BN-Doped Polycyclic Aromatic Hydrocarbons and Their Applications in Optoelectronics
Abstract
1. Introduction
2. An Overview of the Structure of BN-Doped Polycyclic Aromatic Hydrocarbons
3. An Overview of the Synthesis of BN-Doped Polycyclic Aromatic Hydrocarbons

4. An Overview of the Properties of BN-Doped Polycyclic Aromatic Hydrocarbons
5. Application of BN-Doped Polycyclic Aromatic Hydrocarbons in Optoelectronics
5.1. Application of BN-Doped Polycyclic Aromatic Hydrocarbons in Optics
5.1.1. Light-Emitting Devices

5.1.2. Light Detector
5.1.3. Photocatalytic Material
5.2. Application of BN-Doped Polycyclic Aromatic Hydrocarbons in Electronics
5.2.1. Boron–Nitrogen Field-Effect Transistor
5.2.2. Photovoltaic Devices

5.2.3. Electrochemical Sensor
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, W.; Liu, Y.; Zhu, D. π-Conjugated molecules with fused rings for organic field-effect transistors: Design, synthesis and applications. Chem. Soc. Rev. 2010, 39, 1489–1502. [Google Scholar] [CrossRef]
- Dou, L.T.; You, J.B.; Hong, Z.R.; Xu, Z.; Li, G.; Street, R.A.; Yang, Y. 25th Anniversary Article: A Decade of Organic/Polymeric Photovoltaic Research. Adv. Mater. 2013, 25, 6642–6671. [Google Scholar] [CrossRef]
- Wang, S.N.; Yang, D.T.; Lu, J.S.; Shimogawa, H.; Gong, S.L.; Wang, X.; Mellerup, S.K.; Wakamiya, A.; Chang, Y.L.; Yang, C.L.; et al. In Situ Solid-State Generation of (BN)Pyrenes and Electroluminescent Devices. Angew. Chem.-Int. Ed. 2015, 54, 15074–15078. [Google Scholar] [CrossRef]
- Wang, E.J.; Wang, C.L.; Meng, Q.; Li, H.X.; Hu, W.P.; Zhu, D.B. Syntheses of molecular wires containing redox center: Reversible redox property and good energy level matching with Au electrode. Chin. Chem. Lett. 2008, 19, 1285–1289. [Google Scholar] [CrossRef]
- Jiang, W.; Li, Y.; Wang, Z.H. Heteroarenes as high performance organic semiconductors. Chem. Soc. Rev. 2013, 42, 6113–6127. [Google Scholar] [CrossRef]
- Mas-Torrent, M.; Durkut, M.; Hadley, P.; Ribas, X.; Rovira, C. High mobility of dithiophene-tetrathiafulvalene single-crystal organic field effect transistors. J. Am. Chem. Soc. 2004, 126, 984–985. [Google Scholar] [CrossRef]
- Ebata, H.; Izawa, T.; Miyazaki, E.; Takimiya, K.; Ikeda, M.; Kuwabara, H.; Yui, T. Highly soluble [1]benzothieno [3,2-b]benzothiophene (BTBT) derivatives for high-performance, solution-processed organic field-effect transistors. J. Am. Chem. Soc. 2007, 129, 15732–15733. [Google Scholar] [CrossRef] [PubMed]
- Coropceanu, V.; Cornil, J.; da Silva, D.A.; Olivier, Y.; Silbey, R.; Brédas, J.L. Charge transport in organic semiconductors. Chem. Rev. 2007, 107, 926–952. [Google Scholar] [CrossRef] [PubMed]
- Forrest, S.R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 2004, 428, 911–918. [Google Scholar] [CrossRef] [PubMed]
- Veinot, J.G.C.; Marks, T.J. Toward the ideal organic light-emitting diode. The versatility and utility of interfacial tailoring by cross-linked siloxane interlayers. Acc. Chem. Res. 2005, 38, 632–643. [Google Scholar] [CrossRef]
- Inganäs, O. Organic Photovoltaics over Three Decades. Adv. Mater. 2018, 30, 1800388. [Google Scholar] [CrossRef]
- Wang, X.Y.; Yao, X.L.; Müllen, K. Polycyclic aromatic hydrocarbons in the graphene era. Sci. China-Chem. 2019, 62, 1099–1144. [Google Scholar] [CrossRef]
- Dewar, M.; Kubba, V.P.; Pettit, R. 624. New heteroaromatic compounds. Part I. 9-Aza-10-boraphenanthrene. J. Chem. Soc. (Resumed) 1958, 3073–3076. [Google Scholar] [CrossRef]
