Citric Acid Extraction Impact on Chemical and Bioavailable Forms of Metals in Soil
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Methodology
- FI—metal concentration in exchangeable fraction,
- FII—metal concentration in reducible fraction,
- ΣFi—the total concentration of the metal (sum of all BCR fractions).
2.2. Statistical Analyses
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CA | Citric acid |
| TS | Total solids |
| FS | Fixed solids |
| VS | Volatile solids |
| AAS | Atomic absorption spectrometry |
| RAC | Risk Assessment Code |
| PCA | Principal component analysis |
References
- Chen, H.; Gao, Y.; Dong, H.; Sarkar, B.; Song, H.; Li, J.; Bolan, N.; Quin, B.F.; Yang, X.; Li, F.; et al. Chitin and crawfish shell biochar composite decreased heavy metal bioavailability and shifted rhizosphere bacterial community in an arsenic/lead co-contaminated soil. Environ. Int. 2023, 176, 107989. [Google Scholar] [CrossRef]
- Giri, S.; Singh, A.K. Spatial distribution of metal(loid)s in groundwater of a mining dominated area: Recognising metal(loid) sources and assessing carcinogenic and non-carcinogenic human health risk. Int. J. Environ. Anal. Chem. 2016, 96, 1313–1330. [Google Scholar] [CrossRef]
- Chen, H.; Feng, Y.; Yang, X.; Yang, B.; Biony, S.; Bolan, N.S.; Meng, J.; Wong, J.W.C.; Wu, F.; Chen, W.; et al. Assessing simultaneous immobilization of lead and improvement of phosphorus availability through application of phosphorus-rich biochar in a contaminated soil: A pot experiment. Chemosphere 2022, 296, 133891. [Google Scholar] [CrossRef] [PubMed]
- Gul, I.; Manzoor, M.; Kallerhoff, J.; Arshad, M. Enhanced phytoremediation of lead by soil applied organic and inorganic amendments: Pb phytoavailability, accumulation and metal recovery. Chemosphere 2020, 258, 127405. [Google Scholar] [CrossRef] [PubMed]
- Jaskulak, M.; Grobelak, A.; Vandenbulcke, F. Effects of sewage sludge supplementation on heavy metal accumulation and the expression of ABC transporters in Sinapis alba L. during assisted phytoremediation of contaminated sites. Ecotoxicol. Environ. Saf. 2020, 197, 110606. [Google Scholar] [CrossRef]
- Toth, G.; Hermann, T.; Szatmari, G.; Pasztor, L. Maps of heavy metals in the soils of the European Union and proposed priority areas for detailed assessment. Sci. Total Environ. 2016, 565, 1054–1062. [Google Scholar] [CrossRef]
- Rinklebe, J.; Shaheen, S.M. Assessing the mobilization of cadmium, lead, and nickel using a seven-step sequential extraction technique in contaminated floodplain soil profiles along the Central Elbe River, Germany. Water Air Soil Pollut. 2014, 225, 2039. [Google Scholar] [CrossRef]
- Nowack, B.; Schulin, R.; Luster, J. Metal fractionation in a contaminated soil after reforestation: Temporal changes versus spatial variability. Environ. Pollut. 2010, 158, 3272–3278. [Google Scholar] [CrossRef]
