Exploring the Anti-Influenza Activity of closo-Borate Platforms: Structure–Activity Relationship of Amino Acid-Functionalized closo-Dodecaborate Derivatives Against Influenza Virus A/Cheboksary/125/2020 (H1N1)pdm09
Abstract
1. Introduction
2. Results and Discussion
2.1. Syntheses
2.2. Study of the Cytotoxic Activity of Compounds Na22–Na25 on MDCK Cell Culture
2.3. Study of the Antiviral Activity of Synthesized Compounds Na22–Na25 Against A/Cheboksary/125/2020 (H1N1)pdm09
2.4. Study of the Antiviral Activity of Na22 Against A/IIV-Orenburg/83/2012
2.5. Prediction of SAR Molecular Properties for Na22 and Na2[B10H9–O(CH2)2O(CH2)3C(O)–Trp–OCH3]
3. Materials and Methods
3.1. Materials
3.2. Virological Tests
3.3. Physicochemical Characterization Methods
4. Conclusions
- A clear structure–activity relationship was established. The nature of the amino acid residue attached to the boron cluster platform is a critical determinant of antiviral potency. The L-tryptophan-containing derivative Na22 demonstrated the most significant antiviral activity, achieving an IC50 value of 5.0 µg/mL. The L-histidine-based conjugate Na23 also exhibited notable though lower efficacy. In contrast, the methionine (Na24) and lactam (Na25) derivatives showed no significant activity within the tested concentration range, highlighting the importance of aromatic/heterocyclic residues for effective virus inhibition.
- The observed activity of compounds Na22 and Na23 is particularly significant as it was demonstrated against a clinical influenza isolate with reduced susceptibility to neuraminidase inhibitors (oseltamivir, zanamivir) and full resistance to M2 ion channel blockers. This suggests that the boron cluster-amino acid conjugates possess a mechanism of action distinct from conventional anti-influenza drugs.
- The compounds exhibited moderate cytotoxicity (CC50 = 80–160 µg/mL) and were noted to have lower aqueous solubility compared to their smaller closo-decaborate (B10) analogs. This reduced solubility may impact bioavailability and represents a key parameter for optimization in future drug design.
- Extended evaluation against the A/IIV-Orenburg/83/2012 strain enabled direct comparison with reference compounds. Na22 exhibited significant antiviral effects comparable to the known lead B10-platform compound Na2[B10H9–O(CH2)2O(CH2)3C(O)–Trp–OCH3] and superior to rimantadine hydrochloride, confirming the viability of both boron cluster platforms for antiviral development.
- The work confirms the closo-dodecaborate anion as a viable and promising inorganic platform for the development of antiviral agents, extending the concept previously established for closo-decaborate derivatives. The structural versatility of boron clusters enables fine-tuning of biological activity through rational spacer and pharmacophore selection.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| Trp | tryptophan |
| His | histidine |
| Pld | alanine-2-oxopyrrolidin-3-yl |
| Met | methionine |
| MDCK | Madin-Darby canine kidney |
| NMR | Nuclear magnetic resonance |
| CT50 | 50% cytotoxic concentration |
| NMM | N-methylmorpholine |
| IBCF | iso-butyl chloroformate |
References
- Di Gennaro, F.; Pizzol, D.; Marotta, C.; Antunes, M.; Racalbuto, V.; Veronese, N.; Smith, L. Coronavirus Diseases (COVID-19) Current Status and Future Perspectives: A Narrative Review. Int. J. Environ. Res. Public Health 2020, 17, 2690. [Google Scholar] [CrossRef]
- Adamson, C.S. Antiviral Agents: Discovery to Resistance. Viruses 2020, 12, 406. [Google Scholar] [CrossRef]
- Ramamoorthy, R.; Speciale, A.R.; West, E.M.; Hussain, H.; Elumalai, N.; Schmitz Abe, K.E.; Ramesh, M.C.; Agrawal, P.B.; Jayakumar, A.R.; Paidas, M.J. Persistent Inflammation, Maladaptive Remodeling, and Fibrosis in the Kidney Following Long COVID-like MHV-1 Mouse Model. Diseases 2025, 13, 246. [Google Scholar] [CrossRef]
- WHO. Coronavirus Disease (COVID-19). Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed on 20 October 2025).
