Racemosol Derivatives and Other Metabolites from Bauhinia malabarica Bark with Antibacterial Activity
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Experimental Procedure
3.2. Plant Material
3.3. Extraction and Isolation
3.4. ECD Calculations
3.5. Antimicrobial Properties
3.5.1. Determination of Antimicrobial Activity
3.5.2. Overlay Spot Assay for Antimicrobial Screening
3.5.3. Microdilution Method for MIC and MBC
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thetsana, P.; Chaowuttikul, C.; Palanuvej, C.; Ruangrungsi, N. Pharmacognostic Specifications, Quercetin and Quercitrin Quantification in Bauhinia Malabarica Leaf. Pharmacogn. J. 2019, 11, 155–160. [Google Scholar] [CrossRef]
- Kaewamatawong, R.; Kitajima, M.; Kogure, N.; Takayama, H. Flavonols from Bauhinia malabarica. J. Nat. Med. 2008, 62, 364–365. [Google Scholar] [CrossRef] [PubMed]
- Kittakoop, P.; Kirtikara, K.; Tanticharoen, M.; Thebtaranonth, Y. Antimalarial Preracemosols A and B, Possible Biogenetic Precursors of Racemosol from Bauhinia malabarica Roxb. Phytochemistry 2000, 55, 349–352. [Google Scholar] [CrossRef] [PubMed]
- Songarsa, S.; Rajviroongit, S.; Sae-Tang, D.; Hannongbua, S.; Kirtikara, K.; Kittakoop, P. New Racemosol Derivatives as Potent Cyclooxygenase (COX) Inhibitors. Chem. Biodivers. 2005, 2, 1635–1647. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.; Dash, S.; Ankita; Thakur, S.; Kumar, R.; Singh, G.; Kaur, C. Genus Bauhinia (Fabaceae): A Review from Phytochemistry to Pharmacology- Exploring Traditional Uses and Toxicological Insights across Asia. Phytomedicine 2024, 135, 156246. [Google Scholar] [CrossRef] [PubMed]
- Rashed, K.; Butnariu, M. Antimicrobial and Antioxidant Activities of Bauhinia racemosa Lam. and Chemical Content. Iran J. Pharm. Res. 2014, 13, 1073–1080. [Google Scholar] [PubMed]
- Schevenels, F.T.; Jadsadajerm, S.; Lekphrom, R.; Yodsin, N.; Suebrasri, T.; Senawong, T.; Wisetsai, A. Siamfuranones A–C, Three Novel Furanone Derivatives from the Flowers of Uvaria siamensis and Their Biological Activities. Nat. Prod. Res. 2024, 39, 3930–3939. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.; Alam, S.; Saxena, U. A new tetracyclic phenol and other constituents from the roots of Bauhinia racemosa. Indian J. Chem. 2002, 41, 1321–1322. [Google Scholar] [CrossRef]
- Anjaneyulu, A.S.R.; Reddy, A.V.R.; Reddy, D.S.K.; Cameron, T.S.; Roe, S.P. Racemosol: A Novel Tetracyclic Phenol from Bauhimia racemosa Lamk. Tetrahedron 1986, 42, 2417–2420. [Google Scholar] [CrossRef]
- Maillard, M.P.; Recio-Iglesias, M.; Saadou, M.; Stoeckli-Evans, H.; Hostettmann, K. Novel Antifungal Tetracyclic Compounds from Bauhinia rufescens LAM. Helv. Chim. Acta. 1991, 74, 791–799. [Google Scholar] [CrossRef]
- Grimblat, N.; Zanardi, M.M.; Sarotti, A.M. Beyond DP4: An Improved Probability for the Stereochemical Assignment of Isomeric Compounds Using Quantum Chemical Calculations of NMR Shifts. J. Org. Chem. 2015, 80, 12526–12534. [Google Scholar] [CrossRef] [PubMed]
