance Supercapacitor. Chemelectrochem 2019, 6, 3375–3382. [Google Scholar] [CrossRef]
- Nanda, O.P.; Ravipati, M.; Durai, L.; Badhulika, S. Ni-Metal organic framework nanosheets and Ni3C/biomass porous carbon composite based long cycle life asymmetric supercapacitor. Mater. Res. Bull. 2023, 168, 112488. [Google Scholar] [CrossRef]
- Liang, R.; Du, Y.; Lin, J.; Chen, J.; Xiao, P. Facile-Synthesized Ni-Metal-Organic Framework/Nano Carbon Electrode Material for High-Performance Supercapacitors. Energy Fuels 2022, 36, 7115–7120. [Google Scholar] [CrossRef]
- Hang, X.X.; Yang, R.; Xue, Y.D.; Zheng, S.S.; Shan, Y.Y.; Du, M.; Zhao, J.W.; Pang, H. The introduction of cobalt element into nickel-organic framework for enhanced supercapacitive performance. Chin. Chem. Lett. 2023, 34, 107787. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Li, Y.; Song, S.; Tian, Y.; Feng, B.; Li, B.; Liu, Z.; Zhang, X. Facile Growing of Ni-MOFs on Ni Foam by Self-Dissociation Strategy for Electrochemical Energy Storage. Molecules 2025, 30, 513. https://doi.org/10.3390/molecules30030513
Li H, Li Y, Song S, Tian Y, Feng B, Li B, Liu Z, Zhang X. Facile Growing of Ni-MOFs on Ni Foam by Self-Dissociation Strategy for Electrochemical Energy Storage. Molecules. 2025; 30(3):513. https://doi.org/10.3390/molecules30030513
Chicago/Turabian StyleLi, Hongmei, Yang Li, Shuxian Song, Yuhan Tian, Bo Feng, Boru Li, Zhiqing Liu, and Xu Zhang. 2025. "Facile Growing of Ni-MOFs on Ni Foam by Self-Dissociation Strategy for Electrochemical Energy Storage" Molecules 30, no. 3: 513. https://doi.org/10.3390/molecules30030513
APA StyleLi, H., Li, Y., Song, S., Tian, Y., Feng, B., Li, B., Liu, Z., & Zhang, X. (2025). Facile Growing of Ni-MOFs on Ni Foam by Self-Dissociation Strategy for Electrochemical Energy Storage. Molecules, 30(3), 513. https://doi.org/10.3390/molecules30030513