Development and Comparison of New Voltammetric Procedures for the Determination of In(III) Using ASV and AdSV Techniques with SBiµE as an Green Working Electrode
Abstract
1. Introduction
2. Results
2.1. Selection of the Supporting Electrolyte
2.2. SBiµE Activation Step
2.2.1. Potential of Activation SBiµE
2.2.2. Time of Activation SBiµE
2.3. Indium Accumulation Step on SBiµE
2.3.1. The Potential of SBiµE in the Accumulation Step
2.3.2. Indium Accumulation Time on SBiµE
2.4. The Influence of Cupferron in the AdSV Technique
2.5. Analytical Characterisation
2.5.1. Procedure for Determining In(III) by the ASV Method
2.5.2. Procedure for Determining In(III) by the AdSV Method
2.6. Comparison of the Influence of Organic Substances Present in the Sample Matrix on the Analytical Signal in the ASV and AdSV Procedures
2.7. Comparison of the Influence of Inorganic Ions on the Analytical Signal in the ASV and AdSV Procedures
2.8. Seawater Analysis
3. Materials and Equipment
4. Measurement Procedure
4.1. ASV Measurement
4.2. AdSV Measurement
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ajiboye, T.O.; Amao, I.O.; Adeyemi, W.J.; Babalola, S.O.; Akinsuyi, O.S.; Ogunrombi, M.O.; Ogunlaja, A.S.; Mhlanga, S.D. Overview of medical and biological application of Indium(III) complexes. Chem. Afr. 2024, 7, 1729–1748. [Google Scholar] [CrossRef]
- Yandem, G.; Jabłońska-Czapla, M. Review of indium, gallium, and germanium as emerging contaminants: Occurrence, speciation and evaluation of the potential environmental impact. Arch. Environ. Prot. 2024, 50, 84–99. [Google Scholar] [CrossRef]
- Coelho, F.E.B.; Moreira, V.R.; Majuste, D.; Ciminelli, V.S.T.; Amaral, M.C.S. Sustainable indium recovery from e-waste and industrial effluents: Innovations and opportunities integrating membrane separation processes. Desalination 2025, 612, 118900. [Google Scholar] [CrossRef]
- Becci, A.; Amato, A.; Merli, G.; Beolchini, F. The green indium patented technology SCRIPT, for indium recovery from liquid crystal displays: Bench scale validation driven by sustainability assessment. Sustain 2024, 16, 8917. [Google Scholar] [CrossRef]
- Willner, J.; Fornalczyk, A.; Gajda, B.; Saternus, M. Bioleaching of indium and tin from used LCD panels. Physicochem. Probl. Miner. Process. 2018, 54, 639–645. [Google Scholar]
- National Toxicology Program. Chemical Information Profile for Indium Tin Oxide; U.S. Department of Health and Human Services: Washington, DC, USA, 2009. [Google Scholar]
- Ejigu, A.; Tefera, M.; Guadie, A. A review article on: Voltammetric detection of lead, mercury, chromium, and arsenic metal ions from environmental samples. Electrochem. Commun. 2025, 178, 107996. [Google Scholar] [CrossRef]
- Lu, Y.; Liang, X.; Niyungeko, C.; Zhou, J.; Xu, J.; Tian, G. A review of the identification and detection of heavy metal ions in the environment by voltammetry. Talanta 2018, 178, 324–338. [Google Scholar] [CrossRef]
- Zhan, J.; Wu, S.; Wu, Z.; Zhang, F.; Jin, B.; Yang, C. Review of underwater in situ voltammetry analyzers for trace metals. Chemosensors 2024, 12, 158. [Google Scholar] [CrossRef]
- Honeychurch, K.C. Recent developments in the stripping voltammetric determination of indium. WJAC 2013, 1, 8–13. [Google Scholar]
- Demars, R.D. Simultaneous determination of tin and indium using anodic stripping voltammetry. Anal. Chem. 1962, 34, 259–262. [Google Scholar] [CrossRef]