- Jaska, C.A.; Emslie, D.J.H.; Bosdet, M.J.D.; Piers, W.E.; Sorensen, T.S.; Parvez, M. Triphenylene analogues with B2N2C2 cores: Synthesis, structure, redox behavior, and photophysical properties. J. Am. Chem. Soc. 2006, 128, 10885–10896. [Google Scholar] [CrossRef]
- Bosdet, M.J.D.; Piers, W.E.; Sorensen, T.S.; Parvez, M. 10a-Aza-10b-borapyrenes: Heterocyclic analogues of pyrene with internalized BN moieties. Angew. Chem.-Int. Ed. 2007, 46, 4940–4943. [Google Scholar] [CrossRef]
- Wang, J.Y.; Pei, J. BN-embedded aromatics for optoelectronic applications. Chin. Chem. Lett. 2016, 27, 1139–1146. [Google Scholar] [CrossRef]
- Langmuir, I. Isomorphism, Isosterism and Covalence. J. Am. Chem. Soc. 1919, 41, 1543–1559. [Google Scholar] [CrossRef]
- Jesson, J.P.; Meakin, P. Determination of mechanistic information from nuclear magnetic resonance line shapes for intramolecular exchange. Acc. Chem. Res. 1973, 6, 269–275. [Google Scholar] [CrossRef]
- Bosdet, M.J.D.; Piers, W.E. BN as a CC substitute in aromatic systems. Can. J. Chem. 2009, 87, 8–29. [Google Scholar] [CrossRef]
- Campbell, P.G.; Marwitz, A.J.V.; Liu, S.Y. Recent advances in azaborine chemistry. Angew. Chem. Int. Ed. 2012, 51, 6074–6092. [Google Scholar] [CrossRef]
- Dewar, M.J.S.; Golden, R.; Spanninger, P.A. New heteroaromatic compounds. XXXIII. 5,1,3,4-Boratriazaroles. J. Am. Chem. Soc. 1971, 93, 3298–3299. [Google Scholar] [CrossRef]
- Anthony, J.E. Functionalized acenes and heteroacenes for organic electronics. Chem. Rev. 2006, 106, 5028–5048. [Google Scholar] [CrossRef]
- Wang, C.L.; Dong, H.L.; Hu, W.P.; Liu, Y.Q.; Zhu, D.B. Semiconducting π-Conjugated Systems in Field-Effect Transistors: A Material Odyssey of Organic Electronics. Chem. Rev. 2012, 112, 2208–2267. [Google Scholar] [CrossRef]
- Fukazawa, A.; Yamaguchi, S. Ladder π-Conjugated Materials Containing Main-Group Elements. Chem.-Asian J. 2009, 4, 1386–1400. [Google Scholar] [CrossRef]
- Diaz, D.B.; Yudin, A.K. The versatility of boron in biological target engagement. Nat. Chem. 2017, 9, 731–742. [Google Scholar] [CrossRef]
- Xu, X.Y.; Liu, M.Y.; Li, C.L.; Liu, X.G. Recent Advance of 1,2-BN Heteroaromatics in China. Chin. J. Org. Chem. 2023, 43, 1611–1644. [Google Scholar] [CrossRef]
- Baranac-Stojanovic, M. Aromaticity and Stability of Azaborines. Chem.-A Eur. J. 2014, 20, 16558–16565. [Google Scholar] [CrossRef] [PubMed]
- Jäkle, F. Advances in the Synthesis of Organoborane Polymers for Optical, Electronic, and Sensory Applications. Chem. Rev. 2010, 110, 3985–4022. [Google Scholar] [CrossRef]
- Dhbaibi, K.; Favereau, L.; Crassous, J. Enantioenriched Helicenes and Helicenoids Containing Main-Group Elements (B, Si, N, P). Chem. Rev. 2019, 119, 8846–8953. [Google Scholar] [CrossRef]
- Hirai, M.; Tanaka, N.; Sakai, M.; Yamaguchi, S. Structurally Constrained Boron-, Nitrogen-, Silicon-, and Phosphorus-Centered Polycyclic π-Conjugated Systems. Chem. Rev. 2019, 119, 8291–8331. [Google Scholar] [CrossRef]
- Borissov, A.; Maurya, Y.K.; Moshniaha, L.; Wong, W.S.; Zyla-Karwowska, M.; Stepien, M. Recent Advances in Heterocyclic Nanographenes and Other Polycyclic Heteroaromatic Compounds. Chem. Rev. 2022, 122, 565–788. [Google Scholar] [CrossRef] [PubMed]
- Delouche, T.; Hissler, M.; Bouit, P.A. Polycyclic aromatic hydrocarbons containing heavy group 14 elements: From synthetic challenges to optoelectronic devices. Coord. Chem. Rev. 2022, 464, 214553. [Google Scholar] [CrossRef]