- Wijayawardena, M.A.A.; Yan, K.; Liu, Y.; Naidu, R. Can the mouse model successfully predict mixed metal(loid)s bioavailability in humans from contaminated soils? Chemosphere 2023, 311, 137113. [Google Scholar] [CrossRef]
- Setia, R.; Dhaliwal, S.S.; Singh, R.; Kumar, V.; Taneja, S.; Kukal, S.S.; Pateriya, B. Impact assessment of metal contamination in surface water of Sutlej River (India) on human health risks. Environ. Pollut. 2020, 265, 114907. [Google Scholar] [CrossRef] [PubMed]
- Zuo, T.-T.; Li, Y.-L.; Wang, Y.; Guo, Y.-S.; Shen, M.-R.; Yu, J.-D.; Li, J.; Jin, H.-Y.; Wei, F.; Ma, S.-C. Distribution, speciation, bioavailability, risk assessment, and limit standards of heavy metals in Chinese herbal medicines. Pharmacol. Res.–Mod. Chin. Med. 2023, 6, 100218. [Google Scholar] [CrossRef]
- Ahmad, H.R.; Mehmood, K.; Sardar, M.F.; Maqsood, M.A.; Rehman, M.Z.U.; Zhu, C.; Li, H. Integrated risk assessment of potentially toxic elements and particle pollution in urban road dust of megacity of Pakistan. Hum. Ecol. Risk Assess. 2019, 26, 1810–1831. [Google Scholar] [CrossRef]
- Bastami, K.D.; Neyestani, M.R.; Molamohyedin, N.; Shafeian, E.; Haghparast, S.; Shirzadi, I.A.; Baniamam, M. Bioavailability, mobility, and origination of metals in sediments from Anzali Wetland, Caspian Sea. Mar. Pollut. Bull. 2018, 136, 22–32. [Google Scholar] [CrossRef]
- Bastami, K.D.; Neyestani, M.R.; Esmaeilzadeh, M.; Haghparast, S.; Alavi, C.; Fathi, S.; Nourbakhsh, S.; Shirzadi, E.A.; Parhizgar, R. Geochemical speciation, bioavailability and source identification of selected metals in surface sediments of the Southern Caspian Sea. Mar. Pollut. Bull. 2017, 114, 1014–1023. [Google Scholar] [CrossRef]
- Nkoh, J.N.; Ajibade, F.O.; Atakpa, E.O.; Baquy, M.A.-A.; Mia, S.; Odii, E.C.; Xu, R. Reduction of heavy metal uptake from polluted soils and associated health risks through biochar amendment: A critical synthesis. J. Hazard. Mater. Adv. 2022, 6, 100086. [Google Scholar] [CrossRef]
- Kumar, V.; Rout, C.; Singh, J.; Saharan, Y.; Goyat, R.; Umar, A.; Akbar, S.; Baskoutas, S. A review on the clean-up technologies for heavy metal ions contaminated soil samples. Heliyon 2023, 9, e15472. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Y.; Li, Y.; Li, L.; Tang, M.; Hu, W.; Chen, L.; Ai, S. Speciation of heavy metals in soils and their immobilization at micro-scale interfaces among diverse soil components. Sci. Total Environ. 2022, 825, 153862. [Google Scholar] [CrossRef] [PubMed]
- Dąbrowska, L. Speciation of heavy metals in sewage sludge after mesophilic and thermophilic anaerobic digestion. Chem. Pap. 2012, 66, 598–606. [Google Scholar] [CrossRef]
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–858. [Google Scholar] [CrossRef]
- Sposito, G.; Lund, L.J.; Chang, A.C. Trace metal chemistry in arid-zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd, and Pb in solid phases. Soil Sci. Soc. Am. J. 1982, 46, 260–264. [Google Scholar] [CrossRef]
