Isomers of Iron(III) Oxides and Cobalt(III) Oxides and Their Redox Properties: Quantum-Chemical Insights
Abstract
1. Introduction
2. Results and Discussion
2.1. Validation of the Methods: The Case of the FeO Molecule
2.2. Iron and Cobalt Trioxides’ Geometry and Spin Configurations
2.2.1. UB3LYP/aug−cc−pVTZ Results
2.2.2. UMP2/aug−cc−pVTZ Results
2.3. Electrochemical Properties
3. Methods
3.1. Iron(III) and Cobalt(III) Oxides’ Spatial and Electron Configuration
3.2. Derivation of Electrochemical Quantities
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Di Franco, F.; Zaffora, A.; Santamaria, M.; Di Quarto, F. Anodization and Anodic Oxides. In Encyclopedia of Interfacial Chemistry; Wandelt, K., Ed.; Elsevier: Oxford, UK, 2018; pp. 26–40. [Google Scholar] [CrossRef]
- Xie, K.; Guo, M.; Huang, H.; Liu, Y. Fabrication of iron oxide nanotube arrays by electrochemical anodization. Corros. Sci. 2014, 88, 66–75. [Google Scholar] [CrossRef]
- Mathur, S.; Veith, M.; Sivakov, V.; Shen, H.; Huch, V.; Hartmann, U.; Gao, H.B. Phase-Selective Deposition and Microstructure Control in Iron Oxide Films Obtained by Single-Source CVD. Chem. Vap. Depos. 2002, 8, 277–283. [Google Scholar] [CrossRef]
- Nagahama, J.; Yumoto, H. Application of Fe oxide films prepared by PVD methods to protect Fe metal from corrosion. Surf. Coatings Technol. 2003, 169–170, 658–661. [Google Scholar] [CrossRef]
- Hasany, S.; I, I.A.; Rajan, J.; Rehman, A. Systematic review of the preparation techniques of iron oxide magnetic nanoparticles. Nanosci Nanotechnol. 2012, 2, 148–158. [Google Scholar] [CrossRef]
- Ali, A.; Zafar, H.; ul Haq, I.; Phull, A.; Hussain, A. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 2016, 9, 49–67. [Google Scholar] [CrossRef]
- Priya; Naveen; Kaur, K.; Sidhu, A.K. Green Synthesis: An Eco-friendly Route for the Synthesis of Iron Oxide Nanoparticles. Front. Nanotechnol. 2021, 3, 655062. [Google Scholar] [CrossRef]
- Wickman, B.; Fanta, A.B.; Burrows, A.; Hellman, A.; Wagner, J.B.; Iandolo, B. Iron Oxide Films Prepared by Rapid Thermal Processing for Solar Energy Conversion. Nature 2017, 7, 40500. [Google Scholar] [CrossRef]
- Lassoued, A.; Dkhil, B.; Gadri, A.; Ammar, S. Control of the shape and size of iron oxide (α-Fe2O3) nanoparticles synthesized through the chemical precipitation method. Results Phys. 2017, 7, 3007–3015. [Google Scholar] [CrossRef]
- Jolivet, J.; Henry, M.; Livage, J. Metal Oxide Chemistry and Synthesis from Solution to Solid State; John Wiley & Sons: Hoboken, NJ, USA, 2000; Volume xv. [Google Scholar]
- Jolivet, J.P.; Tronc, E.; Chanéac, C. Iron oxides: From molecular clusters to solid. A nice example of chemical versatility. Comptes Rendus Geosci. 2006, 338, 488–497. [Google Scholar] [CrossRef]
- Scheck, J.; Wu, B.; Drechsler, M.; Rosenberg, R.; Van Driessche, A.E.S.; Stawski, T.M.; Gebauer, D. The Molecular Mechanism of Iron(III) Oxide Nucleation. J. Phys. Chem. Lett. 2016, 7, 3123–3130. [Google Scholar] [CrossRef] [PubMed]
- LaGrow, A.P.; Besenhard, M.O.; Hodzic, A.; Sergides, A.; Bogart, L.K.; Gavriilidis, A.; Thanh, N.T.K. Unravelling the growth mechanism of the co-precipitation of iron oxide nanoparticles with the aid of synchrotron X-Ray diffraction in solution. Nanoscale 2019, 11, 6620–6628. [Google Scholar] [CrossRef]
- Sadeghi, O.; Zakharov, L.N.; Nyman, M. Aqueous formation and manipulation of the iron-oxo Keggin ion. Science 2015, 347, 1359–1362. [Google Scholar] [CrossRef] [PubMed]