- Chen, X.B.; Tan, D.H.; Yang, D.T. Multiple-boron-nitrogen (multi-BN) doped π-conjugated systems for optoelectronics. J. Mater. Chem. C 2022, 10, 13499–13532. [Google Scholar] [CrossRef]
- Naveen, K.R.; Yang, H.I.; Kwon, J.H. Double boron-embedded multiresonant thermally activated delayed fluorescent materials for organic light-emitting diodes. Commun. Chem. 2022, 5, 149. [Google Scholar] [CrossRef]
- Liu, Z.; Marder, T.B. B-N versus C-C: How Similar Are They? Angew. Chem. Int. Ed. 2008, 47, 242–244. [Google Scholar] [CrossRef] [PubMed]
- Dewar, M.; Dietz, R. 546. New heteroaromatic compounds. Part III. 2, 1-Borazaro-naphthalene (1, 2-dihydro-1-aza-2-boranaphthalene). J. Chem. Soc. (Resumed) 1959, 2728–2730. [Google Scholar] [CrossRef]
- Wang, X.Y.; Narita, A.; Feng, X.L.; Müllen, K. B2N2-Dibenzo[a,e]pentalenes: Effect of the BN Orientation Pattern on Antiaromaticity and Optoelectronic Properties. J. Am. Chem. Soc. 2015, 137, 7668–7671. [Google Scholar] [CrossRef]
- Ishibashi, J.S.A.; Dargelos, A.; Darrigan, C.; Chrostowska, A.; Liu, S.Y. BN Tetracene: Extending the Reach of BN/CC Isosterism in Acenes. Organometallics 2017, 36, 2494–2497. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Ishibashi, J.S.A.; Darrigan, C.; Dargelos, A.; Chrostowska, A.; Li, B.; Vasiliu, M.; Dixon, D.A.; Liu, S.Y. The Least Stable Isomer of BN Naphthalene: Toward Predictive Trends for the Optoelectronic Properties of BN Acenes. J. Am. Chem. Soc. 2017, 139, 6082–6085. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.T.; Shi, Y.G.; Peng, T.; Wang, S.N. BN-Heterocycles Bearing Two BN Units: Influence of the Linker and the Location of BN Units on Electronic Properties and Photoreactivity. Organometallics 2017, 36, 2654–2660. [Google Scholar] [CrossRef]
- McConnell, C.R.; Liu, S.Y. Late-stage functionalization of BN-heterocycles. Chem. Soc. Rev. 2019, 48, 3436–3453. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.F.; Zeng, J.C.; Zhuang, F.D.; Zhao, K.X.; Sun, Z.H.; Yao, Z.F.; Lu, Y.; Wang, X.Y.; Wang, J.Y.; Pei, J. Parent B2N2-Perylenes with Different BN Orientations. Angew. Chem.-Int. Ed. 2021, 60, 23313–23319. [Google Scholar] [CrossRef]
- Li, E.L.; Jin, M.J.; Jiang, R.J.; Zhang, L.; Zhang, Y.L.; Liu, M.Y.; Wu, X.M.; Liu, X.G. Synthesis, Characterization, and Properties of BN-Fluoranthenes. Org. Lett. 2022, 24, 5503–5508. [Google Scholar] [CrossRef]
- Li, W.L. Synthesis and Properties of BN-Doped Acenaphthylene-Type Polycyclic Aromatic Hydrocarbons. Master’s Thesis, Tianjin University of Technology, Tianjin, China, 2023. [Google Scholar] [CrossRef]
- Luo, H.; Wan, Q.Y.; Choi, W.; Tsutsui, Y.; Dmitrieva, E.; Du, L.L.; Phillips, D.L.; Seki, S.; Liu, J.Z. Two-Step Synthesis of B2N2-Doped Polycyclic Aromatic Hydrocarbon Containing Pentagonal and Heptagonal Rings with Long-Lived Delayed Fluorescence. Small 2023, 19, 2301769. [Google Scholar] [CrossRef]
- Wu, L.; Huang, Z.Y.; Miao, J.S.; Wang, S.N.; Li, X.Y.; Li, N.Q.; Cao, X.S.; Yang, C.L. Orienting Group Directed Cascade Borylation for Efficient One-Shot Synthesis of 1,4-BN-Doped Polycyclic Aromatic Hydrocarbons as Narrowband Organic Emitters. Angew. Chem.-Int. Ed. 2024, 63, e202402020. [Google Scholar] [CrossRef]
- Zhou, S.M. Synthesis, Structure and Photophysical Properties of Novel Organic Boron-Carbon-Nitrogen Fluorescent Material. Ph.D. Thesis, Shandong University, Jinan, China, 2023. Available online: https://link.cnki.net/doi/10.27272/d.cnki.gshdu.2023.000352 (accessed on 25 December 2024).
