Effect of Fullerenol C60(OH)24 on the Viability and Metabolism of THP-1 Cells
Abstract
1. Introduction
2. Results
2.1. Characterization of Nanoparticles
2.2. Effect of Fullerenol C60(OH)24 on the Viability and Apoptosis of THP-1 Cells
2.3. Cell Association of Fullerenol C60(OH)24
2.4. Effect of Fullerenol C60(OH)24 on the Metabolism of THP-1 Cells
3. Discussion
4. Materials and Methods
4.1. Cell Line
4.2. Fullerenol C60(OH)24
4.3. Z-Potential and DLS Size Measurement
4.4. TEM Imaging and Size Measurement
4.5. IR Analysis
4.6. Determination of Endotoxin Level
4.7. Absorbance Spectrum Measurement
4.8. Measurement of Metal Impurities
4.9. Fluorescence Spectrum
4.10. Cell Culturing
4.11. Flow Cytometry
4.12. Cell Metabolism
4.13. Statistical Analysis
4.14. Limitations of the Method
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| DLS | Dynamic light scattering |
| ECAR | Compensatory extracellular acidification rate |
| FCCP | Carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone |
| MFI | Mean fluorescence intensity |
| OCR | Oxygen consumption rates |
| PC7 | Phycoerythrin-cyanine 7 |
| PDI | Polydispersity index |
| PER | Proton efflux rate |
| SRC | Spare respiratory capacity |
References
- Injac, R.; Prijatelj, M.; Strukelj, B. Fullerenol Nanoparticles: Toxicity and Antioxidant Activity. In Oxidative Stress and Nanotechnology; Armstrong, D., Bharali, D.J., Eds.; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2013; Volume 1028, pp. 75–100. ISBN 978-1-62703-474-6. [Google Scholar]
- Seke, M.; Zivkovic, M.; Stankovic, A. Versatile Applications of Fullerenol Nanoparticles. Int. J. Pharm. 2024, 660, 124313. [Google Scholar] [CrossRef] [PubMed]
- Nurzynska, A.; Piotrowski, P.; Klimek, K.; Król, J.; Kaim, A.; Ginalska, G. Novel C60 Fullerenol-Gentamicin Conjugate–Physicochemical Characterization and Evaluation of Antibacterial and Cytotoxic Properties. Molecules 2022, 27, 4366. [Google Scholar] [CrossRef] [PubMed]
- Injac, R. Potential Medical Use of Fullerenols After Two Decades of Oncology Research. Technol. Cancer Res. Treat. 2023, 22, 15330338231201515. [Google Scholar] [CrossRef] [PubMed]
- Kovel, E.; Sachkova, A.; Vnukova, N.; Churilov, G.; Knyazeva, E.; Kudryasheva, N. Antioxidant Activity and Toxicity of Fullerenols via Bioluminescence Signaling: Role of Oxygen Substituents. Int. J. Mol. Sci. 2019, 20, 2324. [Google Scholar] [CrossRef]
- Kovel, E.S.; Kicheeva, A.G.; Vnukova, N.G.; Churilov, G.N.; Stepin, E.A.; Kudryasheva, N.S. Toxicity and Antioxidant Activity of Fullerenol C60,70 with Low Number of Oxygen Substituents. Int. J. Mol. Sci. 2021, 22, 6382. [Google Scholar] [CrossRef]
- Isakovic, A.; Markovic, Z.; Todorovic-Markovic, B.; Nikolic, N.; Vranjes-Djuric, S.; Mirkovic, M.; Dramicanin, M.; Harhaji, L.; Raicevic, N.; Nikolic, Z.; et al. Distinct Cytotoxic Mechanisms of Pristine versus Hydroxylated Fullerene. Toxicol. Sci. 2006, 91, 173–183. [Google Scholar] [CrossRef]
