Unique Four-Layer Core–Shell NaYF4:Yb3+,Er3+@NaYF4@CdS@Au Nanocomposites for Enhanced Full-Spectrum Photocatalytic Degradation of Rhodamine B
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Synthesis of CSNPs@CdS@Au NPs
2.2.1. Synthesis of NaYF4:Yb3+,Er3+ Core NPs
2.2.2. Synthesis of NaYF4:Yb3+, Er3+@NaYF4 Core-Inert Shell NPs
2.2.3. Synthesis of CSNPs@CdS Three-Layer Core–Shell Structural Composite
2.2.4. Synthesis of CSNPs@CdS@Au Four-Layer Core–Shell Structural Composites
2.3. Characterization
2.4. Photocatalytic Activity Measurement
3. Results and Discussion
3.1. X-Ray Diffraction (XRD) Analysis
3.2. TEM Analysis
3.3. XPS Analysis
3.4. Photoluminescence (PL) Spectra Analysis
3.5. Photocatalytic Performance
3.6. Photocatalytic Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, S.; Li, Y.; Zhong, X.; Yang, K.; Li, X.; Jin, W.; Liu, H.; Xie, R. Metal Sulfide-Based Nanoarchitectures for Energetic and Environmental Applications. Small Struct. 2024, 5, 2300536. [Google Scholar] [CrossRef]
- Guo, H.; Deng, Y.; Yin, H.; Liu, J.; Zou, S. Fabricating BiOCl Nanoflake/FeOCl Nanospindle Heterostructures for Efficient Visible-Light Photocatalysis. Molecules 2023, 28, 6949. [Google Scholar] [CrossRef]
- Abdikarimova, U.; Bissenova, M.; Matsko, N.; Issadykov, A.; Khromushin, I.; Aksenova, T.; Munasbayeva, K.; Slyamzhanov, E.; Serik, A. Visible Light-Driven Photocatalysis of Al-Doped SrTiO3: Experimental and DFT Study. Molecules 2024, 29, 5326. [Google Scholar] [CrossRef]
- Khachane, M.; Bouddouch, A.; Bakiz, B.; Benlhachemi, A.; Kadmi, Y. High Photocatalytic Activity for the Degradation of Rhodamine B in Water. Int. J. Environ. Sci. Technol. 2022, 19, 8825–8834. [Google Scholar] [CrossRef]
- Abdelbar, N.M.; Ahmed, M.A.; Mohamed, A.A. A Novel Layered Double Hydroxide-Based Ternary Nanocomposite for the Effective Photocatalytic Degradation of Rhodamine B. RSC Adv. 2024, 14, 14523–14538. [Google Scholar] [CrossRef]
- Xu, D.; Ma, H. Degradation of Rhodamine B in Water by Ultrasound-Assisted TiO2 Photocatalysis. J. Clean. Prod. 2021, 313, 127758. [Google Scholar] [CrossRef]
- Alakhrasa, F.; Alhajria, E.; Haounatib, R.; Ouachtak, H.; Addi, A.; Saleh, T. Comparative Study of Photocatalytic Degradation of Rhodamine B Using Natural-Based Zeolite Composites. Surf. Interfaces 2020, 20, 100611. [Google Scholar] [CrossRef]
- Gaggero, E.; López-Muñoz, M.J.; Paganini, M.C.; Arencibia, A.; Bertinetti, S.; Fernández de Paz, N.; Calza, P. Mercury and Organic Pollutants Removal from Aqueous Solutions by Heterogeneous Photocatalysis with ZnO-Based Materials. Molecules 2023, 28, 2650. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Ma, Y.; Sun, W. Exploring the Dynamics of Charge Transfer in Photocatalysis: Applications of Femtosecond Transient Absorption Spectroscopy. Molecules 2024, 29, 3995. [Google Scholar] [CrossRef] [PubMed]