- Niedenzu, K. Recent Developments in the Chemistry of Aminoboranes. Angew. Chem. Int. Ed. Engl. 1964, 3, 86–92. [Google Scholar] [CrossRef]
- Giustra, Z.X.; Liu, S.Y. The State of the Art in Azaborine Chemistry: New Synthetic Methods and Applications. J. Am. Chem. Soc. 2018, 140, 1184–1194. [Google Scholar] [CrossRef]
- Min, Y.; Dou, C.D.; Tian, H.K.; Liu, J.; Wang, L.X. A disk-type polyarene containing four B←N units. Chem. Commun. 2019, 55, 3638–3641. [Google Scholar] [CrossRef]
- Hatakeyama, T.; Shiren, K.; Nakajima, K.; Nomura, S.; Nakatsuka, S.; Kinoshita, K.; Ni, J.P.; Ono, Y.; Ikuta, T. Ultrapure Blue Thermally Activated Delayed Fluorescence Molecules: Efficient HOMO-LUMO Separation by the Multiple Resonance Effect. Adv. Mater. 2016, 28, 2777–2781. [Google Scholar] [CrossRef] [PubMed]
- Agou, T.; Kobayashi, J.; Kawashima, T. Syntheses, structure, and optical properties of ladder-type fused azaborines. Org. Lett. 2006, 8, 2241–2244. [Google Scholar] [CrossRef] [PubMed]
- Zang, C. Synthesis and Properties of BN Doped Phenanthrenes and BNB Doped Polycyclic Aromatic Hydrocarbons. Master’s Thesis, Tianjin University of Technology, Tianjin, China, 2019. [Google Scholar] [CrossRef]
- Wu, Q.E.; Wu, W.L.; Liu, X.L. Site-dependent boron embedding effects on the optoelectronic properties of polycyclic aromatic hydrocarbons. Dye. Pigment. 2025, 243, 113091. [Google Scholar] [CrossRef]
- Sotiropoulos, J.-M.; Romanenko, V.D. Six-Membered Rings with Two or More Heteroatoms with at Least One Boron. Compr. Heterocycl. Chem. 2022, 9, 806–845. [Google Scholar] [CrossRef]
- Stepien, M.; Gonka, E.; Zyla, M.; Sprutta, N. Heterocyclic Nanographenes and Other Polycyclic Heteroaromatic Compounds: Synthetic Routes, Properties, and Applications. Chem. Rev. 2017, 117, 3479–3716. [Google Scholar] [CrossRef] [PubMed]
- Kondo, Y.; Yoshiura, K.; Kitera, S.; Nishi, H.; Oda, S.; Gotoh, H.; Sasada, Y.; Yanai, M.; Hatakeyama, T. Narrowband deep-blue organic light-emitting diode featuring an organoboron-based emitter. Nat. Photonics 2019, 13, 678–682. [Google Scholar] [CrossRef]
- Chan, C.Y.; Tanaka, M.; Lee, Y.T.; Wong, Y.W.; Nakanotani, H.; Hatakeyama, T.; Adachi, C. Stable pure-blue hyperfluorescence organic light-emitting diodes with high-efficiency and narrow emission. Nat. Photonics 2021, 15, 245. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Zhang, D.D.; Huang, T.Y.; Gillett, A.J.; Liu, Y.; Hu, D.P.; Cui, L.S.; Bin, Z.Y.; Li, G.M.; Wei, J.B.; et al. Multi-Resonance Deep-Red Emitters with Shallow Potential-Energy Surfaces to Surpass Energy-Gap Law. Angew. Chem.-Int. Ed. 2021, 60, 20498–20503. [Google Scholar] [CrossRef]
- Li, Q.; Wu, Y.; Wang, X. Boron-, Sulfur- and Nitrogen-Doped Polycyclic Aromatic Hydrocarbon Multiple Resonance Emitters for Narrow-Band Blue Emission. Chem.–A Eur. J. 2022, 28, e202104214. [Google Scholar] [CrossRef]
- Li, Y.H. Synthesis, Properties and Application of BN-Doped Perylene-Type Polycyclic Aromatic Hydrocarbons. Master’s Thesis, Tianjin University of Technology, Tianjin, China, 2023. [Google Scholar] [CrossRef]
- Liu, Y.H.; Perepichka, D.F. Acenaphthylene as a building block for π-electron functional materials. J. Mater. Chem. C 2021, 9, 12448–12461. [Google Scholar] [CrossRef]
- Nakatsuka, S.; Yasuda, N.; Hatakeyama, T. Four-step synthesis of B2N2-embedded corannulene. J. Am. Chem. Soc. 2018, 140, 13562–13565. [Google Scholar] [CrossRef]
