A Comparative Study of C2-Symmetric and C1-Symmetric Hydroxamic Acids in Vanadium-Catalyzed Asymmetric Epoxidation of Allylic Alcohols
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis of N-Obz Amines
2.2. Analysis of Epoxidation Reaction Conditions
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Z.; Yamamoto, H. Hydroxamic Acids in Asymmetric Synthesis. Acc. Chem. Res. 2013, 46, 506–518. [Google Scholar] [CrossRef] [PubMed]
- Pawar, T.J.; Bonilla-Landa, I.; Reyes-Luna, A.; Barrera-Méndez, F.; Enríquez-Medrano, F.J.; Díaz-de-León-Gómez, R.E.; Olivares-Romero, J.L. Chiral Hydroxamic Acid Ligands in Asymmetric Synthesis: The Evolution of Metal-Catalyzed Oxidation Reactions. ChemistrySelect 2023, 8, e202300555. [Google Scholar] [CrossRef]
- Olivares-Romero, J.L.; Li, Z.; Yamamoto, H. Hf(IV)-Catalyzed Enantioselective Epoxidation of N-Alkenylsulfonamides and N-Tosyl Imines. J. Am. Chem. Soc. 2012, 134, 5440–5443. [Google Scholar] [CrossRef]
- Li, Z.; Yamamoto, H. Zirconium(IV)- and Hafnium(IV)-Catalyzed Highly Enantioselective Epoxidation of Homoallylic and Bishomoallylic Alcohols. J. Am. Chem. Soc. 2010, 132, 7878–7880. [Google Scholar] [CrossRef] [PubMed]
- Olivares-Romero, J.L.; Li, Z.; Yamamoto, H. Catalytic Enantioselective Epoxidation of Tertiary Allylic and Homoallylic Alcohols. J. Am. Chem. Soc. 2013, 135, 3411–3413. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yamamoto, H. Tungsten-Catalyzed Asymmetric Epoxidation of Allylic and Homoallylic Alcohols with Hydrogen Peroxide. J. Am. Chem. Soc. 2014, 136, 1222–1225. [Google Scholar] [CrossRef] [PubMed]
- Michelson, R.C.; Palermo, R.E.; Sharpless, K.B. Chiral Hydroxamic Acids as Ligands in the Vanadium Catalyzed Asymmetric Epoxidation of Allylic Alcohols by tert-Butyl Hydroperoxide. J. Am. Chem. Soc. 1977, 99, 1990–11992. [Google Scholar] [CrossRef]
- Bolm, C. Vanadium-Catalyzed asymmetric oxidations. Coord. Chem. Rev. 2003, 237, 245–256. [Google Scholar] [CrossRef]
- Hoshino, Y.; Murase, N.; Oishi, M.; Yamamoto, H. Design of Optically Active Hydroxamic Acids as Ligands in Vanadium-Catalyzed Asymmetric Epoxidation. Bull. Chem. Soc. Jpn. 2000, 73, 1653–1658. [Google Scholar] [CrossRef]
- Barlan, A.U.; Zhang, W.; Yamamoto, H. Development and Application of Versatile Bis-hydroxamic Acids for Catalytic Asymmetric Oxidation. Tetrahedron 2007, 63, 6075–6087. [Google Scholar] [CrossRef] [PubMed]
- Medford, A.; Vojvodic, A.; Hummelshøj, J.; Voss, J.; Abild-Pedersen, F.; Studt, F.; Bligaard, T.; Nilsson, A.; Nørskov, J.K. From the Sabatier Principle to a Predictive Theory of Transition-Metal Heterogeneous Catalysis. J. Catal. 2015, 328, 36–42. [Google Scholar] [CrossRef]
