Bee Venom Melittin Modulates In Vivo Water Permeability of Red Blood Cells: Microscopic and 1H-NMR Data
Abstract
1. Introduction
2. Results
2.1. RBCs Morphology
2.1.1. Control Group
2.1.2. Bee Venom Treated Groups
2.1.3. Melittin-Treated Groups
2.2. RBC Diameters
2.3. Haematological Data
2.3.1. Haematocrit
2.3.2. RBC Number
2.3.3. RBCs Volume
2.3.4. RBC Area
2.3.5. RBC Ratio
2.4. NMR Data
2.4.1. Transverse Relaxation Time of the Water Proton from the Cell Interior
2.4.2. Water Proton Relaxation Time
2.4.3. Water Exchange Time
2.4.4. Diffusional Permeability for Water
3. Discussion
4. Materials and Methods
4.1. Saline Buffer
4.2. Bee Venom and Melittin Solutions
4.3. RBC Doping Solution
4.4. Animals and Treatments
4.5. Morphometric Analyses
4.6. Haematological Analyses
4.7. RBC Permeability Assessed by NMR
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| A | RBC surface area |
| AQP | aquaporin |
| BV | bee venom |
| C group | control group |
| D | RBC diameter |
| Hct | haematocrit |
| Mlt | melittin |
| MSLT group | Mlt semi-lethal-treated group (a single dose of 31 mg Mlt/kg) |
| MST group | Mlt subchronic-treated group (30 daily doses of 350 μg Mlt/kg/day) |
| NMR | nuclear magnetic resonance |
| Pd | diffusional permeability for water |
| RBC | red blood cell |
| T2a | water proton relaxation time |
| T2i | transverse relaxation time of the water proton from the cell interior |
| Te | water exchange time |
| VSLT group | venom semi-lethal-treated group (a single dose of 62 mg BV/kg) |
| VST group | venom subchronic-treated group (30 daily doses of 700 μg BV/kg/day) |
| Vw | RBC water volume |
References
- Benga, G.; Popescu, O.; Borza, V.; Pop, V.I.; Muresan, A.; Mocsy, I.; Brain, A.; Wrigglesworth, J.M. Water permeability in human erythrocytes: Identification of membrane proteins involved in water transport. Eur. J. Cell Biol. 1986, 41, 252–262. [Google Scholar]
- Benga, G.; Frenţescu, L.; Matei, H.; Tigan, S. Comparative nuclear magnetic resonance studies of water permeability of red blood cells from maternal venous blood and newborn umbilical cord blood. Clin. Chem. Lab. Med. 2001, 39, 606–611. [Google Scholar] [CrossRef]
- Preston, G.M.; Carroll, T.P.; Guggino, W.B.; Agre, P. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 1992, 256, 385–387. [Google Scholar] [CrossRef]
- Borgnia, M.; Nielsen, S.; Engel, A.; Agre, P. Cellular and molecular biology of the aquaporin water channels. Annu. Rev. Biochem. 1999, 68, 425–458. [Google Scholar] [CrossRef] [PubMed]
- Benga, G. The first discovered water channel protein, later called aquaporin 1: Molecular characteristics, functions and medical implications. Mol. Asp. Med. 2012, 33, 518–534. [Google Scholar] [CrossRef]
- Irisarri, I.; Lorente-Martínez, H.; Strassert, J.F.H.; Agorreta, A.; Zardoya, R.; San Mauro, D.; de Vries, J. Early diversification of membrane intrinsic proteins (MIPs) in eukaryotes. Genome Biol. Evol. 2024, 16, evae164. [Google Scholar] [CrossRef] [PubMed]
- Agre, P.; Kozono, D. Aquaporin water channels: Molecular mechanisms for human diseases. FEBS Lett. 2003, 555, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Xie, D.; Ma, C.; Chen, Y.; Li, Y.; Liu, Z.; Zhou, T.; Miao, Z.; Zhang, Y.; Zhang, L.; et al. Aquaporins: Important players in the cardiovascular pathophysiology. Pharmacol. Res. 2022, 183, 106363. [Google Scholar] [CrossRef]
- Vrettou, C.S.; Issaris, V.; Kokkoris, S.; Poupouzas, G.; Keskinidou, C.; Lotsios, N.S.; Kotanidou, A.; Orfanos, S.E.; Dimopoulou, I.; Vassiliou, A.G. Exploring aquaporins in human studies: Mechanisms and therapeutic potential in critical illness. Life 2024, 14, 1688. [Google Scholar] [CrossRef]