- Sharoyko, V.V.; Iamalova, N.R.; Ageev, S.V.; Meshcheriakov, A.A.; Iurev, G.O.; Petrov, A.V.; Nerukh, D.A.; Farafonov, V.S.; Vasina, L.V.; Penkova, A.V.; et al. In Vitro and In Silico Investigation of Water-Soluble Fullerenol C60(OH)24: Bioactivity and Biocompatibility. J. Phys. Chem. B 2021, 125, 9197–9212. [Google Scholar] [CrossRef]
- Bunz, H.; Plankenhorn, S.; Klein, R. Effect of Buckminsterfullerenes on Cells of the Innate and Adaptive Immune System: An in Vitro Study with Human Peripheral Blood Mononuclear Cells. Int. J. Nanomed. 2012, 7, 4571–4580. [Google Scholar] [CrossRef]
- Chen, K.; Geng, H.; Liang, W.; Liang, H.; Wang, Y.; Kong, J.; Zhang, J.; Liang, Y.; Chen, Z.; Li, J.; et al. Correction: Modulated Podosome Patterning in Osteoclasts by Fullerenol Nanoparticles Disturbs the Bone Resorption for Osteoporosis Treatment. Nanoscale 2020, 12, 12174–12176. [Google Scholar] [CrossRef]
- Tang, J.; Chen, Z.; Sun, B.; Dong, J.; Liu, J.; Zhou, H.; Wang, L.; Bai, R.; Miao, Q.; Zhao, Y.; et al. Polyhydroxylated Fullerenols Regulate Macrophage for Cancer Adoptive Immunotherapy and Greatly Inhibit the Tumor Metastasis. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 945–954. [Google Scholar] [CrossRef]
- Liu, S.; Liang, H.; Lv, L.; Hu, F.; Liu, Q.; Wang, Y.; Zhu, J.; Chen, Z.; Li, J.; Wang, Z.; et al. 3D Culture Boosting Fullerenol Nanoparticles to Induce Calreticulin Exposure on MCF-7 Cells for Enhanced Macrophage-Mediated Cell Removal. Colloids Surf. B Biointerfaces 2023, 224, 113204. [Google Scholar] [CrossRef]
- Lazarev, S.; Dolgikh, M.; Zamorina, S.; Timganova, V.; Bochkova, M.; Rayev, M. Polyhydroxylated Fullerenes: A Review of Biological Properties and Potential Applications in Biomedicine. Int. J. Pharm. 2025, 683, 126055. [Google Scholar] [CrossRef]
- Roy, P.; Bag, S.; Chakraborty, D.; Dasgupta, S. Exploring the Inhibitory and Antioxidant Effects of Fullerene and Fullerenol on Ribonuclease A. ACS Omega 2018, 3, 12270–12283. [Google Scholar] [CrossRef] [PubMed]
- Calvaresi, M.; Falini, G.; Bonacchi, S.; Genovese, D.; Fermani, S.; Montalti, M.; Prodi, L.; Zerbetto, F. Fullerenol Entrapment in Calcite Microspheres. Chem. Commun. 2011, 47, 10662. [Google Scholar] [CrossRef] [PubMed]
- Kuo, W.-S.; Chang, C.-Y.; Liu, J.-C.; Chen, J.-H.; So, E.C.; Wu, P.-C. Two-Photon Photoexcited Photodynamic Therapy with Water-Soluble Fullerenol Serving as the Highly Effective Two-Photon Photosensitizer Against Multidrug-Resistant Bacteria. Int. J. Nanomed. 2020, 15, 6813–6825. [Google Scholar] [CrossRef] [PubMed]
- Vileno, B.; Marcoux, P.R.; Lekka, M.; Sienkiewicz, A.; Fehér, T.; Forró, L. Spectroscopic and Photophysical Properties of a Highly Derivatized C60 Fullerol. Adv. Funct. Mater. 2006, 16, 120–128. [Google Scholar] [CrossRef]
- Ungurenasu, C.; Pinteala, M.; Dascalu, A. Binding Fullerenol C60(OH)24 to dsDNA. Int. J. Nanomed. 2009, 4, 193–199. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Kim, S.H.; Chen, P.; Chen, R.; Spuches, A.M.; Brown, J.M.; Lamm, M.H.; Ke, P.C. Dendrimer–Fullerenol Soft-Condensed Nanoassembly. J. Phys. Chem. C 2012, 116, 15775–15781. [Google Scholar] [CrossRef]
