Contemporary Synthetic Glycoscience: A Theme Issue Dedicated to the Memory of Hans Paulsen
Funding
Conflicts of Interest
References
- Hakomori, S. Tumor-associated carbohydrate antigens. Annu. Rev. Immunol. 1984, 2, 103–126. [Google Scholar] [CrossRef]
- Duan, S.; Paulson, J.C. Siglecs as Immune Cell Checkpoints in Disease. Annu. Rev. Immunol. 2020, 38, 365–395. [Google Scholar] [CrossRef]
- Smith, B.A.H.; Bertozzi, C.R. The clinical impact of glycobiology: Targeting selectins, Siglecs and mammalian glycans. Nat. Rev. Drug Discov. 2021, 20, 217–243. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.I.; Lee, H.Y.; Chang, S.H.; Wang, C.H.; Tu, Y.C.; Lin, Y.C.; Hwang, D.R.; Wu, C.Y.; Wong, C.H. Effective sugar nucleotide regeneration for the large-scale enzymatic synthesis of Globo H and SSEA4. J. Am. Chem. Soc. 2013, 135, 14831–14839. [Google Scholar] [CrossRef]
- Liao, K.-S.; Zhou, Y.; Chung, C.; Kung, C.-C.; Ren, C.-T.; Wu, C.-Y.; Lou, Y.-W.; Chuang, P.-K.; Imre, B.; Hsieh, Y.S.Y.; et al. Chemical and Enzymatic Synthesis of DisialylGb5 and Other Sialosides for Glycan Array Assembly and Evaluation of Siglec-Mediated Immune Checkpoint Inhibition. Molecules 2025, 30, 2264. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, H.P. Cardiac glycosides. In Naturally Occurring Glycosides; Ikan, R., Ed.; John Wiley & Sons Ltd.: New York, NY, USA, 1999; p. 83. [Google Scholar]
- Botelho, A.F.M.; Pierezan, F.; Soto-Blanco, B.; Melo, M.M. A review of cardiac glycosides: Structure, toxicokinetics, clinical signs, diagnosis and antineoplastic potential. Toxicon 2019, 158, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Shang, C.; Meng, T.; Lou, W. Anticancer potential of cardiac glycosides and steroid-azole hybrids. Steroids 2021, 171, 108852. [Google Scholar] [CrossRef]
- Liu, B.; Bi, S.; Wang, J.; Xu, P.; Yu, B. Synthesis of acovenosides: Cardiac glycosides with potent antitumor activities. Org. Lett. 2024, 26, 8725–8729. [Google Scholar] [CrossRef]
- Liu, B.; Xu, P.; Yu, B. Total Synthesis of Cardenolides Acospectoside A and Acovenoside B. Molecules 2025, 30, 2297. [Google Scholar] [CrossRef]
- Hakomori, S.I. Structure and function of glycosphingolipids and sphingolipids: Recollections and future trends. Biochim. Biophys. Acta 2008, 1780, 325–346. [Google Scholar] [CrossRef]
- Guo, Z. The structural diversity of natural glycosphingolipids (GSLs). J. Carbohydr. Chem. 2022, 41, 63–154. [Google Scholar] [CrossRef] [PubMed]
- Ando, H.; Komura, N. Recent progress in the synthesis of glycosphingolipids. Curr. Opin. Chem. Biol. 2024, 78, 102423. [Google Scholar] [CrossRef]
- Wennekes, T.; van den Berg, R.J.; Boot, R.G.; van der Marel, G.A.; Overkleeft, H.S.; Aerts, J.M. Glycosphingolipids—Nature, function, and pharmacological modulation. Angew. Chem. Int. Ed. Engl. 2009, 48, 8848–8869. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, B.; Rohokale, R.; Yan, X.; Ghanim, A.M.; Osman, N.A.; Abdel-Fattah, H.A.; Guo, Z. Synthesis of Azide-Labeled β-Lactosylceramide Analogs Containing Different Lipid Chains as Useful Glycosphingolipid Probes. Molecules 2025, 30, 2667. [Google Scholar] [CrossRef] [PubMed]
- Maudlin, I.; Weber, S. The Control of Neglected Zoonotic Diseases: A Route to Poverty Alleviation; WHO/SDE/FOS/2006.1; World Health Organization: Geneva, Switzerland, 2006; p. 83. [Google Scholar]
- Corbel, M.J. Brucellosis in Humans and Animals; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Ganesh, N.V.; Sadowska, J.M.; Sarkar, S.; Howells, L.; McGiven, J.; Bundle, D.R. Molecular recognition of Brucella A and M antigens dissected by synthetic oligosaccharide glycoconjugates leads to a disaccharide diagnostic for brucellosis. J. Am. Chem. Soc. 2014, 136, 16260–16269. [Google Scholar] [CrossRef]