- Alfieri, L.; Montana, A.; Frisoni, P.; D’Errico, S.; Neri, M. Application of aquaporins as markers in forensic pathology: A systematic review of the literature. Int. J. Mol. Sci. 2024, 25, 2664. [Google Scholar] [CrossRef]
- Tang, Y.; Yang, B. Water transport across the red blood cell membrane. In Handbook of Red Blood Cells; Kaestner, L., Bogdanova, A., Eds.; Springer: Cham, Switzerland, 2025; pp. 1–22. [Google Scholar] [CrossRef]
- Al-Samir, S.; Kyriazi, D.; Yool, A.J.; Moser, I.; Kyriazi, K.; Gros, G.; Tsiavaliaris, G.; Endeward, V. Aquaporin-1 acts as an O2 channel. The permeability of human and mouse red cell membranes for oxygen. Am. J. Physiol. Cell Physiol. 2025, 328, C1605–C1622. [Google Scholar] [CrossRef] [PubMed]
- Pimpão, C.; da Silva, I.V.; Soveral, G. The expanding role of Aquaporin-1, Aquaporin-3 and Aquaporin-5 as transceptors: Involvement in cancer development and potential druggability. Int. J. Mol. Sci. 2025, 26, 1330. [Google Scholar] [CrossRef]
- Hancock, R.E.W.; Rozek, A. Role of membranes in the activities of antimicrobial cationic peptides. FEMS Microbiol. Lett. 2002, 206, 143–149. [Google Scholar] [CrossRef]
- Liu, P.; Zeng, X.; Wen, X. Design and synthesis of new cationic antimicrobial peptides with low cytotoxicity. Int. J. Pept. Res. Ther. 2021, 27, 831–840. [Google Scholar] [CrossRef]
- Hancock, R.E.W. Cationic peptides: Effectors in innate immunity and novel antimicrobials. Lancet Infect. Dis. 2001, 1, 156–164. [Google Scholar] [CrossRef]
- Ho, C.S.; Wong, C.T.H.; Aung, T.T.; Lakshminarayanan, R.; Mehta, J.S.; Rauz, S.; McNally, A.; Kintses, B.; Peacock, S.J.; de la Fuente-Nunez, C.; et al. Antimicrobial resistance: A concise update. Lancet Microbe 2025, 6, 100947. [Google Scholar] [CrossRef] [PubMed]
- Habermann, E. Bee and wasp venoms: The biochemistry and pharmacology of their peptides and enzymes are reviewed. Science 1972, 177, 314–322. [Google Scholar] [CrossRef]
- Guha, S.; Ferrie, R.P.; Ghimire, J.; Ventura, C.R.; Wu, E.; Sun, L.; Kim, S.Y.; Wiedman, G.R.; Hristova, K.; Wimley, W.C. Applications and evolution of melittin, the quintessential membrane active peptide. Biochem. Pharmacol. 2021, 193, 114769. [Google Scholar] [CrossRef]
- Neumann, W.; Habermann, E.; Amend, G. Zur papierelektrophoretischen Fraktionierung tierischer Gifte. Naturwissenschaften 1952, 39, 286–287. [Google Scholar] [CrossRef]
- Habermann, E. Chimie, pharmacologie et toxicologie du venin. In Traité de Biologie de L’abeille; Chauvin, R., Ed.; Masson: Paris, France, 1968; pp. 363–387. [Google Scholar]
- Terwilliger, T.C.; Eisenberg, D. The structure of melittin. I. Structure determination and partial refinement. J. Biol. Chem. 1982, 257, 6010–6015. [Google Scholar] [CrossRef] [PubMed]
- Terwilliger, T.C.; Eisenberg, D. The structure of melittin. II. Interpretation of the structure. J. Biol. Chem. 1982, 257, 6016–6022. [Google Scholar] [CrossRef]
- Shin, S.Y.; Kang, J.H.; Lee, D.G.; Jang, S.Y.; Seo, M.Y.; Kim, K.L.; Hahm, K.S. Influences of hinge region of a synthetic antimicrobial peptide, cecropin A(1–13)-melittin(1–13) hybrid on antibiotic activity. Bull. Korean Chem. Soc. 1999, 20, 1078–1084. [Google Scholar] [CrossRef]
- Mortazavi, N.; Hooman, N.; Mehrazma, M.; Moradi, Y.; Aghavali, P. Hemolytic uremic syndrome secondary to scorpion envenomation in a 7-year-old boy from Southwestern Iran. Iran J. Pathol. 2024, 19, 467–471. [Google Scholar] [CrossRef]