- United States Pharmacopeia. Water for Injection; United States Pharmacopeia: Rockville, MD, USA, 2018. [Google Scholar] [CrossRef]
- Dawid, A.; Górny, K.; Gburski, Z. The Influence of Distribution of Hydroxyl Groups on Vibrational Spectra of Fullerenol C60(OH)24 Isomers: DFT Study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 136, 1993–1997. [Google Scholar] [CrossRef]
- Xing, G.; Zhang, J.; Zhao, Y.; Tang, J.; Zhang, B.; Gao, X.; Yuan, H.; Qu, L.; Cao, W.; Chai, Z.; et al. Influences of Structural Properties on Stability of Fullerenols. J. Phys. Chem. B 2004, 108, 11473–11479. [Google Scholar] [CrossRef]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef]
- Timganova, V.P.; Bochkova, M.S.; Usanina, D.I.; Dolgikh, M.D.; Lazarev, S.S.; Rayev, M.B.B.; Zamorina, S.A. Evaluation of Cytotoxicity of Fullerenol C60(OH)22–24 Towards Human Peripheral Blood NK Cells in Vitro. Russ. J. Immunol. 2025, 28, 533–540. [Google Scholar] [CrossRef]
- Bochkova, M.S.; Timganova, V.P.; Usanina, D.I.; Zamorina, S.A.; Raev, M.B. Evaluation of the Immunotoxicity of Fullerenol C60(OH)22–24 in Relation to T- and B-Lymphocytes of Human Peripheral Blood. Cell Technol. Biol. Med. 2025, 3, 194–200. [Google Scholar] [CrossRef]
- Timganova, V.P.; Bochkova, M.S.; Lazarev, S.S.; Dolgikh, M.D.; Usanina, D.I.; Zamorina, S.A.; Rayev, M.B. Cytotoxicity of Fullerenol C60(OH)22–24 to Human Peripheral Blood Monocytes. Dokl. Biol. Sci. 2025, 5, 525–530. [Google Scholar]
- Ravelo-Nieto, E.; Cifuentes, J.; Ruiz Puentes, P.; Rueda-Gensini, L.; Quezada, V.; Ostos, C.; Muñoz-Camargo, C.; Reyes, L.H.; Duarte-Ruiz, A.; Cruz, J.C. Unlocking Cellular Barriers: Silica Nanoparticles and Fullerenol Conjugated Cell-Penetrating Agents for Enhanced Intracellular Drug Delivery. Front. Bioeng. Biotechnol. 2023, 11, 1184973. [Google Scholar] [CrossRef]
- Lichota, A.; Piwoński, I.; Michlewska, S.; Krokosz, A. A Multiparametric Study of Internalization of Fullerenol C60(OH)36 Nanoparticles into Peripheral Blood Mononuclear Cells: Cytotoxicity in Oxidative Stress Induced by Ionizing Radiation. Int. J. Mol. Sci. 2020, 21, 2281. [Google Scholar] [CrossRef] [PubMed]
- Borisenkova, A.A.; Eropkin, M.Y.; Konovalova, N.I.; Titova, A.V.; Markova, M.A.; Lyutova, Z.B.; Mazur, A.S.; Sedov, V.P.; Orlova, V.A.; Lykholay, A.N.; et al. Fullerenol C60(OH)36: Antioxidant, Cytoprotective, Anti-Influenza Virus Activity, and Self-Assembly in Aqueous Solutions and Cell Culture Media. Antioxidants 2024, 13, 1525. [Google Scholar] [CrossRef]
- Wang, M.; Yang, B.; Tang, M.; Guo, Q.; Chen, J.; Wang, M. Concentration-Dependent Effects of Fullerenol on Cultured Hippocampal Neuron Viability. Int. J. Nanomed. 2012, 7, 3099. [Google Scholar] [CrossRef]