- Sood, A.; Bundle, D.R.; Woods, R.J. Towards Understanding the Basis of Brucella Antigen–Antibody Specificity. Molecules 2025, 30, 2906. [Google Scholar] [CrossRef]
- Koenigs, W.; Knorr, E. Ueber einige Derivate des Traubenzuckers und der Galactose. Ber. Deutsch. Chem. Ges. 1901, 34, 957–981. [Google Scholar] [CrossRef]
- Paulsen, H. Advances in selective chemical syntheses of complex oligosaccharides. Angew. Chem. Int. Ed. Engl. 1982, 21, 155–173. [Google Scholar] [CrossRef]
- Demchenko, A.V.; De Meo, C. The 4K reaction. Carbohydr. Res. 2024, 538, 109102. [Google Scholar] [CrossRef]
- Dent, A.R.; DeSpain, A.M.; Demchenko, A.V. Cooperatively Catalyzed Activation of Thioglycosides with Iodine and Iron(III) Trifluoromethane-sulfonate. Molecules 2025, 30, 3058. [Google Scholar] [CrossRef]
- Fares, M.; Imberty, A.; Titz, A. Bacterial Lectins: Multifunctional Tools in Pathogenesis and Possible Drug Targets. Trends Microbiol. 2025, 33, 839–852. [Google Scholar] [CrossRef] [PubMed]
- Müller, C.; Despras, G.; Lindhorst, T.K. Organizing Multivalency in Carbohydrate Recognition. Chem. Soc. Rev. 2016, 45, 3275–3302. [Google Scholar] [CrossRef]
- Jaeschke, S.O.; vom Sondern, I.; Lindhorst, T.K. Bivalent Inhibitors of Mannose-Specific Bacterial Adhesion: A Xylose-Based Conformational Switch to Control Glycoligand Distance. Molecules 2025, 30, 3074. [Google Scholar] [CrossRef]
- Ledeen, R.; Wu, G. Gangliosides of the nervous system. Methods Mol. Biol. 2018, 1804, 19–55. [Google Scholar] [PubMed]
- Furukawa, K.; Takamiya, K.; Furukawa, K. Beta 1,4-N-acetylgalactosaminyltransferase-GM2/GD2 synthase: A key enzyme to control the synthesis of brain-enriched complex gangliosides. Biochim. Biophys. Acta 2002, 1573, 356–362. [Google Scholar] [CrossRef]
- Abidi, I.; Kocev, A.N.; Babulic, J.L.; Capicciotti, C.J.; Walia, J.; Brockhausen, I. Characterization of Human Recombinant β1,4-GalNAc-Transferase B4GALNT1 and Inhibition by Selected Compounds. Molecules 2025, 30, 3615. [Google Scholar] [CrossRef]
- Ratner, D.M.; Adams, E.W.; Disney, M.D.; Seeberger, P.H. Tools for glycomics: Mapping interactions of carbohydrates in biological systems. ChemBioChem 2004, 15, 1375–1383. [Google Scholar] [CrossRef]
- Varki, A. Biological roles of oligosaccharides: All of the theories are correct. Glycobiology 1993, 3, 97–130. [Google Scholar] [CrossRef]
- Haltiwanger, R.S.; Lowe, J.B. Role of Glycosylation in Development. Annu. Rev. Biochem. 2004, 73, 491–537. [Google Scholar] [CrossRef]
- Ohtsubo, K.; Marth, J.D. Glycosylation in cellular mechanisms of health and disease. Cell 2006, 126, 855–867. [Google Scholar] [CrossRef] [PubMed]
- Simanek, E.E.; McGarvey, G.J.; Jablonowski, J.A.; Wong, C.-H. Selectin minus sign Carbohydrate Interactions: From Natural Ligands to Designed Mimics. Chem. Rev. 1998, 98, 833–862. [Google Scholar] [CrossRef]
- Kopitzki, S.; Thiem, J. Synthesis and Characterization of Glyco-SAMs on Gold Nanoparticles: A Modular Approach Towards Glycan-Based Recognition Studies. Molecules 2025, 30, 3765. [Google Scholar] [CrossRef]
- Di Lorenzo, F.; Duda, K.A.; Lanzetta, R.; Silipo, A.; De Castro, C.; Molinaro, A. A Journey from Structure to Function of Bacterial Lipopolysaccharides. Chem. Rev. 2022, 122, 15767–15821. [Google Scholar] [CrossRef]
- Raetz, C.R.H.; Whitfield, C. Lipopolysaccharide Endotoxins. Annu. Rev. Biochem. 2002, 71, 635–700. [Google Scholar] [CrossRef]
- Kenneth, D.; Santi, C.M.; Tanda, F.; Izzo, A.; Civera, M.; D’Orazio, G.; Lay, L. Synthesis and Docking Studies of Glycolipids Inspired by Bacteroides fragilis Lipid A. Molecules 2025, 30, 3927. [Google Scholar] [CrossRef]