- Florence, T.M.; Batley, G.E.; Farrar, Y.J. The determination of indium by anodic stripping voltammetry. J. Electroanal. Chem. Interfacial Electrochem. 1974, 56, 301–309. [Google Scholar] [CrossRef]
- Ciszewski, A.; Łukaszewski, Z. The influence of long-chain amine and ammonium salts on the anodic stripping voltammetry of thallium, lead, tin, cadmium and indium. Anal. Chim. Acta 1983, 146, 51–59. [Google Scholar] [CrossRef]
- Romero, P.A.; Zlatev, R.; Stoytcheva, M.; Gotchev, V.; Valdez, B.; Montero, G.; Ibarra, R. Traces of In3+ direct quantification by anodic stripping differential alternative pulses voltammetry in excess of Cd2+ and Pb2+. Int. J. Electrochem. Sci. 2018, 13, 7310–7320. [Google Scholar] [CrossRef]
- Charalambous, A.; Economou, A. A study on the utility of bismuth-film electrodes for the determination of In(III) in the presence of Pb(II) and Cd(II) by square wave anodic stripping voltammetry. Anal. Chim. Acta 2005, 547, 53–58. [Google Scholar] [CrossRef]
- Farias, P.A.M.; Martin, C.L.M.; Ohara, A.K.; Gold, J.S. Cathodic adsorptive stripping voltammetry of indium complexed with morin at a static mercury drop electrode. Anal. Chim. Acta 1994, 293, 29–34. [Google Scholar] [CrossRef]
- Paolicchi, I.; Renedo, O.D.; Lomillo, M.A.A.; Martinez, M.J.A. Application of an optimization procedure in adsorptive stripping voltammetry for the determination of trace contaminant metals in aqueous medium. Anal. Chim. Acta 2004, 511, 223–229. [Google Scholar] [CrossRef]
- Benvidi, A.; Ardakani, M.M. Subnanomolar determination of indium by adsorptive stripping differential pulse voltammetry using factorial design for optimization. Anal. Lett. 2009, 42, 2430–2443. [Google Scholar] [CrossRef]
- Martynov, L.Y.; Sadova, M.K.; Sakharov, K.A.; Yashtulov, N.A.; Zaytsev, N.K. Determination of indium by adsorptive stripping voltammetry at the bismuth film electrode using combined electrode system facilitating medium exchange. Talanta 2024, 271, 125680. [Google Scholar] [CrossRef]
- Grabarczyk, M.; Wasąg, J. Ultratrace determination of indium in natural water by adsorptive stripping voltammetry in the presence of cupferron as a complexing agent. J. Electrochem. Soc. 2016, 163, H218–H222. [Google Scholar] [CrossRef]
- Xiang, C.; Zou, Y.; Xie, J.; Fei, X.; Li, J. Nafion-modified glassy carbon electrode for trace determination of indium. Anal. Lett. 2005, 38, 2045–2055. [Google Scholar] [CrossRef]
- Bobrowski, A.; Putek, M.; Zarębski, J. Antimony film electrode prepared in situ in hydrogen potassium tartrate in anodic stripping voltammetric trace detection of Cd(II), Pb(II), Zn(II), Tl(I), In(III) and Cu(II). Electroanalysis 2012, 24, 1071–1078. [Google Scholar] [CrossRef]
- Sopha, H.; Baldrianova, L.; Tesarova, E.; Hocevar, S.B.; Svancara, I.; Ogorevc, B.; Vytras, K. Insights into the simultaneous chronopotentiometric stripping measurement of indium(III), thallium(I) and zinc(II) in acidic medium at the in situ prepared antimony film carbon paste electrode. Electrochim. Acta 2010, 55, 7929–7933. [Google Scholar] [CrossRef]
- Grabarczyk, M.; Wasąg, J. Application of a lead film electrode in adsorptive stripping voltammetry for the determination of indium trace in water samples. J. Electrochem. Soc. 2016, 163, H465–H468. [Google Scholar] [CrossRef]