- Lobiuc, A.; Pavăl, N.-E.; Mangalagiu, I.I.; Gheorghiță, R.; Teliban, G.-C.; Amăriucăi-Mantu, D.; Stoleru, V. Future Antimicrobials: Natural and Functionalized Phenolics. Molecules 2023, 28, 1114. [Google Scholar] [CrossRef] [PubMed]
- Kamal, G.M.; Uddin, J.; Asmari, M.; Noreen, A.; Liaqat, A.; Sabir, A.; Khan, J.; Iqbal, R.; Sharma, A.; Nayik, G.A.; et al. Natural Polyphenols as a Promising Aquatic Food Preservative: A Concurrent Review. J. Agric. Food Res. 2025, 22, 102046. [Google Scholar] [CrossRef]
- Kumar, R.S.; Sivakumar, T.; Sunderam, R.S.; Gupta, M.; Mazumdar, U.K.; Gomathi, P.; Rajeshwar, Y.; Saravanan, S.; Kumar, M.S.; Murugesh, K.; et al. Antioxidant and Antimicrobial Activities of Bauhinia racemosa L. Stem Bark. Braz. J. Med. Biol. Res. 2005, 38, 1015–1024. [Google Scholar] [CrossRef] [PubMed]
- Ju, J.-H.; Li, X.-T.; Shen, Q.-K.; Guo, H.-Y.; Quan, Z.-S.; Yin, X.-M. Advances in Structural Modification of Natural Products with Antimicrobial Activity. Fitoterapia 2025, 186, 106815. [Google Scholar] [CrossRef] [PubMed]
- De Rossi, L.; Rocchetti, G.; Lucini, L.; Rebecchi, A. Antimicrobial potential of polyphenols: Mechanisms of action and microbial responses—A narrative review. Antioxidants 2025, 14, 200. [Google Scholar] [CrossRef] [PubMed]
- Dembińska, K.; Shinde, A.H.; Pejchalová, M.; Richert, A.; Swiontek Brzezinska, M. The Application of Natural Phenolic Substances as Antimicrobial Agents in Agriculture and Food Industry. Foods 2025, 14, 1893. [Google Scholar] [CrossRef] [PubMed]
- Bouarab Chibane, L.; Degraeve, P.; Ferhout, H.; Bouajila, J.; Oulahal, N. Plant antimicrobial polyphenols as potential natural food preservatives. J. Sci. Food Agric. 2019, 99, 1457–1474. [Google Scholar] [CrossRef] [PubMed]
- Miklasińska-Majdanik, M.; Kępa, M.; Wojtyczka, R.D.; Idzik, D.; Wąsik, T.J. Phenolic compounds diminish antibiotic resistance of Staphylococcus aureus clinical strains. Int. J. Environ. Res. Public Health 2018, 15, 2321. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision D.01; Gaussian Inc.: Wallingford, CT, USA, 2013. [Google Scholar]
- Sirisarn, W.; Mordmuang, A.; Kerdkumthong, K.; Saeheng, S. Exploring Bougainvillea Glabra Flowers: A Promising Source of Natural Antimicrobial and Anticancer Agents. J. Appl. Biol. Biotechnol. 2024, 12, 174–184. [Google Scholar] [CrossRef]




| No. | 3-Hydroxy-8-O-Methylracemosol (4) | 3-Hydroxy-9-O-Methylracemosol (5) | ||
|---|---|---|---|---|
| δC | δH (Mult, J in Hz) | δC | δH (Mult, J in Hz) | |
| 2 | 76.9 | - | 76.9 | - |
| 3 | 71.9 | 4.31 (m) | 71.9 | 4.28 (m) |
| 4 | 41.4 | 4.31 (m) | 41.3 | 4.28 (m) |
| gem-Me | 27.5 | 1.55 (s) | 27.5 | 1.55 (s) |
| 17.7 | 1.23 (s) | 17.7 | 1.23 (s) | |
| 4a | 115.7 | - | 115.5 | - |
| 5 | 135.5 | - | 134.1 | - |