- Sun, H.; Jiang, C.; Wu, L.; Bai, X.; Zhai, S. Cytotoxicity-Related Bioeffects Induced by Nanoparticles: The Role of Surface Chemistry. Front. Bioeng. Biotechnol. 2019, 7, 414. [Google Scholar] [CrossRef]
- Qiao, R.; Roberts, A.P.; Mount, A.S.; Klaine, S.J.; Ke, P.C. Translocation of C60 and Its Derivatives Across a Lipid Bilayer. Nano Lett. 2007, 7, 614–619. [Google Scholar] [CrossRef]
- Grebowski, J.; Krokosz, A.; Puchala, M. Membrane Fluidity and Activity of Membrane ATPases in Human Erythrocytes under the Influence of Polyhydroxylated Fullerene. Biochim. Biophys. Acta (BBA) Biomembr. 2013, 1828, 241–248. [Google Scholar] [CrossRef]
- Bolshakova, O.; Borisenkova, A.; Suyasova, M.; Sedov, V.; Slobodina, A.; Timoshenko, S.; Varfolomeeva, E.; Golomidov, I.; Lebedev, V.; Aksenov, V.; et al. In Vitro and in Vivo Study of the Toxicity of Fullerenols C60, C70 and C120O Obtained by an Original Two Step Method. Mater. Sci. Eng. C 2019, 104, 109945. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Wang, Y.; Liang, H.; Huang, H.; Liang, Y.; Zhang, J.; Chang, Y.; Li, J.; Fang, M.; Xing, G. Fullerenols Boosting the Therapeutic Effect of Anti-CD47 Antibody to Trigger Robust Anti-Tumor Immunity by Inducing Calreticulin Exposure. Nano Today 2021, 37, 101070. [Google Scholar] [CrossRef]
- Yang, L.; Hua, S.; Fan, J.; Zhou, Z.; Wang, G.; Jiang, F.; Xie, Z.; Xiao, Q.; Liu, Y. Inhibition of Autophagy via Lysosomal Impairment Enhances Cytotoxicity of Fullerenol under Starvation Condition. ACS Appl. Bio Mater. 2020, 3, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, P.; Paraskar, A.; Soni, S.; Mashelkar, R.A.; Sengupta, S. Fullerenol−Cytotoxic Conjugates for Cancer Chemotherapy. ACS Nano 2009, 3, 2505–2514. [Google Scholar] [CrossRef]
- Liu, Y.; Jiao, F.; Qiu, Y.; Li, W.; Qu, Y.; Tian, C.; Li, Y.; Bai, R.; Lao, F.; Zhao, Y.; et al. Immunostimulatory Properties and Enhanced TNF- α Mediated Cellular Immunity for Tumor Therapy by C60(OH)20 Nanoparticles. Nanotechnology 2009, 20, 415102. [Google Scholar] [CrossRef]
- Jiao, F.; Liu, Y.; Qu, Y.; Li, W.; Zhou, G.; Ge, C.; Li, Y.; Sun, B.; Chen, C. Studies on Anti-Tumor and Antimetastatic Activities of Fullerenol in a Mouse Breast Cancer Model. Carbon 2010, 48, 2231–2243. [Google Scholar] [CrossRef]
- Grebowski, J.; Kazmierska-Grebowska, P.; Cichon, N.; Konarska, A.; Wolszczak, M.; Litwinienko, G. Fullerenol C60(OH)36 Protects the Antioxidant Enzymes in Human Erythrocytes against Oxidative Damage Induced by High-Energy Electrons. Int. J. Mol. Sci. 2022, 23, 10939. [Google Scholar] [CrossRef]
- Kobzar, O.L.; Trush, V.V.; Tanchuk, V.Y.; Zhilenkov, A.V.; Troshin, P.A.; Vovk, A.I. Fullerene Derivatives as a New Class of Inhibitors of Protein Tyrosine Phosphatases. Bioorg. Med. Chem. Lett. 2014, 24, 3175–3179. [Google Scholar] [CrossRef]
- Serda, M.; Korzuch, J.; Dreszer, D.; Krzykawska-Serda, M.; Musioł, R. Interactions between Modified Fullerenes and Proteins in Cancer Nanotechnology. Drug Discov. Today 2023, 28, 103704. [Google Scholar] [CrossRef]