- Rudd, T.; Lake, D.L.; Mehrotra, I.; Sterritt, R.M.; Kirk, P.W.W.; Campbell, J.A.; Lester, J.N. Characterization of metal forms in sewage sludge by chemical extraction and progressive acidification. Sci. Total Environ. 1988, 74, 149–175. [Google Scholar] [CrossRef]
- Ure, A.M.; Quevauviller, P.H.; Muntau, H.; Griepink, B. Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. Int. J. Environ. Anal. Chem. 1993, 51, 135–151. [Google Scholar] [CrossRef]
- Rauret, G.; Lopez-Sanchez, J.F.; Sahuquillo, A.; Barahona, E.; Lachica, M.; Ure, A.M.; Davidson, C.M.; Gomez, A. Application of a modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM 483), complemented by a three-year stability study of acetic acid and EDTA extractable metal content. J. Env. Monit. 2000, 2, 228–233. [Google Scholar] [CrossRef]
- Li, Y.; Rothwell, S.; Cheng, H.; Jones, K.C.; Zhang, H. Bioavailability and metabolism in a soil-crop system compared using DGT and conventional extraction techniques. Environ. Int. 2019, 130, 104924. [Google Scholar] [CrossRef]
- Snape, I.; Scouller, R.C.; Stark, S.C.; Stark, J.; Riddle, M.J.; Gore, D.B. Characterisation of the dilute HCl extraction method for the identification of metal contamination in Antarctic marine sediments. Chemosphere 2004, 57, 491–504. [Google Scholar] [CrossRef]
- Kumpiene, J.; Giagnoni, L.; Marschner, B.; Denys, S.; Mench, M.; Adriaensen, K.; Vangronsveld, J.; Puschenreiter, M.; Renella, G. Assessment of methods for determining bioavailability of trace elements in soils: A review. Pedosphere 2017, 27, 389–406. [Google Scholar] [CrossRef]
- Di Palma, L.; Mecozzi, R. Heavy metals mobilization from harbor sediments using EDTA and citric acid as chelating agents. J. Hazard. Mater. 2007, 147, 768–775. [Google Scholar] [CrossRef]
- Zorpas, A.A.; Loizidou, M. The application of inorganic and organic acids for the treatment of heavy polluted sewage sludge and the evaluation of the remaining metal with sequential extraction. Desalin. Water Treat. 2009, 12, 229–237. [Google Scholar] [CrossRef]
- Nair, A.; Juwarkar, A.A.; Devotta, S. Study of speciation of metals in an industrial sludge and evaluation of metal chelators for their removal. J. Hazard. Mater. 2008, 152, 545–553. [Google Scholar] [CrossRef]
- Karczewska, A.; Kabała, C. Metodyka Analiz Laboratoryjnych Gleb i Roślin (Methodology of Laboratory Analyzes of Soils and Plants), 8th ed.; Wydawnictwo Akademii Rolniczej (Agricultulal Academy Publishing House): Wrocław, Poland, 2019; Available online: http://karnet.up.wroc.pl/~kabala/Analizy2017v8.pdf (accessed on 31 October 2025). (In Polish)
- Perin, G.; Craboledda, L.; Lucchese, M.; Cirillo, R.; Dotta, L.; Zanetta, M.L.; Oro, A. Heavy metal speciation in the sediments of Northern Adriatic Sea: A new approach for environmental toxicity determination. In Heavy Metals in the Environment; Lakkas, T., Ed.; CEP Consultants: Edinburgh, UK, 1985; Volume 2, pp. 454–456. [Google Scholar]