- Yamamoto, Y.; Noguchi, K. Structural Insights into the SARS-CoV-2 Spike Protein and Its Implications for Antibody Resistance. Biomolecules 2025, 15, 1489. [Google Scholar] [CrossRef]
- Sanz, I.; Perez, D.; Rojo, S.; Domínguez-Gil, M.; de Lejarazu, R.O.; Eiros, J.M. Coinfections of Influenza and Other Respiratory Viruses Are Associated to Children. An. Pediatr. 2022, 96, 334–341. [Google Scholar] [CrossRef]
- Burtseva, E.I.; Kolobukhina, L.V.; Panova, A.D.; Mukasheva, E.A.; Krasnoslobodtsev, K.G.; Kirillova, E.S.; Breslav, N.V.; Trushakova, S.V.; Komarova, I.A.; Feodoritova, E.L.; et al. Properties of Influenza Viruses That Caused Epidemic Increases in Morbidity in Russia and Countries of the World during 2022–2023. The Effectiveness of Vaccine Prophylaxis. Probl. Virol. 2024, 69, 42–55. [Google Scholar] [CrossRef]
- Tang, L.; Yan, H.; Wu, W.; Chen, D.; Gao, Z.; Hou, J.; Zhang, C.; Jiang, Y. Synthesis and Anti-Influenza Virus Effects of Novel Substituted Polycyclic Pyridone Derivatives Modified from Baloxavir. J. Med. Chem. 2021, 64, 14465–14476. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zalloum, W.A.; Wang, W.; Jiang, X.; De Clercq, E.; Pannecouque, C.; Kang, D.; Zhan, P.; Liu, X. Discovery of Novel Dihydrothiopyrano[4,3-d]pyrimidine Derivatives as Potent HIV-1 NNRTIs with Significantly Reduced hERG Inhibitory Activity and Improved Resistance Profiles. J. Med. Chem. 2021, 64, 13658–13675. [Google Scholar] [CrossRef]
- Taubenberger, J.K.; Kash, J.C.; Morens, D.M. The 1918 Influenza Pandemic: 100 Years of Questions Answered and Unanswered. Sci. Transl. Med. 2019, 11, eaau5485. [Google Scholar] [CrossRef]
- Swets, M.C.; Russell, C.D.; Harrison, E.M.; Docherty, A.B.; Lone, N.; Girvan, M.; Hardwick, H.E.; Visser, L.G.; Openshaw, P.J.M.; Groeneveld, G.H. SARS-CoV-2 Co-Infection with Influenza Viruses, Respiratory Syncytial Virus, or Adenoviruses. Lancet 2022, 399, 1463–1464. [Google Scholar] [CrossRef] [PubMed]
- Trombetta, C.M.; Kistner, O.; Montomoli, E.; Viviani, S.; Marchi, S. Influenza Viruses and Vaccines: The Role of Vaccine Effectiveness Studies for Evaluation of the Benefits of Influenza Vaccines. Vaccines 2022, 10, 714. [Google Scholar] [CrossRef]
- Li Lim, C.M.; Komarasamy, T.V.; Azreen Binti Adnan, N.A.; Radhakrishnan, A.K.; Balasubramaniam, V.R.M.T. Recent Advances, Approaches and Challenges in the Development of Universal Influenza Vaccines. Influenza Other Resp. Viruses 2024, 18, e13276. [Google Scholar] [CrossRef]
- Yang, T. Baloxavir Marboxil: The First Cap-Dependent Endonuclease Inhibitor for the Treatment of Influenza. Ann. Pharmacother. 2019, 53, 754–759. [Google Scholar] [CrossRef]
- Moorthy, N.S.; Poongavanam, V.; Pratheepa, V. Viral M2 ion channel protein: A promising target for anti-influenza drug discovery. Mini Rev. Med. Chem. 2014, 14, 819–830. [Google Scholar] [CrossRef] [PubMed]