- Romero, N.; Swain, P.; Neilson, A.; Dranka, B.P. Improving Quan-Tification of Cellular Glycolytic Rate Using AgilentSeahorse XF Technology (White Paper); 5991-7894EN; Agilent Tech-Nologies, Inc.: Santa Clara, CA, USA, 2017. [Google Scholar]

















| Analyzed Parameters | Time, h | Spearman’s Correlation Coefficient (95% Confidence Interval) | p Value |
|---|---|---|---|
| Fullerenol association and cell viability | 24 | 0.04 (−0.29–0.35) | 0.8137 |
| 48 | −0.43 (−0.66–(−0.13)) | 0.0057 | |
| 72 | −0.78 (−0.88–(−0.61)) | <0.0001 | |
| Fullerenol association and apoptosis | 24 | 0.57 (0.31–0.76) | 0.0001 |
| 48 | 0.86 (0.75–0.93) | <0.0001 | |
| 72 | 0.88 (0.78–0.94) | <0.0001 |
| Parameters | Time, h | ||
|---|---|---|---|
| 24 | 48 | 72 | |
| NK-cells (0.25, 0.5, 2.5, 5, 12.5, 25, 50, 100, 200 µg/mL) (CD3−CD56+) | |||
| Viability, % and absolute quantity | ↔ | ↔ | ↔ |
| Fullerenol association | ↑100–200 | ||
| T-cells (0.25, 0.5, 2.5, 5, 12.5, 25, 50, 100, 200 µg/mL) (CD3+) | |||
| Viability, % | ↓100–200 | ↓200 | ↔ |
| Viability, absolute quantity | ↔ | ↔ | ↓50–200 |
| Fullerenol association | ↑200 | ↑100–200 | ↑100–200 |
| B-cells (0.25, 0.5, 2.5, 5, 12.5, 25, 50, 100, 200 µg/mL) (CD19+) | |||
| Viability, % and absolute quantity | ↔ | ↔ | ↔ |
| Fullerenol association | ↑200 | ↑100–200 | ↑50–200 |
| Monocytes (0.25, 0.5, 2.5, 5, 12.5, 25, 50, 100, 200 µg/mL) (CD14+) | |||
| Viability, % and absolute quantity | ↓200 | ↓200 | ↔ |
| Fullerenol association | ↑12.5–200 | ↑2.5–200 | ↑25–200 |
| THP-1 (0.25, 2.5, 25, 50, 100, 250, 500, 750, 1000 µg/mL) | |||
| Viability, % | ↑750 | ↔ | ↓750–1000 |
| Early apoptosis, % | ↔ | ↔ | ↑750–1000 |
| Late apoptosis, % | ↑1000 | ↑750–1000 | ↑750–1000 |
| Fullerenol association | ↑250–1000 | ↑250–1000 | ↑250–1000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Usanina, D.; Zamorina, S.; Bochkova, M.; Timganova, V.; Vlasova, V.; Ponomareva, V.; Dolgikh, M.; Lazarev, S.; Rayev, M. Effect of Fullerenol C60(OH)24 on the Viability and Metabolism of THP-1 Cells. Molecules 2025, 30, 4407. https://doi.org/10.3390/molecules30224407
Usanina D, Zamorina S, Bochkova M, Timganova V, Vlasova V, Ponomareva V, Dolgikh M, Lazarev S, Rayev M. Effect of Fullerenol C60(OH)24 on the Viability and Metabolism of THP-1 Cells. Molecules. 2025; 30(22):4407. https://doi.org/10.3390/molecules30224407
Chicago/Turabian StyleUsanina, Darya, Svetlana Zamorina, Maria Bochkova, Valeria Timganova, Violetta Vlasova, Valeria Ponomareva, Maria Dolgikh, Sergey Lazarev, and Mikhail Rayev. 2025. "Effect of Fullerenol C60(OH)24 on the Viability and Metabolism of THP-1 Cells" Molecules 30, no. 22: 4407. https://doi.org/10.3390/molecules30224407
APA StyleUsanina, D., Zamorina, S., Bochkova, M., Timganova, V., Vlasova, V., Ponomareva, V., Dolgikh, M., Lazarev, S., & Rayev, M. (2025). Effect of Fullerenol C60(OH)24 on the Viability and Metabolism of THP-1 Cells. Molecules, 30(22), 4407. https://doi.org/10.3390/molecules30224407