- Dhruv, L.; Kori, D.K.K.; Das, A.K. Sodium alginate–CdS nanostructures: Reinforcing Chemoselectivity In nitro-organic Reduction and Dye Degradation Through Photoinduced Electron Transfer. ACS Appl. Nano Mater. 2024, 7, 6471–6486. [Google Scholar] [CrossRef]
- Li, J.; Shao, W.; Geng, M.; Wan, S.; Ou, M.; Chen, Y. Combined Schottky Junction and Doping Effect in CdxZn1−xS@Au/BiVO4 Z-Scheme Photocatalyst with Boosted Carriers Charge Separation for CO2 Reduction by H2O. J. Colloid Interf. Sci. 2022, 606, 1469–1476. [Google Scholar] [CrossRef]
- Gao, S.; Zhang, H.; Wang, J.; Zhang, D.; Wang, M.; Jiang, Z. Enhancing Effect of NaYF4: Yb, Tm on the Photocatalytic Performance of BiVO4 Nnder NIR and Full Spectrum. J. Mater. Res. 2023, 38, 1894–1908. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, G.; Hong, X. Influence of Surface Defects and Palladium Deposition on the Activity of CdS Nanocrystals for Photocatalytic Hydrogen Production. Acta Phys.-Chim. Sin. 2019, 35, 215–222. [Google Scholar] [CrossRef]
- Zhu, L.-B.; Bao, N.; Zhang, Q.; Ding, S.-N. Synergistically Enhanced Photocatalytic Degradation by Coupling Slow-Photon Effect with Z-Scheme Charge Transfer in CdS QDs/IO-TiO2 Heterojunction. Molecules 2023, 28, 5437. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.; Ahmed, S.B.; Shabir, M.; Imran, M.; Hassan, A.M.; Alatawi, N.S. Review on CdS-Derived Photocatalysts for Solar Photocatalytic Applications–Advances and Challenges. J. Ind. Eng. Chem. 2024, 130, 105–124. [Google Scholar] [CrossRef]
- Qamar, M.; Zhang, B.; Feng, Y. Enhanced Photon Harvesting in Dye-Sensitized Solar Cells by Doping TiO2 Photoanode with NaYF4:Yb3+,Tm3+ Microrods. Opt. Mater. 2019, 89, 368–374. [Google Scholar] [CrossRef]
- Schäfer, H.; Ptacek, P.; Eickmeier, H.; Haase, M. Synthesis of Hexagonal Yb3+,Er3+-Doped NaYF4 Nanocrystals at Low Temperature. Adv. Funct. Mater. 2009, 19, 3091–3097. [Google Scholar] [CrossRef]
- Balaji, R.; Kumar, S.; Reddy, K.L.; Sharma, V.; Bhattacharyyab, K.; Krishnana, V. Near-Infrared Driven Photocatalytic Performance of Lanthanide-Doped NaYF4@CdS Core-Shell Nanostructures with Enhanced Upconversion Properties. J. Alloys Compd. 2017, 724, 481–491. [Google Scholar] [CrossRef]
- Feng, W.; Zhang, L.; Zhang, Y.; Yang, Y.; Fang, Z.; Wang, B.; Zhang, S.; Liu, P. Near-infrared-activated NaYF4:Yb3+, Er3+/Au/CdS for H2 production via photoreforming of bio-ethanol: Plasmonic Au as light nanoantenna, energy relay, electron sink and co-catalyst. J. Mater. Chem. A 2017, 5, 10311–10320. [Google Scholar] [CrossRef]
- Rinkel, T.; Raj, A.N.; Dîhnen, S.; Haase, M. Synthesis of 10 nm β-NaYF4:Yb,Er/NaYF4 Core/Shell Upconversion Nanocrystals with 5 nm Particle Cores. Angew. Chem. Int. Ed. 2015, 55, 1164–1167. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Li, H.; Wang, Z.; Wang, P.; Zheng, Z.; Liu, Y.; Dai, Y.; Li, Y.; Huang, B. Efficient Near-Infrared Photocatalysts Based on NaYF4:Yb3+, Tm3+@NaYF4:Yb3+, Nd3+@ TiO2 Core@Shell Nanoparticles. Chem. Eng. J. 2019, 361, 1089–1097. [Google Scholar] [CrossRef]