- Gu, R.-X.; Liu, L.A.; Wei, D.-Q. Structural and energetic analysis of drug inhibition of the influenza A M2 proton channel. Trends Pharm. Sci. 2013, 34, 571–580. [Google Scholar] [CrossRef]
- Garaev, T.M.; Grebennikova, T.V.; Lebedeva, V.V.; Avdeeva, V.V.; Larichev, V.F. Compounds Based on Adamantyl-Substituted Amino Acids and Peptides as Potential Antiviral Drugs Acting as Viroporin Inhibitors. Curr. Pharm. Des. 2024, 30, 912–920. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, C.; Jia, R.; Zhang, X.; Zhang, J.; Bertagnin, C.; Bonomini, A.; Guizzo, L.; Jiang, Y.; Jia, H.; et al. A Novel N-Heterocycles Substituted Oseltamivir Derivatives as Potent Inhibitors of Influenza Virus Neuraminidase: Discovery, Synthesis and Biological Evaluation. J. Enzyme Inhib. Med. Chem. 2023, 38, 2277135. [Google Scholar] [CrossRef] [PubMed]
- Brogi, S. Novel Antiviral Agents: Synthesis, Molecular Modelling Studies and Biological Investigation. Viruses 2023, 15, 2042. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Yang, Z.; Chen, H.; Wang, Z.; Zhou, X.; Zhang, H. Progress in Three-Dimensional Aromatic-like Closo-Dodecaborate. Coord. Chem. Rev. 2021, 444, 214042. [Google Scholar] [CrossRef]
- Sivaev, I.B.; Bregadze, V.V. Polyhedral Boranes for Medical Applications: Current Status and Perspectives. Eur. J. Inorg. Chem. 2009, 11, 1433–1450. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, Y.; Duttwyler, S.; Lin, F.; Zhang, Y. Chemistry of Three-Dimensional Icosahedral Boron Clusters Anions: Closo-Dodecaborate(2-) [B12H12]2− and Carba-Closo-Dodecaborate(-) [CB11H12]−. Coord. Chem. Rev. 2024, 516, 215974. [Google Scholar] [CrossRef]
- Cebula, J.; Fink, K.; Boratynski, J.; Goszczynski, T.M. Supramolecular chemistry of anionic boron clusters and its applications in biology. Coord. Chem. Rev. 2023, 477, 214940. [Google Scholar] [CrossRef]
- Hosmane, N.S. (Ed.) Boron Science: New Technologies and Applications; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Voloshin, Y.Z. Alternative Approach to Avoid Drug Resistance: Polyhedral Inorganic and Metallomacrobicyclic 3D-Shaped Guests Strongly Binding to Allosteric Sites and/or Macromolecular Interfaces. Chem. Asian J. 2025, 20, e202401842. [Google Scholar] [CrossRef]
- Hey-Hawkins, E.; Teixidor, C.V. (Eds.) Boron-Based Compounds: Potential and Emerging Applications in Medicine; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2018. [Google Scholar]
- Mahfouz, N.; Abi Ghaida, F.; El Hajj, Z.; Diab, M.; Floquet, S.; Mehdi, A.; Naoufal, D. Recent Achievements on Functionalization within closo-Decahydrodecaborate [B10H10]2− Clusters. Chem. 2022, 7, e202200770. [Google Scholar] [CrossRef]
- Alexandrova, A.N.; Boldyrev, A.I.; Zhai, H.-J.; Wang, L.-S. All-boron aromatic clusters as potential new inorganic ligands and building blocks in chemistry. Coord. Chem. Rev. 2006, 250, 2811–2866. [Google Scholar] [CrossRef]