- Schauer, R.; Kamerling, J.P. Exploration of the sialic acid world. Adv. Carbohydr. Chem. Biochem. 2018, 75, 1–213. [Google Scholar] [PubMed]
- Harrison, L.H.; Trotter, C.L.; Ramsay, M.E. Global epidemiology of meningococcal disease. Vaccine 2009, 27 (Suppl. 2), B51–B63. [Google Scholar] [CrossRef] [PubMed]
- Zbiral, E.; Schreiner, E.; Christian, R. Synthesis of the 4-acetamido-4-deoxy analogue of N-acetylneuraminic acid and its behaviour towards CMP-sialate synthase. Carbohydr. Res. 1989, 194, c15–c18. [Google Scholar] [CrossRef]
- Mayer, M.; Meyer, B. Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew. Chem. Int. Ed. Engl. 1999, 38, 1784–1788. [Google Scholar] [CrossRef]
- Meyer, B.; Peters, T. NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew. Chem. Int. Ed. Engl. 2003, 42, 864–890. [Google Scholar] [CrossRef] [PubMed]
- Chopra, P.; Führing, J.; Ng, P.; Haselhorst, T.; Dyason, J.C.; Rose, F.J.; Thomson, R.J.; Gerardy-Schahn, R.; Grice, I.D.; Jennings, M.P.; et al. Exploring the Scope of Functionalized N-Acylneuraminic Acid β-Methyl Glycosides as Inhibitors of Neisseria meningitidis CMP-Sialic Acid Synthetase. Molecules 2025, 30, 4329. [Google Scholar] [CrossRef]
- Queneau, Y.; Jarosz, S.; Lewandowski, B.; Fitremann, J. Sucrose chemistry and applications of sucrochemicals. Adv. Carbohydr. Chem. Biochem. 2008, 61, 217–292. [Google Scholar]
- Jarosz, S.; Pakulski, Z. The roadmap for sucrose—A very inexpensive raw product. Adv. Carbohydr. Chem. Biochem. 2024, 86, 1–13. [Google Scholar] [PubMed]
- Jarosz, S.; Pakulski, Z. Sucrose-Based Macrocycles: An Update. Molecules 2025, 30, 2721. [Google Scholar] [CrossRef]
- Fivenson, E.M.; Dubois, L.; Bernhardt, T.G. Co-Ordinated Assembly of the Multilayered Cell Envelope of Gram-Negative Bacteria. Curr. Opin. Microbiol. 2024, 79, 102479. [Google Scholar] [CrossRef] [PubMed]
- Ribet, D.; Cossart, P. How Bacterial Pathogens Colonize Their Hosts and Invade Deeper Tissues. Microbes Infect. 2015, 17, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Cescutti, P. Bacterial Capsular Polysaccharides and Exopolysaccharides. In Microbial Glycobiology; Holst, O., Brennan, P.J., von Itzstein, M., Moran, A.P., Eds.; Academic Press: San Diego, CA, USA, 2010; pp. 93–108. [Google Scholar]
- Khatuntseva, E.A.; Nifantiev, N.E. Glycoconjugate Vaccines for Prevention of Haemophilus Influenzae Type b Diseases. Russ. J. Bioorg. Chem. 2021, 47, 26–52. [Google Scholar] [CrossRef]
- Khatuntseva, E.A.; Kamneva, A.A.; Yashunsky, D.V.; Nifantiev, N.E. Synthesis Immunogenicity of Pseudo-Oligosaccharides Structurally Related to Repeating Units of Capsular Phosphoglycans of Human Pathogens. Molecules 2025, 30, 3068. [Google Scholar] [CrossRef]
- Brockhausen, I. Hans Paulsen: Contributions to the Investigations of Glycoprotein Biosynthesis. Molecules 2025, 30, 3735. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thiem, J. Contemporary Synthetic Glycoscience: A Theme Issue Dedicated to the Memory of Hans Paulsen. Molecules 2025, 30, 4617. https://doi.org/10.3390/molecules30234617
Thiem J. Contemporary Synthetic Glycoscience: A Theme Issue Dedicated to the Memory of Hans Paulsen. Molecules. 2025; 30(23):4617. https://doi.org/10.3390/molecules30234617
Chicago/Turabian StyleThiem, Joachim. 2025. "Contemporary Synthetic Glycoscience: A Theme Issue Dedicated to the Memory of Hans Paulsen" Molecules 30, no. 23: 4617. https://doi.org/10.3390/molecules30234617
APA StyleThiem, J. (2025). Contemporary Synthetic Glycoscience: A Theme Issue Dedicated to the Memory of Hans Paulsen. Molecules, 30(23), 4617. https://doi.org/10.3390/molecules30234617