- Li, C.; Wang, F.; Zhu, J.; Yu, J.C. NaYF4:Yb,Tm/CdS Composite as a Novel Near-Infrared-Driven Photocatalyst. Appl. Catal. B Environ. 2010, 100, 433–439. [Google Scholar] [CrossRef]
- Zhu, H.; Yang, Y.; Kang, Y.; Niu, P.; Kang, X.; Yang, Z.; Ye, H.; Liu, G. Strong Interface Contact Detween NaYF4:Yb,Er and CdS Promoting Photocatalytic Hydrogen Evolution of NaYF4:Yb,Er/CdS Composites. J. Mater. Sci. Technol. 2022, 102, 1–7. [Google Scholar] [CrossRef]
- Dannareli, B.; Ruben, D.; Enric, P.; Emilio, J.; Juan, H.; Jacob, L.; Pablo, L.; Israel, R. Volumetric Temperature Mapping Using Light-Sheet Microscopy and Upconversion Fluorescence from Micro- and Nano-Rare Earth Composites. Micromachines 2023, 14, 2097. [Google Scholar] [CrossRef]
- Jones, C.; Panov, N.; Artiom, S.; Gibbons, J.; Hesse, F.; Bos, J.G.; Wang, X.; Vetrone, F.; Chen, G.; Hemmer, E.; et al. Effect of Light Scattering on Upconversion Photoluminescence Quantum Yield in Microscale-to-Nanoscale Materials. Opt. Express 2020, 28, 398353. [Google Scholar] [CrossRef]
- Feng, P.; Pan, Y.; Ye, H. Core–Shell Structured NaYF4:Yb,Tm@CdS Composite for Enhanced Photocatalytic Properties. RSC Adv. 2018, 8, 35306–35313. [Google Scholar] [CrossRef]
- Ling, S.; Cui, X.; Zhang, X.; Liu, B.; He, C.; Wang, J.; Qin, W.; Zhang, Y.; Gao, Y.; Bai, G. Glutathione-Protected Upconversion Nanocluster Decorated Cadmium Sulfide with Enhanced Photostability and Photocatalytic Activity. J. Colloid Interface Sci. 2018, 530, 120–126. [Google Scholar] [CrossRef]
- Farhadi, H.; Keramati, N. Investigation of Kinetics, Isotherms, Thermodynamics and Photocatalytic Regeneration of Exfoliated Graphitic Carbon Nitride/zeolite as Dye Adsorbent. Sci. Rep. 2023, 13, 14098. [Google Scholar] [CrossRef]
- Peana, M.; Pelucelli, A.; Chasapis, C.; Perlepes, S.; Bekiari, V.; Medici, S.; Zoroddu, M. Biological Effects of Human Exposure to Environmental Cadmium. Biomolecules 2023, 13, 36. [Google Scholar] [CrossRef]
- Xue, Y.; Chen, L.; Zhang, L.; Zheng, G.; Zhang, X.; Zhen, Z. Activity and Stability Origin of Core–Shell Catalysts: Unignorable atomic Diffusion Behavior. Chem. Sci. 2025, 16, 3323. [Google Scholar] [CrossRef]
- Jiang, Y.; Chai, Y.; Jiang, Y.; Tian, S.; Wang, Z.; Cao, Y.; Lam, J.C.; Zhu, J.; Lin, R.; Zhu, W. Bacteria Photosensitized by CdS@Au@Polymeric Coatings for Sustainable Carbon Dioxide Fixation and Bioplastic Production. Chin. Chem. Lett. 2025, 111115. [Google Scholar] [CrossRef]
- Shao, L.; Lu, W.; Yu, R.; Han, X.; Zhao, J.; Chen, D.; Wang, Y.; Shi, X.; Su, X.; Teng, Z. Synthesis of Aminated Three-Layered Hollow Mesoporous Organosilica Spheres and in-situ Loading Gold Nanoparticles. Mater. Lett. 2023, 330, 133270. [Google Scholar] [CrossRef]
- Li, Z.; Huang, W.; Liu, J.; Lv, K.; Li, Q. Embedding CdS@Au into Ultrathin Ti3−xC2Ty to Build Dual Schottky Barriers for Photocatalytic H2 Production. ACS Catal. 2021, 11, 8510–8520. [Google Scholar] [CrossRef]