- Sakamaki, T.; Nakamuro, T.; Yamashita, K.; Hirata, K.; Shang, R.; Nakamura, E. B2N2-Doped Dibenzo[a,m]Rubicene: Modular Synthesis, Properties, and Coordination-Induced Color Tunability. Chem. Mater. 2021, 33, 5337–5344. [Google Scholar] [CrossRef]
- Takano, H.; Shiozawa, N.; Imai, Y.; Kanyiva, K.S.; Shibata, T. Catalytic Enantioselective Synthesis of Axially Chiral Polycyclic Aromatic Hydrocarbons (PAHs) via Regioselective C-C Bond Activation of Biphenylenes. J. Am. Chem. Soc. 2020, 142, 4714–4722. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Liu, S.Q.; Yang, P.; Shi, T.; Fan, J.W.; Zhou, G.J.; Su, B.C. BN-Benzo[b]fluoranthenes: Facile synthesis, characterization, and optoelectronic properties. Org. Chem. Front. 2024, 11, 2548–2553. [Google Scholar] [CrossRef]
- Jin, M.J. Study on the Properties of Furan-Fused BN Polycyclic Hydrocarbons and Their Optoelectronic Devices. Master’s Thesis, Tianjin University of Technology, Tianjin, China, 2022. [Google Scholar] [CrossRef]
- Sanchez, D.S.; Belopolski, I.; Cochran, T.A.; Xu, X.T.; Yin, J.X.; Chang, G.Q.; Xie, W.W.; Manna, K.; Süss, V.; Huang, C.Y.; et al. Topological chiral crystals with helicoid-arc quantum states. Nature 2019, 567, 500–505. [Google Scholar] [CrossRef]
- Kwon, Y.; Jung, J.Y.; Lee, W.B.; Oh, J.H. Axially Chiral Organic Semiconductors for Visible-Blind UV-Selective Circularly Polarized Light Detection. Adv. Sci. 2024, 11, 2308262. [Google Scholar] [CrossRef]
- Li, W.H.; Du, C.Z.; Chen, X.Y.; Fu, L.; Gao, R.R.; Yao, Z.F.; Wang, J.Y.; Hu, W.P.; Pei, J.; Wang, X.Y. BN-Anthracene for High-Mobility Organic Optoelectronic Materials through Periphery Engineering. Angew. Chem.-Int. Ed. 2022, 61, e202201464. [Google Scholar] [CrossRef]
- Oda, M.; Nothofer, H.G.; Lieser, G.; Scherf, U.; Meskers, S.C.J.; Neher, D. Circularly polarized electroluminescence from liquid-crystalline chiral polyfluorenes. Adv. Mater. 2000, 12, 362–365. [Google Scholar] [CrossRef]
- Li, W.H.; Zhang, Y.; Ren, K.Y.; Du, C.Z.; Yao, Z.F.; Pei, J.; Wang, X.Y. Ultraviolet circularly polarized light detection based on chiral BN-anthracene derivatives. J. Mater. Chem. C 2024, 12, 15408–15412. [Google Scholar] [CrossRef]
- Liu, J.; Wu, X.M.; Liu, X.G.; Li, E.L.; Jiao, Z.Q.; Yin, S.G. UV-A/B High-Sensitivity Organic Photodetectors Containing Butterfly-Shaped Furan-Fused BN-Dihydropyrene with Push-Pull Electron “Wings” toward Image Sensor. Adv. Funct. Mater. 2024, 34, 2404870. [Google Scholar] [CrossRef]
- Señorans, S.; Valencia, I.; Merino, E.; Iglesias, M.; Fernández-Rodríguez, M.; Maya, E.M. Hyper-Cross-Linked Porous Polymer Featuring B-N Covalent Bonds (HCP-BNs): A Stable and Efficient Metal-Free Heterogeneous Photocatalyst. ACS Macro Lett. 2023, 12, 949–954. [Google Scholar] [CrossRef]
- Zhang, Z.L.; Hu, X.; Qiu, S.; Su, J.L.; Bai, R.; Zhang, J.; Tian, W. Boron–Nitrogen-Embedded Polycyclic Aromatic Hydrocarbon-Based Controllable Hierarchical Self-Assemblies through Synergistic Cation–π and C–H···π Interactions for Bifunctional Photo- and Electro-Catalysis. J. Am. Chem. Soc. 2024, 146, 11328–11341. [Google Scholar] [CrossRef] [PubMed]
- Hatakeyama, T.; Hashimoto, S.; Seki, S.; Nakamura, M. Synthesis of BN-Fused Polycyclic Aromatics via Tandem Intramolecular Electrophilic Arene Borylation. J. Am. Chem. Soc. 2011, 133, 18614–18617. [Google Scholar] [CrossRef]
- Wang, X.Y.; Lin, H.R.; Lei, T.; Yang, D.C.; Zhuang, F.D.; Wang, J.Y.; Yuan, S.C.; Pei, J. Azaborine Compounds for Organic Field-Effect Transistors: Efficient Synthesis, Remarkable Stability, and BN Dipole Interactions. Angew. Chem.-Int. Ed. 2013, 52, 3117–3120. [Google Scholar] [CrossRef]