- Quan, Z.; Liu, M.; Zhao, J.; Yang, X. Correlation between early changes of serum lipids and clinical severity in patients with wasp stings. J. Clin. Lipidol. 2022, 16, 878–886. [Google Scholar] [CrossRef]
- Ye, X.; Zhang, H.; Luo, X.; Huang, F.; Sun, F.; Zhou, L.; Qin, C.; Ding, L.; Zhou, H.; Liu, X.; et al. Characterization of the hemolytic activity of mastoparan family peptides from wasp venoms. Toxins 2023, 15, 591. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Wahed, A.; Yosri, N.; Sakr, H.H.; Du, M.; Algethami, A.F.M.; Zhao, C.; Abdelazeem, A.H.; Tahir, H.E.; Masry, S.H.D.; Abdel-Daim, M.M.; et al. Wasp venom biochemical components and their potential in biological applications and nanotechnological interventions. Toxins 2021, 13, 206. [Google Scholar] [CrossRef]
- Xie, C.; Bittenbinder, M.A.; Slagboom, J.; Arrahman, A.; Bruijns, S.; Somsen, G.W.; Vonk, F.J.; Casewell, N.R.; García-Vallejo, J.J.; Kool, J. Erythrocyte haemotoxicity profiling of snake venom toxins after nanofractionation. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2021, 1176, 122586. [Google Scholar] [CrossRef] [PubMed]
- Sandesha, V.D.; Naveen, P.; Manikanta, K.; Mahalingam, S.S.; Girish, K.S.; Kemparaju, K. Hump-nosed pit viper (Hypnale hypnale) venom-induced irreversible red blood cell aggregation: Inhibition by monovalent antivenom and N-acetylcysteine. Cells 2024, 13, 994. [Google Scholar] [CrossRef] [PubMed]
- Bittenbinder, M.A.; van Thiel, J.; Cardoso, F.C.; Casewell, N.R.; Gutiérrez, J.M.; Kool, J.; Vonk, F.J. Tissue damaging toxins in snake venoms: Mechanisms of action, pathophysiology and treatment strategies. Commun. Biol. 2024, 7, 358. [Google Scholar] [CrossRef]
- Bresolin, N.L.; Carvalho, F.L.C.; Goes, J.E.C.; Fernandes, R.; Barotto, A.M. Acute renal failure following massive attack by Africanized bee stings. Pediatr. Nephrol. 2002, 17, 625–627. [Google Scholar] [CrossRef]
- França, F.O.S.; Benvenuti, L.A.; Fan, H.W.; Dos Santos, D.R.; Hain, S.H.; Picchi-Martins, F.R.; Cardoso, J.L.C.; Kamiguti, A.S.; Theakston, R.D.G.; Warrell, D.A. Severe and fatal mass attacks by “killer” bees (Apis mellifera scutellata) in Brazil: Clinicopathological studies with measurement of serum venom concentration. Q. J. Med. 1994, 87, 269–282. [Google Scholar] [CrossRef]
- Li, J.; Yang, J.; Lai, S.; He, Q.; Li, S.; Liu, L.; Li, M. Evaluation of melittin-induced acute kidney injury in different degrees in rats by contrast-enhanced ultrasound techniques. SLAS Technol. 2025, 32, 100275. [Google Scholar] [CrossRef]
- Cavalcante, J.S.; Mutarelli, A.M.; Freitas Galletti, A.J.; Pucca, M.B.; Ferreira Junior, R.S. Africanized honeybee stings envenoming in Brazil: A neglected tropical disease! Toxicon 2025, 261, 108327. [Google Scholar] [CrossRef]
- Cavalcante, J.D.S.; de Almeida, D.E.G.; Moraes, M.S.; Santos, S.R.; Pincinato, P.M.; Riciopo, P.M.; de Oliveira, L.L.B.; Monteiro, W.M.; Ferreira-Junior, R.S. Challenges and opportunities in clinical diagnostic routine of envenomation using blood plasma proteomics. Toxins 2023, 15, 180. [Google Scholar] [CrossRef] [PubMed]
- Cavalcante, J.S.; Riciopo, P.M.; Pereira, A.F.M.; Jeronimo, B.C.; Angstmam, D.G.; Pôssas, F.C.; de Andrade Filho, A.; Cerni, F.A.; Pucca, M.B.; Ferreira Junior, R.S. Clinical complications in envenoming by Apis honeybee stings: Insights into mechanisms, diagnosis, and pharmacological interventions. Front Immunol. 2024, 15, 1437413. [Google Scholar] [CrossRef]