- Ke, X.; Zhang, F.J.; Zhou, Y.; Zhang, H.J.; Guo, G.L.; Tian, Y. Removal of Cd, Pb, Zn, Cu in smelter soil by citric acid leaching. Chemosphere 2020, 255, 126690. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xu, Y.; Kanyerere, T.; Wang, Y.-s.; Sun, M. Washing reagents for remediating heavy-metal-contaminated soil: A review. Front. Earth Sci. 2022, 10, 901570. [Google Scholar] [CrossRef]
- Fijałkowski, K.; Kacprzak, M.; Grobelak, A.; Placek, A. The influence of selected soils parameters on the mobility of heavy metals in soils. Inżynieria i Ochrona Środowiska 2012, 15, 81–92. [Google Scholar] [CrossRef]
- Yu, H.; Li, C.; Yan, J.; Ma, Y.; Zhou, X.; Yu, W.; Kan, H.; Meng, Q.; Xie, R.; Dong, P. A review on adsorption characteristics and influencing mechanism of heavy metals in farmland soil. RSC Adv. 2023, 13, 3505–3519. [Google Scholar] [CrossRef]
- Qi, C.; Hu, T.; Zheng, Y.; Wu, M.; Tang, F.H.M.; Liu, M.; Zhang, B.; Derrible, S.; Chen, Q.; Hu, G.; et al. Global and regional patterns of soil metal(loid) mobility and associated risks. Nat. Commun. 2025, 16, 2947. [Google Scholar] [CrossRef]
- Angon, P.B.; Islam, S.; Kc, S.; Das, A.; Anjum, N.; Poudel, A.; Suchi, S.A. Sources, effects and present perspectives of heavy metals contamination: Soil, plants and human food chain. Heliyon 2024, 10, e28357. [Google Scholar] [CrossRef]
- Regulation of the Minister of the Environment of 1 September 2016 on the Method of Conducting the Assessment of Pollution of the Earth’s Surface, Dz.U.2016 poz. 1395. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu20160001395 (accessed on 25 September 2025). (In Polish)
- Meers, E.; Lesage, E.; Lamsal, S.; Hopgood, M.; Vervaeke, P.; Tack, F.M.G.; Verloo, M.G. Enhanced phytoextraction: I. Effect of EDTA and citric acid on heavy metal mobility in a calcareous soil. Int. J. Phytoremed. 2005, 7, 129–142. [Google Scholar] [CrossRef]
- Fuentes, A.; Lloréns, M.; Sáez, J.; Soler, A.; Aguilar, M.I.; Orutño, J.F.; Meseguer, V.F. Simple and sequential extractions of heavy metals from different sewage sludges. Chemosphere 2004, 54, 1039–1047. [Google Scholar] [CrossRef]
- Bhattacharyya, P.; Tripathy, S.; Chakrabarti, K.; Chakraborty, A.; Banik, P. Fractionation and bioavailability of metals and their impacts on microbial properties in sewage irrigated soil. Chemosphere 2008, 72, 543–550. [Google Scholar] [CrossRef]
- Chen, M.; Li, X.; Yang, Q.; Zeng, G.; Zhang, Y.; Liao, D.; Liu, J.; Hu, J.; Guo, L. Total concentration and speciation of heavy metals in municipal sludge from Changsha, Zhuzhou and Xiangtan in middle—south region of China. J. Hazard. Mater. 2008, 160, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Jamali, M.K.; Kazi, T.G.; Arain, M.B.; Afridi, H.; Jalbani, N.; Kandhro, G.A.; Shah, A.Q.; Baig, J.A. Speciation of heavy metals in untreated sewage sludge by using microwave assisted sequential extraction procedure. J. Hazard. Mater. 2009, 63, 1157–1164. [Google Scholar] [CrossRef] [PubMed]