- Zhuang, F.D.; Sun, Z.H.; Yao, Z.F.; Chen, Q.R.; Huang, Z.; Yang, J.H.; Wang, J.Y.; Pei, J. BN-Embedded Tetrabenzopentacene: A Pentacene Derivative with Improved Stability. Angew. Chem.-Int. Ed. 2019, 58, 10708–10712. [Google Scholar] [CrossRef]
- Zhao, K.X.; Yao, Z.F.; Wang, Z.Y.; Zeng, J.C.; Ding, L.; Xiong, M.; Wang, J.Y.; Pei, J. “Spine Surgery” of Perylene Diimides with Covalent B-N Bonds toward Electron-Deficient BN-Embedded Polycyclic Aromatic Hydrocarbons. J. Am. Chem. Soc. 2022, 144, 3091–3098. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, L.; Lin, D.Q.; Rana, S.; Mali, K.S.; Ling, H.F.; Xie, L.H.; De Feyter, S.; Liu, J.Z. A BN-Doped U-Shaped Heteroacene as a Molecular Floating Gate for Ambipolar Charge Trapping Memory. Angew. Chem.-Int. Ed. 2023, 62, e202303335. [Google Scholar] [CrossRef]
- Li, C.L.; Sun, Y.N.; Xue, N.; Guo, Y.K.; Jiang, R.J.; Wang, Y.H.; Liu, Y.J.; Jiang, L.; Liu, X.G.; Wang, Z.H.; et al. BN-Acene Ladder with Enhanced Charge Transport for Organic Field-Effect Transistors. Angew. Chem.-Int. Ed. 2025, 64, e202423002. [Google Scholar] [CrossRef] [PubMed]
- Polman, A.; Knight, M.; Garnett, E.C.; Ehrler, B.; Sinke, W.C. Photovoltaic materials: Present efficiencies and future challenges. Science 2016, 352, aad4424. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.P.; Xu, Y.; Peng, Z.X.; Hou, J.H.; Ade, H. Low Temperature Aggregation Transitions in N3 and Y6 Acceptors Enable Double-Annealing Method That Yields Hierarchical Morphology and Superior Efficiency in Nonfullerene Organic Solar Cells. Adv. Funct. Mater. 2020, 30, 2005011. [Google Scholar] [CrossRef]
- Harillo-Baños, A.; Fan, Q.P.; Riera-Galindo, S.; Wang, E.E.; Inganäs, O.; Campoy-Quiles, M. High-Throughput Screening of Blade-Coated Polymer:Polymer Solar Cells: Solvent Determines Achievable Performance. ChemSusChem 2022, 15, e202101888. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.M.; Wang, X.Y.; Zhuang, F.D.; Ai, N.; Wang, J.; Wang, J.Y.; Pei, J.; Peng, J.B.; Cao, Y. Curved BN-embedded nanographene for application in organic solar cells. J. Mater. Chem. A 2016, 4, 15420–15425. [Google Scholar] [CrossRef]
- Dou, C.D.; Long, X.J.; Ding, Z.C.; Xie, Z.Y.; Liu, J.; Wang, L.X. An Electron-Deficient Building Block Based on the B←N Unit: An Electron Acceptor for All-Polymer Solar Cells. Angew. Chem.-Int. Ed. 2016, 55, 1436–1440. [Google Scholar] [CrossRef]
- Long, X.J.; Ding, Z.C.; Dou, C.D.; Zhang, J.D.; Liu, J.; Wang, L.X. Polymer Acceptor Based on Double B←N Bridged Bipyridine (BNBP) Unit for High-Efficiency All-Polymer Solar Cells. Adv. Mater. 2016, 28, 6504–6508. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Dou, C.; Xie, Z.; Liu, J.; Wang, L. Polymer acceptor based on B←N units with enhanced electron mobility for efficient all-polymer solar cells. Angew. Chem. Int. Ed. 2016, 55, 5313–5317. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, M.; Machado, F.B.C.; Plasser, F.; Aquino, A.J.A.; Lischka, H. A systematic analysis of excitonic properties to seek optimal singlet fission: The BN-substitution patterns in tetracene. J. Mater. Chem. C 2020, 8, 7793–7804. [Google Scholar] [CrossRef]
- Long, X.J.; Dou, C.D.; Liu, J.; Wang, L.X. Fine-Tuning LUMO Energy Levels of Conjugated Polymers Containing a B←N Unit. Macromolecules 2017, 50, 8521–8528. [Google Scholar] [CrossRef]