- Kono, I.S.; Freire, R.L.; Caldart, E.T.; Rodrigues, F.S.; Santos, J.A.; Freire, L.G.D.; Faccin, T.C. Bee stings in Brazil: Epidemiological aspects in humans. Toxicon 2021, 201, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Zalat, S.; Nabil, Z.; Hussein, A.; Rakha, M. Biochemical and haematological studies of some solitary and social bee venoms. Egypt. J. Biol. 1999, 1, 57–71. [Google Scholar]
- Flachsenberger, W.; Leigh, C.M.; Mirtschin, P.J. Sphero-echinocytosis of human red blood cells caused by snake, red-back spider, bee and blue-ringed octopus venoms and its inhibition by snake sera. Toxicon 1995, 33, 791–797. [Google Scholar] [CrossRef]
- Yau, T.W.; Kuchel, R.P.; Koh, J.M.S.; Szekely, D.; Mirtschin, P.J.; Kuchel, P.W. Cytoskeletal rearrangements in human red blood cells induced by snake venoms: Light microscopy of shapes and NMR studies of membrane function. Cell Biol. Int. 2012, 36, 87–97. [Google Scholar] [CrossRef]
- Bain, B.J. Blood Cells: A Practical Guide, 4th ed.; Blackwell Publishing: Malden, MA, USA, 2006; pp. 1–480. [Google Scholar]
- Bessis, M. Corpuscles. An Atlas of Red Cell Shapes; Springer: New York, NY, USA, 1974; pp. 1–220. [Google Scholar]
- Varanda, E.A.; Tavares, D.C. Radioprotection: Mechanisms and radioprotective agents including honeybee venom. J. Venom. Anim. Toxins 1998, 4, 5–21. [Google Scholar] [CrossRef]
- Krylov, V.N.; Koryagin, A.S.; Erofeeva, E.A. Comparative analysis of radioprotective properties of some zootoxins. J. Evol. Biochem. Physiol. 2008, 44, 501–506. [Google Scholar] [CrossRef]
- Florea, A.; Crăciun, C. Bee venom induced in vivo ultrastructural reactions of cells involved in the bone marrow erythropoiesis and of circulating red blood cells. Microsc. Microanal. 2013, 19, 393–405. [Google Scholar] [CrossRef]
- Ginsberg, N.J.; Dauer, M.; Slotta, K.H. Melittin used as a protective agent against X-irradiation. Nature 1968, 220, 1334. [Google Scholar] [CrossRef]
- Cajal, Y.; Jain, M.K. Synergism between melittin and phospholipase A2 from bee venom: Apparent activation by intervesicle exchange of phospholipids. Biochemistry 1997, 36, 3882–3893. [Google Scholar] [CrossRef] [PubMed]
- Koumanov, K.; Momchilova, A.; Wolf, C. Bimodal regulatory effect of melittin and phospholipase A2-activating protein on human type II secretory phospholipase A2. Cell Biol. Int. 2003, 27, 871–877. [Google Scholar] [CrossRef] [PubMed]
- Vetter, R.S.; Visscher, P.K. Bites and stings of medically important venomous arthropods. Int. J. Dermatol. 1998, 37, 481–496. [Google Scholar] [CrossRef]
- Lee, S.Y.; Park, H.S.; Lee, S.J.; Choi, M.U. Melittin exerts multiple effects on the release of free fatty acids from L1210 cells: Lack of selective activation of phospholipase A2 by melittin. Arch. Biochem. Biophys. 2001, 389, 57–67. [Google Scholar] [CrossRef]
- Muntean, M.; Florea, A. Phospholipase A2—A significant bio-active molecule in honeybee (Apis mellifera L.) venom. Molecules 2025, 30, 2623. [Google Scholar] [CrossRef]
- Bull, B.S.; Herrmann, P.C. Morphology of the Erythron. In Williams Hematology, 8th ed.; The McGraw-Hill Companies: Columbus, OH, USA, 2010; pp. 24–26. [Google Scholar]
- Tosteson, M.T.; Holmes, S.J.; Razin, M.; Tosteson, D.C. Melittin lysis of red cells. J. Membr. Biol. 1985, 87, 35–44. [Google Scholar] [CrossRef]
- Hur, J.; Kim, K.; Lee, S.; Park, H.; Park, Y. Melittin-induced alterations in morphology and deformability of human red blood cells using quantitative phase imaging techniques. Sci. Rep. 2017, 7, 9306. [Google Scholar] [CrossRef]
- B10NUMB3R5: The Database of Useful Biological Numbers. Available online: https://bionumbers.hms.harvard.edu/search.aspx (accessed on 12 September 2025).