- Liang, G.; Zhang, B.; Lin, M.; Wu, S.; Hou, H.; Zhang, J.; Qian, G.; Huang, X.; Zhou, J. Evaluation of heavy metal mobilization in creek sediment: Influence of RAC values and ambient environmental factors. Sci. Total Environ. 2017, 607–608, 1339–1347. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, T.; Wang, H.; Kang, Q.; Zhou, Q.; Chen, B. Spatial pattern, sources identification, and risk assessment of heavy metals in a typical soda soil from Bayannur, Northwestern China. Int. J. Environ. Res. Public Health 2022, 19, 13880. [Google Scholar] [CrossRef]
- Upama, D.; Bhattacharyya, K.G. Mobility and bioavailability of Cd, Co, Cr, Cu, Mn and Zn in surface runoff sediments in the urban catchment area of Guwahati, India. Apll. Water Sci. 2018, 8, 18. [Google Scholar] [CrossRef]
- Finzgar, N.; Tlustos, P.; Lestan, D. Relationship of soil properties to fractionation, bioavailability and mobility of lead and zinc in soil. Plant. Soil Environ. 2007, 53, 225. [Google Scholar] [CrossRef]
- Kumar, V.; Sahu, P.; Markandeya. Sequential extraction and risk assessment of pollutants from one major tributary of the Ganga. Water Supply 2022, 22, 2767–2781. [Google Scholar] [CrossRef]
- Pan, Y.; Chen, M.; Wang, X.; Chen, Y.; Dong, K. Ecological risk assessment and source analysis of heavy metals in the soils of a lead-zinc mining watershed area. Water 2023, 15, 113. [Google Scholar] [CrossRef]





| Parameter | Soil | ||
|---|---|---|---|
| B | A | ||
| pH | H2O | 5.4 ± 0.1 | 5.2 ± 0.1 |
| KCl | 5.3 ± 0.2 | 5.0 ± 0.1 | |
| moisture, % | 7.4 ± 0.4 | 6.9 ± 0.3 | |
| TS, g/kg | 926 ± 1 | 931 ± 3 | |
| VS, g/kg | 45.6 ± 0.3 | 46.3 ± 0.2 | |
| FS, g/kg | 954.4 ± 0.2 | 953.7 ± 0.2 | |
| Metal | Content, mg/kg Soil | |
|---|---|---|
| B | A | |
| Lead (Pb) | 2141.7 ± 5.3 | 856.7 ± 4.9 |
| Zinc (Zn) | 2030.5 ± 4.2 | 589.0 ± 2.6 |
| Copper (Cu) | 68.2 ± 0.5 | 41.6 ± 0.7 |
| Cadmium (Cd) | 63.4 ± 0.2 | 28.4 ± 0.4 |
| Nickel (Ni) | 23.1 ± 0.1 | 13.6 ± 0.1 |
| Fraction | Lead (Pb) | Zinc (Zn) | Copper (Cu) | Cadmium (Cd) | Nickel (Ni) | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| B | A | B | A | B | A | B | A | B | A | |
| FI | 1078.8 ± 2.2 | 411.2 ± 2.3 | 954.2 ± 4.4 | 198.6 ± 0.8 | 29.4 ± 0.2 | 13.2 ± 0.1 | 36.8 ± 0.4 | 11.4 ± 0.2 | 4.2 ± 0.2 | 1.8 ± 0.1 |
| FII | 854.9 ± 1.8 | 298.9 ± 1.1 | 112.2 ± 0.9 | 10.1 ± 0.3 | 5.1 ± 0.1 | 1.6 ± 0.1 | 6.9 ± 0.3 | 3.3 ± 0.1 | 3.1 ± 0.2 | 0.8 ± 0.1 |
| FIII | 82.1 ± 0.8 | 67.5 ± 0.3 | 280.1 ± 1.3 | 82.8 ± 0.7 | 33.1 ± 0.3 | 23.3 ± 0.3 | 9.7 ± 0.2 | 7.9 ± 0.2 | 3.3 ± 0.1 | 2.9 ± 0.1 |
| FIV | 95.3 ± 1.1 | 75.2 ± 0.5 | 642.7 ± 3.2 | 281.8 ± 2.0 | 3.2 ± 0.1 | 3.1 ± 0.2 | 5.5 ± 0.2 | 3.9 ± 0.1 | 12.3 ± 0.3 | 7.8 ± 0.2 |
| Sum: FI–FIV | 2111.1 | 852.8 | 1989.2 | 573.3 | 70.8 | 41.2 | 58.9 | 26.5 | 22.9 | 13.2 |
| Metal | Effect | df | F | p-Value | Significance |