- Nelyubin, A.V.; Klyukin, I.N.; Zhdanov, A.P.; Grigoriev, M.S.; Zhizhin, K.Y.; Kuznetsov, N.T. Synthesis of Nitrile Derivatives of the Closo-Decaborate and Closo-Dodecaborate Anions [BnHn–1NCR]– (n = 10, 12) by a Microwave Method. Russ. J. Inorg. Chem. 2021, 66, 139–145. [Google Scholar] [CrossRef]
- Al-Joumhawy, M.; Cendoya, P.; Shmalko, A.; Marei, T.; Gabel, D. Improved synthesis of halo- and oxonium derivatives of dodecahydrido-closo-dodecaborate(2-). J. Organomet. Chem. 2021, 949, 121967. [Google Scholar] [CrossRef]
- Laila, Z.; Abi-Ghaida, F.; Anwar, S.; Yazbeck, O.; Jahjan, R.; Aoun, R.; Tlais, S.; Mehdi, A.; Naoufal, D. Study of the controlled temperature reaction between closo-decahydrodecaborate and alcohols in H2SO4 medium. Main Group Chem. 2015, 14, 301–309. [Google Scholar] [CrossRef]
- Hawthorne, M.F.; Mavunkal, I.J.; Knobler, C.B. Electrophilic reactions of protonated closo-B10H102− with arenes, alkane carbon-hydrogen bonds, and triflate ion forming aryl, alkyl, and triflate nido-6-X-B10H13 derivatives. J. Am. Chem. Soc. 1992, 114, 4427–4429. [Google Scholar] [CrossRef]
- Laila, Z.; Yazbeck, O.; Abi Ghaida, F.; Diab, M.; El Anwar, S.; Srour, M.; Mehdi, A.; Naoufal, D. Clean-activation of the B–H bond in closo-decahydrodecaborate [B10H10]2− anion via soft-route. J. Organomet. Chem. 2020, 910, 121132. [Google Scholar] [CrossRef]
- Norman, A.H.; Kaczmarczyk, A. Nitrile addition to polyhedral boranes in the presence of iron(III) chloride. Inorg. Chem. 1974, 13, 2316–2320. [Google Scholar] [CrossRef]
- Peymann, T.; Hawthorne, M.F. A Study of the Sequential Acid-Catalyzed Hydroxylation of Dodecahydro-closo-Dodecaborate(2-). Inorg. Chem. 2000, 39, 1163–1170. [Google Scholar] [CrossRef]
- Hall, H.D.; Ulrich, B.D.; Kultyshev, R.G.; Liu, J.; Liu, S.; Meyers, E.A.; Greau, S.; Shore, S.G. Synthesis, Characterization, and Chemistry of Dimethyl Sulfide Derivatives of closo-B10H102−. Collect. Czech. Chem. Commun. 2002, 67, 1007–1022. [Google Scholar] [CrossRef]
- Sivaev, I.B.; Prikaznov, A.V.; Naoufal, D. Fifty years of the closo-decaborate anion chemistry. Collect. Czech. Chem. Commun. 2010, 75, 1149–1199. [Google Scholar] [CrossRef]
- Sivaev, I.B.; Bregadze, V.I.; Sjöberg, S. Chemistry of Closo-Dodecaborate Anion [B12H12]2−: A Review. Collect. Czech. Chem. Commun. 2002, 67, 679–727. [Google Scholar] [CrossRef]
- Peymann, T.; Kuck, K.; Gabel, D. Ring Opening of Tetrahydropyran Attached to Undecahydro-closo-dodecaborate(1−) by Nucleophiles. Inorg. Chem. 1997, 36, 5138–5140. [Google Scholar] [CrossRef]
- Prikaznov, A.V.; Las’kova, Y.N.; Semioshkin, A.A.; Sivaev, I.B.; Kisin, A.V.; Bregadze, V.I. Synthesis of boron-containing tyrosine derivatives based on the closo-decaborate and closo-dodecaborate anions. Russ. Chem. Bull. 2011, 60, 2550–2555. [Google Scholar] [CrossRef]
- Semioshkin, A.; Laskova, J.; Wojtczak, B.; Andrysiak, A.; Godovikov, I.; Bregadze, V.; Lesnikowski, Z.J. Synthesis of Closo-Dodecaborate Based Nucleoside Conjugates. J. Organomet. Chem. 2009, 694, 1375–1379. [Google Scholar] [CrossRef]