- Dong, Z.; Meng, C.; Li, Z.; Zeng, D.; Wang, Y.; Cheng, Z.; Cao, X.; Zhang, Z.; Liu, Y. Novel Co3O4@TiO2@CdS@Au Double-Shelled Nanocage for High-Efficient Photocatalysis Removal of U(VI): Roles of Spatial Charges Separation and Photothermal Effect. J. Hazard. Mater. 2023, 452, 131248. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Wang, G.; Wu, X.; Lv, K.; Chu, Y.; Qin, H.; Niu, J. Ultrathin Niobate Nanosheet Assembly with Au NPs and CdS QDs as a Highly Efficient Photocatalyst. Chem. Eur. J. 2022, 28, 66. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Hao, H.; Li, L. Power-Dependent Up-Conversion Emissions and Temperature Sensing Properties of NaYF4:Er/Yb@NaYF4 Phosphors. Phys. Scr. 2024, 99, 5. [Google Scholar] [CrossRef]
- Yang, X.; Wang, D. Photocatalysis: From Fundamental Principles to Materials and Applications. ACS Appl. Energy Mater. 2018, 1, 6657–6693. [Google Scholar] [CrossRef]
- Gusarov, S. Advances in Computational Methods for Modeling Photocatalytic Reactions: A Review of Recent Developments. Materials 2024, 17, 2119. [Google Scholar] [CrossRef]
- Khan, S.; Noor, T.; Iqbal, N.; Yaqoob, L. Photocatalytic Dye Degradation from Textile Wastewater: A Review. ACS Omega 2024, 9, 21751–21767. [Google Scholar] [CrossRef] [PubMed]
- Shu, Y.; Wu, J.; Zhang, J.; Ling, H.; Zhao, Y.; Liu, W.; Di, M.; Shan, D.; Li, X.; Wang, B. Novel Simulated Sunlight-Driven NaYF4:Yb,Tm@MIL-53(Fe) Nanorods Photocatalysts for Degradation of Organic Pollutants and Enhanced Antibacterial Activity. Appl. Surf. Sci. 2023, 639, 158249. [Google Scholar] [CrossRef]
- Xu, Z.; Yue, W.; Li, C.; Wang, L.; Xu, Y.; Ye, Z.; Zhang, J. Rational Synthesis of Au–CdS Composite Photocatalysts for Broad-Spectrum Photocatalytic Hydrogen Evolution. ACS Nano 2023, 17, 11655–11664. [Google Scholar] [CrossRef]
- Gong, G.; Song, Y.; Tan, H.; Xie, S.; Zhang, C.; Xu, L.; Xu, J.; Zheng, J. Design of Core/active-Shell NaYF4:Ln3+@NaYF4:Yb3+ Nanophosphors with Enhanced Red-Green-Blue Upconversion Luminescence for Anti-Counterfeiting Printing. Compos. Part B 2019, 179, 107504. [Google Scholar] [CrossRef]
- Homann, C.; Krukewitt, L.; Frenzel, F.; Bettina, G.; Wurth, C.; Markus, H. NaYF4:Yb,Er/NaYF4 Core/shell Nanocrystals with High Upconversion Luminescence Quantum Yield. Angew. Chem. Int. Ed. 2018, 57, 8765–8769. [Google Scholar] [CrossRef]
- Xie, S.; Tong, C.; Tan, H.; Li, N.; Gong, L.; Xu, J.; Xu, L.; Zhang, C. Hydrothermal Synthesis and Inkjet Printing of Hexagonal-Phase NaYF4: Ln3+ Upconversion Hollow Microtubes for Smart Anti-Counterfeiting Encryption. Mater. Chem. Front. 2018, 2, 1997–2005. [Google Scholar] [CrossRef]
- Kuang, P.; Zheng, P.; Liu, Z.; Lei, J.; Wu, H.; Li, N.; Ma, T. Embedding Au Quantum Dots in Rimous Cadmium Sulfide Nanospheres for Enhanced Photocatalytic Hydrogen Evolution. Small 2016, 12, 6735–6744. [Google Scholar] [CrossRef]