- Grabarczyk, M.; Adamczyk, M. Simple, responsive and cost effective simultaneous quantification of Ga(III) and In(III) in environmental water samples. Int. Agrophysics 2019, 33, 161–166. [Google Scholar] [CrossRef]
- Wasąg, J.; Grabarczyk, M. Adsorptive stripping voltammetry of In(III) in the presence of cupferron using an in situ plated bismuth film electrode. Anal. Methods 2016, 8, 3605. [Google Scholar] [CrossRef]
- Cao, Y.; Zhou, X.; Wang, Z.; Li, Y.; Yan, M.; Xiao, J.; Zhao, Y.; Fu, J.-H. Synthesis of bismuth film assembly on flexible carbon cloth for the electrochemical detection of heavy metal ions. Chemosensors 2024, 12, 103. [Google Scholar] [CrossRef]
- Dossi, C.; Monticelli, D.; Pozzi, A.; Recchia, S. Exploiting chemistry to improve performance of screen-printed, bismuth film electrodes (SP-BiFE). Biosensors 2016, 6, 38. [Google Scholar] [CrossRef]
- Pauliukaite, R.; Hocœevar, S.B.; Ogorevc, B.; Wang, J. Characterization and Applications of a Bismuth Bulk Electrode. Electroanalysis 2004, 16, 719–723. [Google Scholar] [CrossRef]
- Gęca, I.; Korolczuk, M. Sensitive determination of folic acid using a solid bismuth microelectrode by adsorptive stripping voltammetry. Electroanalysis 2020, 32, 496. [Google Scholar] [CrossRef]
- Geca, I.; Ochab, M.; Korolczuk, K. Anodic stripping voltammetry of Tl(I) determination with the use of a solid bismuth microelectrode. J. Electrochem. Soc. 2020, 167, 086506. [Google Scholar] [CrossRef]
- Sys, M.; Metelka, R.; Korecka, L.; Pokorna, H.; Svancara, I. Comparison of various bismuth film electrodes in simultaneous electrochemical detection of heavy metals for application in quantum dot-linked immunoassays. Monatsh. Chem. 2017, 148, 505–510. [Google Scholar] [CrossRef]






| Seawater | In(III) Added (nmol L−1) | ASV Technique | AdSV Technique | ||||
|---|---|---|---|---|---|---|---|
| In(III) Found (nmol L−1) | In(III) Recovery (%) | RSD (%) n = 5 | In(III) Found (nmol L−1) | In(III) Recovery (%) | RSD (%) n = 5 | ||
| Baltic Sea | 10.0 | 10.7 | 107 | 6.7 | 9.5 | 95 | 4.7 |
| 20.0 | 18.8 | 94 | 5.8 | 19.4 | 97 | 4.2 | |
| Synthetic Sea Water | 10.0 | 9.6 | 96 | 6.2 | 9.4 | 94 | 5.7 |
| 20.0 | 21.2 | 106 | 5.6 | 19.0 | 95 | 5.1 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grabarczyk, M.; Cwikla-Bundyra, W. Development and Comparison of New Voltammetric Procedures for the Determination of In(III) Using ASV and AdSV Techniques with SBiµE as an Green Working Electrode. Molecules 2025, 30, 4377. https://doi.org/10.3390/molecules30224377
Grabarczyk M, Cwikla-Bundyra W. Development and Comparison of New Voltammetric Procedures for the Determination of In(III) Using ASV and AdSV Techniques with SBiµE as an Green Working Electrode. Molecules. 2025; 30(22):4377. https://doi.org/10.3390/molecules30224377
Chicago/Turabian StyleGrabarczyk, Malgorzata, and Wieslawa Cwikla-Bundyra. 2025. "Development and Comparison of New Voltammetric Procedures for the Determination of In(III) Using ASV and AdSV Techniques with SBiµE as an Green Working Electrode" Molecules 30, no. 22: 4377. https://doi.org/10.3390/molecules30224377
APA StyleGrabarczyk, M., & Cwikla-Bundyra, W. (2025). Development and Comparison of New Voltammetric Procedures for the Determination of In(III) Using ASV and AdSV Techniques with SBiµE as an Green Working Electrode. Molecules, 30(22), 4377. https://doi.org/10.3390/molecules30224377