- Meschaninova, M.I.; Novopashina, D.S.; Semikolenova, O.A.; Venyaminova, A.G. Novel Convenient Approach to the Solid-Phase Synthesis of Oligonucleotide Conjugates. Molecules 2019, 24, 4266. [Google Scholar] [CrossRef]
- Druzina, A.A.; Grammatikova, N.E.; Zhidkova, O.B.; Nekrasova, N.A.; Dudarova, N.V.; Kosenko, I.D.; Grin, M.A.; Bregadze, V.I. Synthesis and Antibacterial Activity Studies of the Conjugates of Curcumin with Closo-Dodecaborate and Cobalt Bis(Dicarbollide) Boron Clusters. Molecules 2022, 27, 2920. [Google Scholar] [CrossRef]
- Druzina, A.A.; Zhidkova, O.B.; Kosenko, I.D. Synthesis of conjugates of closo-dodecaborate dianion with cholesterol using a “click” reaction. Russ. Chem. Bull. 2020, 69, 1080–1085. [Google Scholar] [CrossRef]
- Justus, E.; Izteleuova, D.T.; Kasantsev, A.V.; Axartov, M.M.; Lork, E.; Gabel, D. Preparation of Carboranyl and Dodecaborate Derivatives of Coumarin. Collect. Czech. Chem. Commun. 2007, 72, 1740–1754. [Google Scholar] [CrossRef]
- Matveev, E.Y.; Kubasov, A.S.; Nichugovskii, A.I.; AVdeeva, V.V.; Zhizhin, K.Y.; Kuznetsov, N.T. Mechanochemical Synthesis of Closo-Decaborate Anion Derivatives with Pendant Functional Groups. Russ. J. Inorg. Chem. 2023, 68, 644–656. [Google Scholar] [CrossRef]
- Shibnev, V.A.; Deryabin, P.G.; Garaev, T.M.; Finogenova, M.P.; Botikov, A.G.; Mishin, D.V. Peptide Carbocyclic Derivatives as Inhibitors of the Viroporin Function of RNA-Containing Viruses. Russ. J. Bioorg. Chem. 2017, 43, 517–524. [Google Scholar] [CrossRef]
- Avdeeva, V.V.; Garaev, T.M.; Breslav, N.V.; Breslav, N.V.; Grebennikova, T.V.; Zhdanov, A.P.; Zhizhin, K.Y.; Malinina, E.A.; Kuznetsov, N.T. New type of RNA virus replication inhibitor based on decahydro-closo-decaborate anion containing amino acid ester pendant group. J. Biol. Inorg. Chem. 2022, 27, 421–429. [Google Scholar] [CrossRef]
- Garaev, T.M.; Grebennikova, T.V.; Avdeeva, V.V.; Lebedeva, V.V.; Larichev, V.F. Antiviral properties of synthetic histidine derivatives containing membranotropic volumetrical carbocycles in their molecule against SARS-CoV-2 virus in vitro. Probl. Virol. 2023, 68, 18–26. [Google Scholar] [CrossRef]
- Garaev, T.M.; Yudin, I.I.; Breslav, N.V.; Grebennikova, T.V.; Matveev, E.Y.; Eshtukova-Shcheglova, E.A.; Avdeeva, V.V.; Zhizhin, K.Y.; Kuznetsov, N.T. In Vitro Study of Antiviral Properties of Compounds Based on 1,4-Dioxane Derivative of Closo-Decaborate Anion with Amino Acid Ester Residues Against Influenza Virus A/IIV-Orenburg/83/2012(H1N1)pdm09. Molecules 2024, 29, 5886. [Google Scholar] [CrossRef]
- Garaev, T.M.; Yudin, I.I.; Breslav, N.V.; Grebennikova, T.V.; Burtseva, E.I.; Matveev, E.Y.; Eshtukova-Shcheglova, E.A.; Sokolov, I.E.; Avdeeva, V.V.; Zhizhin, K.Y.; et al. In Vitro Study of Antiviral Properties of Compounds Based on Tetrahydropyran Derivative of Closo-Decaborate Anion with Amino Acid Ester Residues Against Influenza Virus A/IIV-Orenburg/83/2012(H1N1)pdm09. Russ. J. Inorg. Chem. 2025, 70, 228–237. [Google Scholar] [CrossRef]