- Huțu, I. Manual de Bune Practici în Unitățile Experimentale; Ed. Agropint: Timișoara, Romania, 2017; Volume II, pp. 48–51. Available online: https://www.researchgate.net/profile/Ioan-Hutu/publication/338236075 (accessed on 15 September 2025).
- Shokhba, A.S.M.; Omran, M.A.E.; Abdel-Rahman, M.A.; El-Shenawy, N.S. Oxidative-stress and hematological alterations induced by the Egyptian Naja nubiae venom in rats. Avicenna J. Med. Biochem. 2024, 12, 1–9. [Google Scholar] [CrossRef]
- Topchiyeva, S.A.; Jafarova, R.E.; Yildiz, L.Z.; Gojayev, A.; Karimova, R.Z. Comparative data on the effect of the venom of the Viper (Macrovipera lebetina obtusa Linnaeus, 1758) on the composition of blood elements in experimental animals. Clin. Trials Case Studies 2024, 3, 1–5. [Google Scholar] [CrossRef]
- Benga, G.; Borza, T. Diffusional water permeability of mammalian red blood cells. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1995, 112, 653–659. [Google Scholar] [CrossRef]
- Vogel, H.; Jahnig, F. The structure of melittin in membranes. Biophys. J. 1986, 50, 573–582. [Google Scholar] [CrossRef]
- Fischer, P.J.; Prendergast, F.G.; Ehrhardt, M.R.; Urbauer, J.L.; Wand, A.J.; Sedarous, S.S.; McCormick, D.J.; Buckley, P.J. Calmodulin interacts with amphiphilic peptides composed of all D-amino acids. Nature 1994, 368, 651–653. [Google Scholar] [CrossRef]
- Ladokhin, A.S.; White, S.H. Folding of amphipathic α-helices on membranes: Energetics of helix formation by melittin. J. Mol. Biol. 1999, 285, 1363–1369. [Google Scholar] [CrossRef]
- Ohki, S.; Marcus, E.; Sukumaran, D.K.; Arnold, K. Interaction of melittin with lipid membranes. Biochim. Biophys. Acta 1994, 1194, 223–232. [Google Scholar] [CrossRef]
- Wimley, C.W.; White, S.H. Determining the membrane topology of peptides by fluorescence quenching. Biochemistry 2000, 39, 161–170. [Google Scholar] [CrossRef]
- Verkleij, A.J.; Zwaal, R.F.; Roelofsen, B.; Comfurius, P.; Kastelijn, D.; van Deenen, L.L. The asymmetric distribution of phospholipids in the human red cell membrane: A combined study using phospholipases and freeze-etch electron microscopy. Biochim. Biophys. Acta 1973, 323, 178–193. [Google Scholar] [CrossRef]
- Lorent, J.H.; Levental, K.R.; Ganesan, L.; Rivera-Longsworth, G.; Sezgin, E.; Doktorova, M.; Lyman, E.; Levental, I. Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nat. Chem. Biol. 2020, 16, 644–652, Correction in Nat. Chem. Biol. 2020, 16, 710. [Google Scholar] [CrossRef]
- Feigin, A.M.; Teeter, J.H.; Brand, J.G. The influence of sterols on the sensitivity of lipid bilayers to melittin. Biomed. Biophys. Res. Commun. 1995, 211, 312–317. [Google Scholar] [CrossRef]
- Wessman, P.; Strömstedt, A.A.; Malmsten, M.; Edwards, K. Melittin–lipid bilayer interactions and the role of cholesterol. Biophys. J. 2008, 95, 4324–4336. [Google Scholar] [CrossRef]
- Dawson, C.R.; Drake, A.F.; Helliwell, J.; Hider, R.C. The interaction of bee melittin with lipid bilayer membranes. Biochim. Biophys. Acta 1978, 510, 75–86. [Google Scholar] [CrossRef]