|---|---|---|---|---|---|
| Pb | Extraction (A vs. B) | 1 | 283,241.3 | <0.001 | *** |
| Fraction (FI–FIV) | 3 | 335,510.8 | <0.001 | *** | |
| Interaction | 3 | 85,775.4 | <0.001 | *** | |
| Zn | Extraction (A vs. B) | 1 | 161,155.4 | <0.001 | *** |
| Fraction (FI–FIV) | 3 | 73,815.7 | <0.001 | *** | |
| Interaction | 3 | 26,724.4 | <0.001 | *** | |
| Cu | Extraction (A vs. B) | 1 | 1000.0 | <0.001 | *** |
| Fraction (FI–FIV) | 3 | 25,924.0 | <0.001 | *** | |
| Interaction | 3 | 4609.9 | <0.001 | *** | |
| Cd | Extraction (A vs. B) | 1 | 7323.9 | <0.001 | *** |
| Fraction (FI–FIV) | 3 | 9322.0 | <0.001 | *** | |
| Interaction | 3 | 3734.7 | <0.001 | *** | |
| Ni | Extraction (A vs. B) | 1 | 1105.9 | <0.001 | *** |
| Fraction (FI–FIV) | 3 | 2656.8 | <0.001 | *** | |
| Interaction | 3 | 134.7 | <0.001 | *** |
| Form | Lead (Pb) | Zinc (Zn) | Copper (Cu) | Cadmium (Cd) | Nickel (Ni) | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| B | A | B | A | B | A | B | A | B | A | |
| Mobile | 1933.7 ± 4.4 | 710.1 ± 3.1 | 1066.4 ± 2.2 | 208.7 ± 0.8 | 34.5 ± 0.2 | 14.8 ± 0.2 | 43.7 ± 0.3 | 14.7 ± 0.1 | 7.3 ± 0.5 | 2.6 ± 0.3 |
| Bioavailable | 1749.3 ± 3.9 | 579.5 ± 2.5 | 854.9 ± 2.5 | 298.9 ± 1.1 | 65.5 ± 0.4 | 18.1 ± 0.2 | 46.1 ± 0.3 | 11.7 ± 0.1 | 6.8 ± 0.3 | 2.9 ± 0.5 |
| Metal | Factor | F | p-Value | Significance |
|---|---|---|---|---|
| Pb | Fraction | 5902.7 | <0.0001 | *** |
| Extraction | 340,771.2 | <0.0001 | *** | |
| Fraction × Extraction | 172.2 | <0.0001 | *** | |
| Zn | Fraction | 3411.2 | <0.0001 | *** |
| Extraction | 463,341.8 | <0.0001 | *** | |
| Fraction × Extraction | 21,102.7 | <0.0001 | *** | |
| Cu | Fraction | 12,605.2 | <0.0001 | *** |
| Extraction | 48,240.1 | <0.0001 | *** | |
| Fraction × Extraction | 8221.0 | <0.0001 | *** | |
| Cd | Fraction | 5.4 | 0.049 | * |
| Extraction | 60,293.4 | <0.0001 | *** | |
| Fraction × Extraction | 437.4 | <0.0001 | *** | |
| Ni | Fraction | 2.2 | 0.176 | n.s. |
| Extraction | 1754.2 | <0.0001 | *** | |
| Fraction × Extraction | 2.2 | 0.176 | n.s. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbusiński, K.; Karwowska, B.; Neczaj, E. Citric Acid Extraction Impact on Chemical and Bioavailable Forms of Metals in Soil. Molecules 2025, 30, 4480. https://doi.org/10.3390/molecules30224480
Barbusiński K, Karwowska B, Neczaj E. Citric Acid Extraction Impact on Chemical and Bioavailable Forms of Metals in Soil. Molecules. 2025; 30(22):4480. https://doi.org/10.3390/molecules30224480
Chicago/Turabian StyleBarbusiński, Krzysztof, Beata Karwowska, and Ewa Neczaj. 2025. "Citric Acid Extraction Impact on Chemical and Bioavailable Forms of Metals in Soil" Molecules 30, no. 22: 4480. https://doi.org/10.3390/molecules30224480
APA StyleBarbusiński, K., Karwowska, B., & Neczaj, E. (2025). Citric Acid Extraction Impact on Chemical and Bioavailable Forms of Metals in Soil. Molecules, 30(22), 4480. https://doi.org/10.3390/molecules30224480