- Zhao, R.Y.; Wang, N.; Yu, Y.J.; Liu, J. Organoboron Polymer for 10% Efficiency All-Polymer Solar Cells. Chem. Mater. 2020, 32, 1308–1314. [Google Scholar] [CrossRef]
- Pang, S.T.; Wang, Z.Q.; Yuan, X.Y.; Pan, L.H.; Deng, W.Y.; Tang, H.R.; Wu, H.B.; Chen, S.S.; Duan, C.H.; Huang, F.; et al. A Facile Synthesized Polymer Featuring B-N Covalent Bond and Small Singlet-Triplet Gap for High-Performance Organic Solar Cells. Angew. Chem.-Int. Ed. 2021, 60, 8813–8817. [Google Scholar] [CrossRef]
- Liu, X.Y.; Pang, S.T.; Zeng, L.; Deng, W.Y.; Yang, M.Q.; Yuan, X.Y.; Li, J.Y.; Duan, C.H.; Huang, F.; Cao, Y. An electron acceptor featuring a B-N covalent bond and small singlet-triplet gap for organic solar cells. Chem. Commun. 2022, 58, 8686–8689. [Google Scholar] [CrossRef]
- Liu, X.Y. Design, Synthesis, and Photovoltaic Application of Small Molecular Acceptors Featuring B–N Bond or Intrinsic Quinoidal Structure. Master’s Thesis, South China University of Technology, Guangzhou, China, 2023. [Google Scholar] [CrossRef]
- Mizaikoff, B. Waveguide-enhanced mid-infrared chem/bio sensors. Chem. Soc. Rev. 2013, 42, 8683–8699. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.L.; Zhu, L.L.; Liu, H.; Wu, Y.S.; Chen, Z.L.; Fu, H.B.; Tian, Z.Y. Single-fluorophore-based fluorescent probes enable dual-channel detection of Ag+ and Hg2+ with high selectivity and sensitivity. Anal. Chim. Acta 2014, 839, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Zhao, Y.B.; Li, J.B.; Cao, J.; Zhu, J.; Sun, X.W.; Zhang, Q.C. Synthesis, Characterization, Physical Properties, and OLED Application of Single BN-Fused Perylene Diimide. J. Org. Chem. 2015, 80, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Lepeltier, M.; Lukoyanova, O.; Jacobson, A.; Jeeva, S.; Perepichka, D.F. New azaborine-thiophene heteroacenes. Chem. Commun. 2010, 46, 7007–7009. [Google Scholar] [CrossRef]
- Li, G.; Xiong, W.W.; Gu, P.Y.; Cao, J.; Zhu, J.; Ganguly, R.; Li, Y.X.; Grimsdale, A.C.; Zhang, Q.C. 1,5,9-Triaza-2,6,10-triphenylboracoronene: BN-Embedded Analogue of Coronene. Org. Lett. 2015, 17, 560–563. [Google Scholar] [CrossRef]
- Zhao, Z.H.; Wang, L.; Li, S.; Zhang, W.D.; He, G.; Wang, D.; Hou, S.M.; Wan, L.J. Single-Molecule Conductance through an Isoelectronic B-N Substituted Phenanthrene Junction. J. Am. Chem. Soc. 2020, 142, 8068–8073. [Google Scholar] [CrossRef]
- Huang, H.X.; Chen, D.; Li, F.; Xing, Z.X.; Zhao, J.J.; Wu, D.; Liang, G.J.; Xia, J.L. BN-embedded eleven-ring fused heteroaromatics: Synthesis, optoelectronic properties and fluoride susceptibility. Dye. Pigm. 2020, 177, 108271. [Google Scholar] [CrossRef]
- Zhuang, F.D.; Yang, J.H.; Sun, Z.H.; Zhang, P.F.; Chen, Q.R.; Wang, J.Y.; Pei, J. BN Fused Diazulenyl-Carbazole: Synthesis, Structure, and Properties. Chin. J. Chem. 2021, 39, 909–912. [Google Scholar] [CrossRef]
- Zhao, J.J.; Huang, H.X.; Zhou, W.; Wu, D.; Xia, J.L. Synthesis and characterization of a BN-embedded nine-ring fused heteroaromatics with dual channel detection of fluoride anions. Dye. Pigm. 2021, 194, 109648. [Google Scholar] [CrossRef]
- Huang, H.A.; Yao, J.X.; Xu, H.; Li, J.Q.; Wang, H.B.; Xiong, C.; Fang, B.H.; Wang, Y.W.; Zhou, Y.; Cao, X.H.; et al. Precise Molecular Design for Two Parent BN-Pentacyclic Isomers Through Stitching Engineering Toward Extremely Sensitive Explosive Detection. Adv. Opt. Mater. 2023, 11, 2202433. [Google Scholar] [CrossRef]





| Specific Compounds/Materials | Limit of Detection (LOD) | Selectivity | Stability |
|---|---|---|---|