- Silvestro, L.; Axelsen, P.H. Membrane-induced folding of cecropin A. Biophys. J. 2000, 79, 1465–1477. [Google Scholar] [CrossRef]
- Picard, F.; Paquet, M.J.; Dufourc, E.J.; Auger, M. Measurement of the lateral diffusion of dipalmitoylphosphatidylcholine adsorbed on silica beads in the absence and presence of melittin: A 31P two-dimensional exchange solid-state NMR study. Biophys. J. 1998, 74, 857–868. [Google Scholar] [CrossRef] [PubMed]
- Hristova, K.; Dempsey, C.E.; White, S.H. Structure, location, and lipid perturbations of melittin at the membrane interface. Biophys. J. 2001, 80, 801–811. [Google Scholar] [CrossRef]
- Smith, R.; Separovic, F.; Milne, T.J.; Whittaker, A.; Bennett, F.M.; Cornell, B.A.; Makriyannis, A. Structure and orientation of the pore-forming peptide, melittin in lipid bilayers. J. Mol. Biol. 1994, 241, 456–466. [Google Scholar] [CrossRef] [PubMed]
- Klocek, G.; Schulthess, T.; Shai, Y.; Seelig, J. Thermodynamics of melittin binding to lipid bilayers: Aggregation and pore formation. Biochemistry 2009, 48, 2586–2596. [Google Scholar] [CrossRef]
- Berneche, S.; Nina, M.; Roux, B. Molecular dynamics simulation of melittin in a dimyristoylphosphatidylcholine bilayer membrane. Biophys. J. 1998, 75, 1603–1618. [Google Scholar] [CrossRef]
- Ladokhin, A.S.; Selsted, M.E.; White, S.H. Sizing membrane pores in lipid vesicles by leakage of co-encapsulated markers: Pore formation by melittin. Biophys. J. 1997, 72, 1762–1766. [Google Scholar] [CrossRef] [PubMed]
- Katsu, T.; Ninomiya, C.; Kuroko, M.; Kobayashi, H.; Hirota, T.; Fujita, Y. Action mechanism of amphipathic peptides gramicidin S and melittin on erythrocyte membrane. Biochim. Biophys. Acta 1988, 939, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Hui, S.W.; Stewart, C.M.; Cherry, R.J. Electron microscopic observation of the aggregation of membrane proteins in human erythrocyte by melittin. Biochim. Biophys. Acta 1990, 1023, 335–340. [Google Scholar] [CrossRef]
- Pandey, P.; Khan, F.; Khan, M.A.; Kumar, R.; Upadhyay, T.K. An updated review summarizing the anticancer efficacy of melittin from bee venom in several models of human cancers. Nutrients 2023, 15, 3111. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Zhou, Z.; Sun, Z.; Duan, J.; Liu, R.; Qi, C.; Yan, C. Melittin and phospholipase A2: Promising anti-cancer candidates from bee venom. Biomed. Pharmacother. 2024, 179, 117385. [Google Scholar] [CrossRef] [PubMed]
- Ertilav, K.; Nazıroğlu, M. Honey bee venom melittin increases the oxidant activity of cisplatin and kills human glioblastoma cells by stimulating the TRPM2 channel. Toxicon 2023, 222, 106993. [Google Scholar] [CrossRef]
- Gajski, G.; Leonova, E.; Sjakste, N. Bee venom: Composition and anticancer properties. Toxins 2024, 16, 117. [Google Scholar] [CrossRef]
- Małek, A.; Strzemski, M.; Kurzepa, J.; Kurzepa, J. Can bee venom be used as anticancer agent in modern medicine? Cancers 2023, 15, 3714. [Google Scholar] [CrossRef]