- Suto, Y.; Tsuji, R.; Kanai, M.; Shibasaki, M. Cu(I)-Catalyzed Direct Enantioselective Cross-Aldol-Type Reaction of Acetonitrile. Org. Lett. 2005, 7, 3757–3760. [Google Scholar] [CrossRef] [PubMed]
- Pfaltz, A.; Drury, W.J. Design of Chiral Ligands for Asymmetric Catalysis: From C2-Symmetric P,P- and N,N-Ligands to Sterically and Electronically Nonsymmetrical P,N-Ligands. Proc. Natl. Acad. Sci. USA 2004, 101, 5723–5726. [Google Scholar] [CrossRef] [PubMed]
- Trost, B.M.; Hung, C.-I.; Koester, D.C.; Miller, Y. Development of Non-C2-Symmetric Prophenol Ligands: The Asymmetric Vinylation of N-Boc Imines. Org. Lett. 2015, 17, 3778–3781. [Google Scholar] [CrossRef] [PubMed]
- Pfaltz, A. Recent Developments in Asymmetric Catalysis. Chimia 2001, 55, 708–714. [Google Scholar] [CrossRef]
- RajanBabu, T.V.; Casalnuovo, A.L. Role of Electronic Asymmetry in the Design of New Ligands: The Asymmetric Hydrocyanation Reaction. J. Am. Chem. Soc. 1996, 118, 6325–6326. [Google Scholar] [CrossRef]
- Zhang, W.; Basak, A.; Kosugi, Y.; Hoshino, Y.; Yamamoto, H. Enantioselective Epoxidation of Allylic Alcohols by a Chiral Complex of Vanadium: An Effective Controller System and a Rational Mechanistic Model. Angew. Chem. Int. Ed. 2005, 44, 4389–4391. [Google Scholar] [CrossRef] [PubMed]
- Pawar, T.J.; Valtierra-Galván, M.F.; Rodríguez-Hernández, A.; Reyes-Luna, A.; Bonilla-Landa, I.; García-Barradas, O.; Barrera-Méndez, F.; Olivares-Romero, J.L. Synthesis of Novel C2-Bishydroxamic Acid Ligands and Their Application in Asymmetric Epoxidation Reactions. Synlett 2023, 34, 2496–2502. [Google Scholar]
- Banerjee, A.; Yamamoto, H. Direct N–O Bond Formation via Oxidation of Amines with Benzoyl Peroxide. Chem. Sci. 2019, 10, 2124–2129. [Google Scholar] [CrossRef] [PubMed]



![]() | ||||||
| Entry | Lewis Acid (% mol) | HA (% mol) | Solvent | Temperature (°C) | Conversion (%) | e.e. a (%) |
|---|---|---|---|---|---|---|
| 1 | VO(OiPr)3 (10) | BHA1 (10) | CH2Cl2 | −20 | 14 | 9 |
| 2 | VO(OiPr)3 (10) | BHA2 (10) | CH2Cl2 | −20 | 11 | 7 |
| 3 | VO(OiPr)3 (10) | HA3 (12) | CH2Cl2 | −20 | n.r. | n.d. b |
| 4 | VO(OiPr)3 (10) | HA3 (12) | CH2Cl2 | r.t. | ≥99 | 71 c |
![]() | ||||
| Entry | Lewis Acid (10% mol) | HA (12% mol) | Conversion | e.e. a |
|---|---|---|---|---|
| 1 | VO(OiPr)3 | HA1 | ≥99 | 15 |
| 2 | Ti(OiPr)4 | HA2 | 0 | n.d. |
| 3 | VO(OiPr)3 | HA2 | ≥99 | 22 |
| 4 | VO(acac)2 | HA2 | ≥99 | 19 |
| 5 | Ti(OiPr)4 | HA3 | 0 | n.d. b |
| 6 | VO(OiPr)3 | HA3 | ≥99 | 19 |
| 7 | VO(OiPr)3 | HA4 | ≥99 | 11 |
| 8 | VO(OiPr)3 | HA5 | ≥99 | 30 |
| 9 | VO(OiPr)3 | HA6 | ≥99 | 4 |
| 10 | VO(OiPr)3 | HA7 | ≥99 | 49 |
![]() | |||||||
| Entry | Lewis Acid (% mol) | HA (% mol) | Solvent | Additive | Temperature | Conversion (%) | e.e. a (%) |
|---|---|---|---|---|---|---|---|
| 1 | VO(OiPr)3 (10) | HA2 (12) | CH2Cl2 | - | r.t. | ≥99 | 23 |