- Breslav, N.V.; Krasnoslobodtsev, K.G.; Mukasheva, E.A.; Kirillova, E.S.; Rosatkevich, A.G.; Kolobukhina, L.V.; Burtseva, E.I. Sensitivity of Influenza Viruses to Specific Drugs in Russia during 2017–2020. The Rare Finds and Perspective Antivirals. Epidemiol. Infect. Dis. 2020, 25, 65–77. [Google Scholar] [CrossRef]
- Smyk, J.M.; Szydłowska, N.; Szulc, W.; Majewska, A. Evolution of Influenza Viruses—Drug Resistance, Treatment Options, and Prospects. Int. J. Mol. Sci. 2022, 23, 12244. [Google Scholar] [CrossRef]
- Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G.; Lee, P.W.; Tang, Y. admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. J. Chem. Inf. Model. 2012, 26, 3099–3105. [Google Scholar] [CrossRef] [PubMed]
- Boyarinova, E.; Filin, D.; Yeshtukova-Shcheglova, E.; Sokolov, I.; Medvedev, A.; Nichugovskii, A.; Matveev, E. New Method for the Synthesis of Oxonium Derivatives of Closo-Borate Anions [BnHn]2−. Chem. Bull. Kazakh Natl. Univ. 2025, 115, 4–14. [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garaev, T.M.; Yudin, I.I.; Breslav, N.V.; Grebennikova, T.V.; Matveev, E.Y.; Eshtukova-Shcheglova, E.A.; Sokolov, I.E.; Avdeeva, V.V.; Zhizhin, K.Y.; Kuznetsov, N.T. Exploring the Anti-Influenza Activity of closo-Borate Platforms: Structure–Activity Relationship of Amino Acid-Functionalized closo-Dodecaborate Derivatives Against Influenza Virus A/Cheboksary/125/2020 (H1N1)pdm09. Molecules 2025, 30, 4225. https://doi.org/10.3390/molecules30214225
Garaev TM, Yudin II, Breslav NV, Grebennikova TV, Matveev EY, Eshtukova-Shcheglova EA, Sokolov IE, Avdeeva VV, Zhizhin KY, Kuznetsov NT. Exploring the Anti-Influenza Activity of closo-Borate Platforms: Structure–Activity Relationship of Amino Acid-Functionalized closo-Dodecaborate Derivatives Against Influenza Virus A/Cheboksary/125/2020 (H1N1)pdm09. Molecules. 2025; 30(21):4225. https://doi.org/10.3390/molecules30214225
Chicago/Turabian StyleGaraev, Timur M., Ilya I. Yudin, Natalya V. Breslav, Tatyana V. Grebennikova, Evgenii Yu. Matveev, Elizaveta A. Eshtukova-Shcheglova, Ilya E. Sokolov, Varvara V. Avdeeva, Konstantin Yu. Zhizhin, and Nikolai T. Kuznetsov. 2025. "Exploring the Anti-Influenza Activity of closo-Borate Platforms: Structure–Activity Relationship of Amino Acid-Functionalized closo-Dodecaborate Derivatives Against Influenza Virus A/Cheboksary/125/2020 (H1N1)pdm09" Molecules 30, no. 21: 4225. https://doi.org/10.3390/molecules30214225
APA StyleGaraev, T. M., Yudin, I. I., Breslav, N. V., Grebennikova, T. V., Matveev, E. Y., Eshtukova-Shcheglova, E. A., Sokolov, I. E., Avdeeva, V. V., Zhizhin, K. Y., & Kuznetsov, N. T. (2025). Exploring the Anti-Influenza Activity of closo-Borate Platforms: Structure–Activity Relationship of Amino Acid-Functionalized closo-Dodecaborate Derivatives Against Influenza Virus A/Cheboksary/125/2020 (H1N1)pdm09. Molecules, 30(21), 4225. https://doi.org/10.3390/molecules30214225