| 6 | 116.0 | 6.90 (d, 8.6) | 114.1 | 6.68 (d, 8.4) |
| 7 | 109.0 | 6.72 (d, 8.6) | 121.3 | 7.04 (d, 8.4) |
| 8 | 146.5 | - | 149.2 | - |
| 9 | 143.5 | - | 145.4 | - |
| 10 | 129.6 | - | 137.2 | - |
| 11 | 22.3 | 3.37 (m) 3.04 (m) | 23.1 | 3.25 (m) 3.15 (m) |
| 12 | 34.3 | 3.12 (m) 2.76 (m) | 34.9 | 3.17 (m) 2.80 (m) |
| 13 | 136.4 | - | 136.1 | - |
| 14 | 110.7 | 6.11 (s) | 110.7 | 6.11 (s) |
| 15 | 154.7 | - | 154.7 | - |
| 16 | 110.1 | - | 110.2 | - |
| 17 | 152.1 | - | 152.1 | - |
| 16-Me | 8.7 | 1.97 (s) | 8.7 | 1.97 (s) |
| 8-OMe | 56.3 | 3.80 (s) | - | - |
| 9-OMe | - | - | 61.3 | 3.78 (s) |
| 3-OH | - | 4.09 (d, 4.8) | - | 4.17 (s) |
| 8-OH | - | - | - | 7.87 (s) |
| 9-OH | - | 7.30 (s) | - | - |
| 15-OH | - | 7.78 (s) | - | 7.80 (s) |
| Pathogenic Isolates | Antimicrobial Activity of Compounds 1–6 (100 ug) | Positive Control (amp/gen) | Negative Control (1% DMSO) | |||||
|---|---|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 | |||
| Gram-positive bacteria | ||||||||
| Bacillus subtilis 7988 (Clinical isolate) | + | + | + | + | − | + | + * | − |
| Bacillus subtilis ATCC6051 | + | + | + | + | − | + | + * | − |
| Enterococcus faecalis 4232 (Clinical isolates) | + | + | + | + | − | + | + * | − |
| Listeria monocytogenes (Clinical isolates) | + | + | + | + | − | + | + * | − |
| Staphylococcus aureus ATCC25923 | + | + | + | + | − | + | + * | − |
| Staphylococcus aureus ATCC29213 | + | + | + | + | − | + | + * | − |
| Methicillin Resistant Staphylococcus aureus (Clinical isolate) | + | + | + | + | − | + | − * | − |
| Staphylococcus epidermitis 35984 | + | + | + | + | − | + | + * | − |
| Streptococcus pyogenes ATCC49619 | + | + | + | + | − | + | + * | − |
| Gram-negative bacteria | − | − | ||||||
| Acinetobacter baumannii ATCC19606 | + | − | − | + | − | + | + ** | − |
| Multidrug-resistant Acinetobacter baumannii (MDR) | + | + | − | + | − | + | − ** | − |
| Escherichia coli ATCC25922 | + | + | − | + | − | + | + ** | − |
| Escherichia coli O157:H7 | + | + | + | + | − | + | + ** | − |
| Klebsiella pneumoniae ATCC70063 | + | + | − | + | − | + | + ** | − |
| Pseudomonas aeruginosa ATCC27853 | − | − | − | + | − | + | + ** | − |
| Salmonella enterica serotype Typhi (Clinical isolates) | + | + | − | + | − | + | + ** | − |
| Shigella enteritis (Clinical isolates) | − | − | − | − | − | − | + ** | − |
| Pathogenic Isolates | Minimum Inhibitory Concentration (MIC)/Minimum Bactericidal Concentration (MBC) in µg/µL of Compounds 1–6 | Minimum Inhibitory Concentration (MIC) of Ampicillin/Gentamycin (µg/mL) | Negative Control (1% DMSO) | |||||
|---|---|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 | |||
| Gram-positive bacteria | ||||||||
| Bacillus subtilis 7988 (Clinical isolate) | 0.625/0.625 | 0.625/2.5 | 2.5/2.5 | 0.625/0.625 | NT | 0.15625/0.15625 | 0.5/0.5 | R |
| Bacillus subtilis ATCC6051 | 0.15625/>5 | 0.3125/>5 | 1.25/>5 | 0.3125/>5 | NT | 0.15625/>5 | 0.125/0.125 | R |