- Małek, A.; Strzemski, M.; Kapka-Skrzypczak, L.; Kurzepa, J. Anticancer activity of melittin-containing bee venom fraction against glioblastoma cells in vitro. Int. J. Mol. Sci. 2025, 26, 2376. [Google Scholar] [CrossRef]
- Florea, A.; Crăciun, C. Abnormal mitochondrial cristae were experimentally generated by high doses of Apis mellifera venom in the rat adrenal cortex. Micron 2011, 42, 434–442. [Google Scholar] [CrossRef]
- Pulido-Mendez, M.; Rodriguez-Acosta, A.; Finol, H.J. Adrenal cortex ultrastructural alterations caused by zootoxins. Microsc. Microanal. 2002, 8, 926–927. [Google Scholar] [CrossRef]
- Matei, H.; Florea, A.; Chiș, A.; Popa, G.; Tilinca, M. Changes in the erythrocyte membrane cytoskeleton in microcytic hemolytic anemia—Case report. Rev. Romana Med. Lab. 2010, 18, 31–37. [Google Scholar]
- Meiboom, S.; Gill, D. Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 1958, 29, 688–691. [Google Scholar] [CrossRef]
- Conlon, T.; Outhred, R. Water diffusion permeability of erythrocytes using an NMR technique. Biochim. Biophys. Acta 1972, 288, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Morariu, V.V.; Benga, G. Evaluation of a nuclear magnetic resonance technique for the study of water exchange through erythrocyte membranes in normal and pathological subjects. Biochim. Biophys. Acta 1977, 469, 301–310. [Google Scholar] [CrossRef]



| Experimental Groups | N | Average (μm) | SD | ANOVA |
|---|---|---|---|---|
| C group | 6 | 6.3465 | 0.4253 | p = 0.00026 |
| VST group *,1,2 | 6 | 5.7442 | 0.1212 | |
| VSLT group 3 | 6 | 6.2338 | 0.4276 | |
| MST group 1 | 6 | 6.3592 | 0.3692 | |
| MSLT group 2,3 | 6 | 6.8692 | 0.2891 |
| Experimental Groups | N | Average (106/mm3) | SD | ANOVA |
|---|---|---|---|---|
| C group | 6 | 8.9683 | 0.4190 | p = 0.00021 |
| VST group 1 | 6 | 9.0550 | 0.2581 | |
| VSLT group 2,3 | 6 | 8.3433 | 0.3922 | |
| MST group 3,4 | 6 | 9.2383 | 0.4771 | |
| MSLT group *,1,2,4 | 6 | 8.0100 | 0.6004 |
| Experimental Groups | N | Average (µm3) | SD | ANOVA |
|---|---|---|---|---|
| C group | 6 | 48.946 | 1.3474 | p < 0.0001 |
| VST group 1 | 6 | 46.6907 | 2.1166 | |
| VSLT group 2 | 6 | 49.2582 | 2.4273 | |
| MST group 3 | 6 | 47.4035 | 2.0873 | |
| MSLT group *,1,2,3 | 6 | 53.8737 | 1.8449 |
| Experimental Groups | N | Average (μm2) | SD | ANOVA |
|---|---|---|---|---|
| C group | 6 | 94.4110 | 7.0018 | p < 0.0001 |
| VST group *,1 | 6 | 84.3515 | 1.9660 | |
| VSLT group 2 | 6 | 93.03467 | 5.4438 | |
| MST group 3 | 6 | 93.5565 | 5.9623 | |
| MSLT group *,1,2,3 | 6 | 105.5905 | 5.4677 |
| Experimental Groups | N | Average (10−3 s) | SD | Average (10−3 s) | SD | Tukey’s Test |
|---|---|---|---|---|---|---|
| Temperature | 25 °C | 37 °C | ||||
| C group | 6 | 126.07 | 0.800 | 152.11 | 2.131 | p < 0.0001 |
| VST group | 6 | 124.06 1 | 23.459 | 146.96 1 | 17.624 | p = 0.0181 |