| PDI—1BN (Single BN-Fused Perylene Diimide) | 1.5 μM (in CHCl3) | Only responds to F− (among 12 anions, only F− induces fluorescence quenching/absorption change; Ac− has only slight response at 100 equiv) | Thermal decomposition temperature of 402 °C (TGA); stable in solid state at room temperature, soluble in CHCl3/THF |
| 1a/1b (Azaboraindacenoheterole) | F− not directly measured; logKa = 3.3 (F− binding constant in CH2Cl2) | Only responds to F− (no interaction with H2O, THF, Cl−, Br−, etc.) | Thermal stability ~300 °C (TGA); stable in solid/solution state (duration not specified); stable under nitrogen but oxidizes in air. |
| 1,5,9—Triaza—2,6,10—triphenylborane (Crown—ether Analogue) | F− not directly measured; stepwise hydroxylation response in wet solvent | Not directly measured for F−; the B–Ph bond mainly reacts with H2O/OH−, indirectly reflecting insufficient selectivity for F− | Thermal decomposition temperature of 322 °C (under inert atmosphere); soluble in chlorinated solvents; easily degrades in moist solvents (generating byproduct 4 within 14 days) |
| BN—substituted Phenanthrene Derivative (Single-Molecule Junction) | F− not directly measured; 4-fold decrease in conductance at 1 eq F− | Only responds to F− (C = C analogues have no response to F−) | Stable in solution (CH2Cl2); reversible conductance response in single-molecule junction state |
| BNAT1 (Eleven-Ring Fused BN Polyarene) | 3.85 μM (in THF) | Only responds to F− (not affected by Cl−, Br−, OAc− etc.) | Stable for several months in solid/solution (THF); good thermal stability |
| BN—Az (BN-Fused Diazo—Carbazole) | F− not directly measured; color development at 1 eq F− | Only responds to F− (no interaction with Cl−, I−, NO3−, etc.); reversible response to protons (TFA) | Stable at room temperature in solid state; reversible Lewis acid–base reaction in solution (THF) (slight decrease in sensitivity after several cycles) |
| entry ADTBN (Nine-Ring Fused BN Polyarene) | F− not directly measured; saturated response at 5 equiv TBAF | It is highly specific for F−, (not affected by Cl−, Br−, SO42−, etc.) | Solid stable for several months at room temperature, soluble in THF/CH2Cl2 |
| P-BN-BT | 130 nM (TNP-related fluorescence quenching, F− not directly measured) | F− not directly measured; resistant to TNP interference (not affected by 2,4-dinitrophenol, etc.) | Solid white, soluble in chlorinated solvents, stable at room temperature (duration not specified, presumably several months) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, L.; Wu, Q.; Yang, T.; Xie, B.; Sheng, J.; Xie, W.; Shi, J. BN-Doped Polycyclic Aromatic Hydrocarbons and Their Applications in Optoelectronics. Molecules 2025, 30, 4252. https://doi.org/10.3390/molecules30214252
Jia L, Wu Q, Yang T, Xie B, Sheng J, Xie W, Shi J. BN-Doped Polycyclic Aromatic Hydrocarbons and Their Applications in Optoelectronics. Molecules. 2025; 30(21):4252. https://doi.org/10.3390/molecules30214252
Chicago/Turabian StyleJia, Liping, Qiuhuan Wu, Teng Yang, Binghui Xie, Jie Sheng, Wucheng Xie, and Junjun Shi. 2025. "BN-Doped Polycyclic Aromatic Hydrocarbons and Their Applications in Optoelectronics" Molecules 30, no. 21: 4252. https://doi.org/10.3390/molecules30214252
APA StyleJia, L., Wu, Q., Yang, T., Xie, B., Sheng, J., Xie, W., & Shi, J. (2025). BN-Doped Polycyclic Aromatic Hydrocarbons and Their Applications in Optoelectronics. Molecules, 30(21), 4252. https://doi.org/10.3390/molecules30214252