- Tang, P.; Chen, M.; Li, H.; Zhong, T.; Liu, J.; Yang, M.; Deng, G. CdS@Au Bicro-Spheres as an Active and Durable Bifunctional Catalyst for the Urea-Assisted H2 Evolution Reaction. Mater. Lett. 2024, 354, 135353. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Z.; Han, J.; Li, R.; Huang, M. Stepwise Synthesis of Au@CdS-CdS Nanoflowers and Their Enhanced Photocatalytic Properties. Nanoscale Res. Lett. 2019, 14, 148. [Google Scholar] [CrossRef] [PubMed]
- Peng, D.; Wang, H.; Yu, K.; Chang, Y.; Ma, X.; Dong, S. Photochemical Preparation of the Ternary Composite CdS/Au/g-C3N4with Enhanced Visible Light Photocatalytic Performance and its Microstructure. RSC Adv. 2016, 6, 77760–77767. [Google Scholar] [CrossRef]
- Jakiminska, A.; Pawlicki, M.; Macyk, W. Photocatalytic transformation of Rhodamine B to Rhodamine -110–The mechanism revisited. J. Photochem. Photobiol. A 2022, 433, 114176. [Google Scholar] [CrossRef]
- Gurugubelli, T.R.; Ravikumar, R.V.S.S.N.; Koutavarapu, R. Enhanced Photocatalytic Activity of ZnO–CdS Composite Nanostructures Towards the Degradation of Rhodamine B Under Solar Light. Catalysts 2022, 12, 84. [Google Scholar] [CrossRef]
- Abdelbar, N.M.; Ahmed, M.A.; Mohamed, A.A. Highly Efficient Photocatalytic Degradation of Rhodamine B by Immobilizing CdS Quantum Dots on ZnCr-Layered Double Hydroxide Nanosheets. Opt. Mater. 2024, 155, 115802. [Google Scholar] [CrossRef]
- Zhu, C.; Shen, M.; Qi, M.; Zhao, Y.; Xu, Z.; Li, P.; Ru, J.; Gao, W.; Zhang, X. Constructed CdS/Mn-MOF Heterostructure for Promoting Photocatalytic Degradation of Rhodamine B. Dyes Pigments 2023, 219, 111607. [Google Scholar] [CrossRef]
- Liu, Z.; Zhuang, Y.; Dong, L.; Mu, H.; Li, D.; Wang, L.; Tian, S. Construction of CeO2/CdS Heterostructure and Study on Photocatalytic Mechanism of Rhodamine B Degradation. J. Inorg. Organomet. Polym. Mater. 2023, 34, 175–189. [Google Scholar] [CrossRef]
- Wu, H.; Li, Y.; Feng, W.; Zhong, X.; Li, J.; Liu, S.; Liu, H.; Ma, G.; Xie, R. Three-dimensional Zinc Oxide Decorated with Cadmium Sulfide Nanoparticles Heterogenous Nanoarchitectures with Expedited Charge Separation toward Efficient Photocatalytic Degradation of Organic Pollutants. Mater. Sci. Eng. B 2023, 292, 116459. [Google Scholar] [CrossRef]
- Wang, W.; Qin, X.; Wang, X.; Ma, K.; Wu, Z.; Si, H.; Zhang, J. Sulfur Vacancy-rich (α/β-CdS)/SiO2 Photocatalysts for Enhanced Visible-light-driven Photocatalytic Degradation of Rhodamine B. Environ. Pollut. 2024, 345, 123428. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Feng, M.; Cao, R.; Wang, Y.; Ma, K.; Zhang, J. Facile Synthesis of a Novel CeCO3OH@(H/C–CdS) Catalyst with Synergistic Effect of Heterophase Junction and Heterojunction for Enhanced Visible-light Photocatalytic Degradation Efficiency at Room Temperature. J. Colloid. Interface Sci. 2025, 677, 780–794. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhang, W.; Wu, Z.; Liang, Z.; Huang, Y.; Tan, Q.; Liu, T.; Han, D.; Niu, L. Near-Infrared Responsive Magnetic Photocatalyst Based on NaYF4:Yb3+/Er3+@Cu2O@MoS2@Fe3O4 for the Efficient Degradation of Organic Contaminants. New J. Chem. 2024, 48, 7688–7698. [Google Scholar] [CrossRef]