| VSLT group | 6 | 135.07 | 3.309 | 164.6 2 | 4.643 | p < 0.0001 |
| MST group | 6 | 138.45 | 11.318 | 163.75 | 14.788 | p = 0.0076 |
| MSLT group | 6 | 146.73 1 | 7.772 | 171.62 *,1,2 | 8.179 | p = 0.0003 |
| ANOVA | p = 0.023 (3–4) | p = 0.00493 | ||||
| Experimental Groups | N | Average (10−3 s) | SD | Average (10−3 s) | SD | Tukey’s Test |
|---|---|---|---|---|---|---|
| Temperature | 25 °C | 37 °C | ||||
| C group | 6 | 6.3877 | 0.4085 | 4.7196 | 0.4524 | p < 0.0001 |
| VST group | 6 | 5.7513 | 0.2166 | 4.3231 | 0.1593 | p < 0.0001 |
| VSLT group | 6 | 5.3336 * | 0.2952 | 4.0535 | 0.2581 | p < 0.0001 |
| MST group | 6 | 5.4573 * | 0.3184 | 4.2345 | 0.3395 | p < 0.0001 |
| MSLT group | 6 | 5.8468 | 0.6827 | 4.5173 | 0.6568 | p = 0.0064 |
| ANOVA | p = 0.00186 | p = 0.0813 | ||||
| Experimental Groups | N | Average (10−3 s) | SD | Average (10−3 s) | SD | Tukey’s Test |
|---|---|---|---|---|---|---|
| Temperature | 25 °C | 37 °C | ||||
| C group | 6 | 6.7296 | 0.4550 | 4.8720 | 0.4821 | p < 0.0001 |
| VST group | 6 | 6.0483 | 0.2341 | 4.4555 | 0.1635 | p < 0.0001 |
| VSLT group | 6 | 5.5534 * | 0.3174 | 4.1561 | 0.2694 | p < 0.0001 |
| MST group | 6 | 5.6845 * | 0.3574 | 4.3493 | 0.3655 | p < 0.0001 |
| MSLT group | 6 | 6.0940 | 0.7436 | 4.6430 | 0.6957 | p = 0.0058 |
| ANOVA | p = 0.00152 | p = 0.07842 | ||||
| Experimental Groups | N | Average (cm × s−1 × 103) | SD | Average (cm × s−1 × 103) | SD | Tukey’s Test |
|---|---|---|---|---|---|---|
| Temperature | 25 °C | 37 °C | ||||
| C group | 6 | 5.5458 | 0.4224 | 7.5087 | 0.5056 | p < 0.0001 |
| VST group | 6 | 6.3281 | 0.2119 | 8.6986 | 0.2518 | p < 0.0001 |
| VSLT group | 6 | 6.5753 * | 0.5294 | 8.9571 * | 0.6487 | p < 0.0001 |
| MST group | 6 | 5.9867 | 0.8846 | 8.2225 | 0.8455 | p < 0.0001 |
| MSLT group | 6 | 5.7611 | 0.8332 | 7.8596 | 1.2809 | p = 0.0100 |
| ANOVA | p = 0.0257 | p = 0.02366 | ||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bâlici, Ș.; Florea, A.; Al-Hajaj, A.I.; Chiorean, A.-D.; Nicula, G.Z. Bee Venom Melittin Modulates In Vivo Water Permeability of Red Blood Cells: Microscopic and 1H-NMR Data. Molecules 2025, 30, 4419. https://doi.org/10.3390/molecules30224419
Bâlici Ș, Florea A, Al-Hajaj AI, Chiorean A-D, Nicula GZ. Bee Venom Melittin Modulates In Vivo Water Permeability of Red Blood Cells: Microscopic and 1H-NMR Data. Molecules. 2025; 30(22):4419. https://doi.org/10.3390/molecules30224419
Chicago/Turabian StyleBâlici, Ștefana, Adrian Florea, Ameen Ibrahim Al-Hajaj, Alin-Dan Chiorean, and Gheorghe Zsolt Nicula. 2025. "Bee Venom Melittin Modulates In Vivo Water Permeability of Red Blood Cells: Microscopic and 1H-NMR Data" Molecules 30, no. 22: 4419. https://doi.org/10.3390/molecules30224419
APA StyleBâlici, Ș., Florea, A., Al-Hajaj, A. I., Chiorean, A.-D., & Nicula, G. Z. (2025). Bee Venom Melittin Modulates In Vivo Water Permeability of Red Blood Cells: Microscopic and 1H-NMR Data. Molecules, 30(22), 4419. https://doi.org/10.3390/molecules30224419