| 2 | VO(OiPr)3 (10) | HA2 (12) | CH3CN | - | r.t. | ≥99 | 4 |
| 3 | VO(OiPr)3 (10) | HA3 (12) | CH2Cl2 | - | r.t. | ≥99 | 71 b |
| 4 | VO(OiPr)3 (10) | HA3 (12) | CH3CN | - | r.t. | ≥99 | 63 |
| 5 | VO(OiPr)3 (5) | HA2 (7) | Toluene | - | r.t. | ≥99 | 8 |
| 6 | VO(OiPr)3 (5) | HA2 (7) | Toluene | - | r.t. | ≥99 | 55 c |
| 7 | Ti(OiPr)4 (1.05 eq) | HA3 (1.05 eq) | CH2Cl2 | - | r.t. | 0 | n.d. d |
| 8 | VO(OiPr)3 (10) | HA2 (12) | Toluene | MS 4Å | r.t. | ≥99 | 18 |
| 9 | VO(OiPr)3 (10) | HA2 (12) | Toluene | MgO | r.t. | ≥99 | 22 |
| 10 | VO(OiPr)3 (10) | HA2 (20) | Toluene | - | r.t. | ≥99 | 25 |
| 11a | VO(OiPr)3 (10) | HA7 (20) | Toluene | - | r.t. | ≥99 | 7 |
| 12 | VO(OiPr)3 (10) | HA1 (12) | Toluene | - | 0 °C | ≥99 | 19 |
| 13 | VO(OiPr)3 (10) | HA3 (12) | Toluene | - | 0 °C | ≥99 | 23 |
| 14 | VO(OiPr)3 (10) | HA2 (12) | Toluene | - | 0 °C | ≥99 | 21 |
| 15 | VO(OiPr)3 (10) | HA6 (12) | Toluene | - | 0 °C | ≥99 | 8 |
| 16 | VO(OiPr)3 (10) | HA7 (12) | Toluene | - | 0 °C | ≥99 | 4 |
| 17 | VO(OiPr)3 (10) | HA4 (12) | Toluene | - | 0 °C | ≥99 | 14 |
| 18 | VO(OiPr)3 (10) | HA5 (12) | Toluene | - | 0 °C | ≥99 | 24 |
| 19 | VO(acac)2 (10) | HA2 (12) | Toluene | - | 0 °C | ≥99 | 17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valtierra-Galván, M.; Rodríguez-Hernández, A.; Bonilla-Landa, I.; Barrera-Méndez, F.; Enríquez-Medrano, F.J.; Díaz de León-Gómez, R.E.; Olivares-Romero, J.L. A Comparative Study of C2-Symmetric and C1-Symmetric Hydroxamic Acids in Vanadium-Catalyzed Asymmetric Epoxidation of Allylic Alcohols. Molecules 2025, 30, 4311. https://doi.org/10.3390/molecules30214311
Valtierra-Galván M, Rodríguez-Hernández A, Bonilla-Landa I, Barrera-Méndez F, Enríquez-Medrano FJ, Díaz de León-Gómez RE, Olivares-Romero JL. A Comparative Study of C2-Symmetric and C1-Symmetric Hydroxamic Acids in Vanadium-Catalyzed Asymmetric Epoxidation of Allylic Alcohols. Molecules. 2025; 30(21):4311. https://doi.org/10.3390/molecules30214311
Chicago/Turabian StyleValtierra-Galván, Marco, Alfredo Rodríguez-Hernández, Israel Bonilla-Landa, Felipe Barrera-Méndez, Francisco Javier Enríquez-Medrano, Ramón Enrique Díaz de León-Gómez, and José Luis Olivares-Romero. 2025. "A Comparative Study of C2-Symmetric and C1-Symmetric Hydroxamic Acids in Vanadium-Catalyzed Asymmetric Epoxidation of Allylic Alcohols" Molecules 30, no. 21: 4311. https://doi.org/10.3390/molecules30214311
APA StyleValtierra-Galván, M., Rodríguez-Hernández, A., Bonilla-Landa, I., Barrera-Méndez, F., Enríquez-Medrano, F. J., Díaz de León-Gómez, R. E., & Olivares-Romero, J. L. (2025). A Comparative Study of C2-Symmetric and C1-Symmetric Hydroxamic Acids in Vanadium-Catalyzed Asymmetric Epoxidation of Allylic Alcohols. Molecules, 30(21), 4311. https://doi.org/10.3390/molecules30214311