| Number of Cycles | 1st | 2nd | 3rd | 4th | 5th |
|---|---|---|---|---|---|
| Degradation rate | 99.44% | 98.24% | 97.20% | 95.01% | 93.25% |
| Catalysts | k | Concentration | Deg. Time | Deg. Rate | Light Source | Ref. |
|---|---|---|---|---|---|---|
| sodium alginate- CdS | 0.0049 min−1 | 1 mg, 3 mL (10ppm) | 60 min | 94.98% | visible blue LED (12 W) | [10] |
| CdS/Mn-MOF(50) | 0.0724 min−1 | 15 mg, 100 mL (10 mg/L) | 10 min 60 min | 55.7%, 98.7% | 500 W Xe lamp | [52] |
| CeO2/CdS | 0.0161 min−1 | 50 mg, 50 mL (20 mg/L) | 180 min | 94.5% | 300 W Xe lamp | [53] |
| CdS/ZnO | 0.063 min−1 | 50 mg, 50 mL (10 mg/L) | 40 min 80 min | 95% 99.55% | 300 W Xe lamp | [54] |
| Au@CdS-CdS | 0.0492 min−1 | 6 mg, 20 mL (1 × 10−5 M) | 60 min | 45% | 300 W Xe lamp | [47] |
| ZnO–CdS | 0.0499 min−1 | 10 mg, 100 mL (10 ppm) | 80 min | 98.16% | 100 W solar simulator | [50] |
| CdS QDs/IO-TiO2 | 0.039 min−1 | 3 mg, 30 mL (50 mg/L) | 50 min | 85% | 300 W Xe lamp | [14] |
| (α/β-CdS)/SiO2 | 0.044 min−1 | 50 mg, 30 mL (400 mg/L) | 60 min | 93.3% | 50 mW/cm2 (113.7 mW) | [55] |
| CeCO3OH@(H/C–CdS) | 0.0269 min−1 | 50 mg, 30 mL (2.000 g/L) | 60 min 150 min | 86.8% 99.6% | visible-light irradiation | [56] |
| CSNPs@CdS@Au | 0.2745 min−1 | 25 mg, 50 mL (1 × 10−4 M) | 15 min | 97.7% | 300 W Xe lamp | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Y.; Yang, P.; Xie, J.; Duan, T.; Tang, Z.; Liu, Y.; Zhang, R.; Tan, H.; Du, J.; Xu, L. Unique Four-Layer Core–Shell NaYF4:Yb3+,Er3+@NaYF4@CdS@Au Nanocomposites for Enhanced Full-Spectrum Photocatalytic Degradation of Rhodamine B. Molecules 2025, 30, 4215. https://doi.org/10.3390/molecules30214215
Tang Y, Yang P, Xie J, Duan T, Tang Z, Liu Y, Zhang R, Tan H, Du J, Xu L. Unique Four-Layer Core–Shell NaYF4:Yb3+,Er3+@NaYF4@CdS@Au Nanocomposites for Enhanced Full-Spectrum Photocatalytic Degradation of Rhodamine B. Molecules. 2025; 30(21):4215. https://doi.org/10.3390/molecules30214215
Chicago/Turabian StyleTang, Yukun, Pingping Yang, Jinpu Xie, Tengfei Duan, Zengmin Tang, Yao Liu, Rui Zhang, Haihu Tan, Jingjing Du, and Lijian Xu. 2025. "Unique Four-Layer Core–Shell NaYF4:Yb3+,Er3+@NaYF4@CdS@Au Nanocomposites for Enhanced Full-Spectrum Photocatalytic Degradation of Rhodamine B" Molecules 30, no. 21: 4215. https://doi.org/10.3390/molecules30214215
APA StyleTang, Y., Yang, P., Xie, J., Duan, T., Tang, Z., Liu, Y., Zhang, R., Tan, H., Du, J., & Xu, L. (2025). Unique Four-Layer Core–Shell NaYF4:Yb3+,Er3+@NaYF4@CdS@Au Nanocomposites for Enhanced Full-Spectrum Photocatalytic Degradation of Rhodamine B. Molecules, 30(21), 4215. https://doi.org/10.3390/molecules30214215