| Enterococcus faecalis 4232 (Clinical isolates) | 0.15625/>5 | 0.625/>5 | 2.5/>5 | 1.25/>5 | NT | 0.3125/0.625 | 0.25/NA | R |
| Listeria monocytogenes (Clinical isolates) | 0.15625/0.3125 | 0.625/>5 | 0.625/>5 | 0.3125/1.25 | NT | 0.3125/0.3125 | 0.25/2 | R |
| Staphylococcus aureus ATCC25923 | 0.15625/0.3125 | 0.625/>5 | 0.625/>5 | 0.625/>5 | NT | 0.3125/0.3125 | 0.25/0.5 | R |
| Staphylococcus aureus ATCC29213 | 0.15625/0.3125 | 0.625/>5 | 0.625/>5 | 0.3125/>5 | NT | 0.3125/0.625 | 0.25/0.125 | R |
| Methicillin Resistant Staphylococcus aureus (Clinical isolate) | 0.15625/0.15625 | 0.625/>5 | 0.625/>5 | 0.3125/>5 | NT | 0.3125/0.3125 | NA/0.25 | R |
| Staphylococcus epidermitis 35984 | 0.15625/0.625 | 1.25/>5 | 1.25/>5 | 0.15625/>5 | NT | 0.3125/0.625 | 0.5/0.25 | R |
| Streptococcus pyogenes ATCC49619 | 0.3125/0.3125 | 1.25/>5 | 1.25/>5 | 0.3125/>5 | NT | 0.3125/0.625 | 0.25/0.125 | R |
| Gram-negative bacteria | ||||||||
| Acinetobacter baumannii ATCC19606 | 0.3125/0.625 | NT | NT | 0.3125/5 | NT | 0.15625/0.3125 | NT/1 | R |
| Multidrug-resistant Acinetobacter baumannii (MDR) | 1.25/5 | 1.25/>5 | NT | 1.25/5 | NT | 1.25/5 | NT/NA | R |
| Escherichia coli ATCC25922 | 2.5/>5 | 2.5/>5 | NT | 2.5/5 | NT | 2.5/>5 | NT/0.031 | R |
| Escherichia coli O157:H7 | 2.5/5 | 2.5/5 | 2.5/5 | 2.5/>5 | NT | 2.5/5 | NT/0.063 | R |
| Klebsiella pneumoniae ATCC70063 | 2.5/>5 | 2.5/>5 | NT | 2.5/>5 | NT | 2.5/>5 | NT/0.062 | R |
| Pseudomonas aeruginosa ATCC27853 | NT | NT | NT | 2.5/>5 | NT | 2.5/5 | NT/4 | R |
| Salmonella enterica serotype Typhi (Clinical isolates) | 2.5/>5 | 2.5/>5 | NT | 2.5/>5 | NT | 2.5/5 | NT/2 | R |
| Shigella enteritis (Clinical isolates) | NT | NT | NT | NT | NT | NT | NT/1 | R |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sirisarn, W.; Somteds, A.; Jadsadajerm, S.; Kaennakam, S.; Yodsin, N.; Wisetsai, A. Racemosol Derivatives and Other Metabolites from Bauhinia malabarica Bark with Antibacterial Activity. Molecules 2025, 30, 4308. https://doi.org/10.3390/molecules30214308
Sirisarn W, Somteds A, Jadsadajerm S, Kaennakam S, Yodsin N, Wisetsai A. Racemosol Derivatives and Other Metabolites from Bauhinia malabarica Bark with Antibacterial Activity. Molecules. 2025; 30(21):4308. https://doi.org/10.3390/molecules30214308
Chicago/Turabian StyleSirisarn, Wanchat, Apisara Somteds, Supachai Jadsadajerm, Sutin Kaennakam, Nuttapon Yodsin, and Awat Wisetsai. 2025. "Racemosol Derivatives and Other Metabolites from Bauhinia malabarica Bark with Antibacterial Activity" Molecules 30, no. 21: 4308. https://doi.org/10.3390/molecules30214308
APA StyleSirisarn, W., Somteds, A., Jadsadajerm, S., Kaennakam, S., Yodsin, N., & Wisetsai, A. (2025). Racemosol Derivatives and Other Metabolites from Bauhinia malabarica Bark with Antibacterial Activity. Molecules, 30(21), 4308. https://doi.org/10.3390/molecules30214308