- Weatherill, J.S.; Morris, K.; Bots, P.; Stawski, T.M.; Janssen, A.; Abrahamsen, L.; Blackham, R.; Shaw, S. Ferrihydrite Formation: The Role of Fe13 Keggin Clusters. Environ. Sci. Technol. 2016, 50, 9333–9342. [Google Scholar] [CrossRef] [PubMed]
- Rahinov, I.; Sellmann, J.; Lalanne, M.R.; Nanjaiah, M.; Dreier, T.; Cheskis, S.; Wlokas, I. Insights into the Mechanism of Combustion Synthesis of Iron Oxide Nanoparticles Gained by Laser Diagnostics, Mass Spectrometry, and Numerical Simulations: A Mini-Review. Energy Fuels 2021, 35, 137–160. [Google Scholar] [CrossRef]
- Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Elst, L.V.; Muller, R.N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 2008, 108, 2064–2110. [Google Scholar] [CrossRef] [PubMed]
- Ahimou, F.; Denis, F.A.; Touhami, A.; Dufrêne, Y.F. Probing Microbial Cell Surface Charges by Atomic Force Microscopy. Langmuir 2002, 18, 9937–9941. [Google Scholar] [CrossRef]
- Azam, A.A.; Oves, M.M.; Habib, S.; Memic, M. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: A comparative study. Int. J. Nanomed. 2012, 7, 6003–6009. [Google Scholar] [CrossRef]
- Cornell, R.M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2003; pp. 1–664. [Google Scholar] [CrossRef]
- Faivre, D.; Godec, T.U. From Bacteria to Mollusks: The Principles Underlying the Biomineralization of Iron Oxide Materials. Angew. Chem. Int. Ed. 2015, 54, 4728–4747. [Google Scholar] [CrossRef]
- Sun., S.; Lang, J.; Wang, R.; Kong, L.; Li, X.; Yan, X. Identifying pseudocapacitance of Fe2O3 in Ionic Liquid and its application in asymmetric supercapacitors. J. Mater. Chem. A 2014, 2, 14550–14556. [Google Scholar] [CrossRef]
- Krysa, J.; Zlamal, M.; Kment, S.; Brunclikova, M.; Hubicka, Z. TiO2 and Fe2O3 films for photoelectrochemical water splitting. Molecules 2015, 20, 1046–1058. [Google Scholar] [CrossRef]
- Sabir, F.K.; Bekele, E.T.; Gonfa, B.A.; Edossa, G.D.; Adino, A.T. Synthesis of Cobalt Oxide Nanoparticles Through Chemical and Biological Pathways for Antibacterial Activity. J. Nanostr. 2021, 11, 577–587. [Google Scholar]
- Das, D.; Saikia, B.J. Synthesis, characterization and biological applications of cobalt oxide (Co3O4) nanoparticles. Chem. Phys. Impact 2023, 6, 100137. [Google Scholar] [CrossRef]
- Katayama, Y.; Nakayama, S.; Tachikawa, N.; Yoshii, K. Electrochemical behavior of tris(2,2′–bipyridine)Cobalt complex in some ionic liquids. J. Electrochem. Soc. 2017, 164, H5286–H5291. [Google Scholar] [CrossRef]
- Al Masri, D.; Dupont, M.; Yunis, R.; MacFarlane, D.R.; Pringle, J.M. The electrochemistry and performance of cobalt-based redox couples for thermoelectrochemical cells. J. Electrochim. Act. 2018, 269, 714–723. [Google Scholar] [CrossRef]
- Chen, K.Y.; Schauer, P.; Patrick, B.O.; Berlinguette, C.P. Correlating cobalt redox couples to photovoltage in the dye-sensitized solar cell. J. Electrochem. Act. 2018, 47, 11942–11952. [Google Scholar] [CrossRef] [PubMed]
- Abraham, T.J.; MacFarlane, D.R.; Pringle, J.M. Cobalt redox couple boosts thermoelectric cells. Energy Environ. Sci. 2013, 6, 2639–2645. [Google Scholar] [CrossRef]
- Yum, J.H.; Baranoff, E.; Kessler, F.; Moehl, T.; Ahmad, S.; Bessho, T.; Marchioro, A.; Ghadiri, E.; Moser, J.E.; Yi, C.; et al. A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials. Nat. Commun. 2012, 3, 631. [Google Scholar] [CrossRef]
- Zemski, K.A.; Justes, D.R.; Castleman, A.W. Studies of Metal Oxide Clusters: Elucidating Reactive Sites Responsible for Activity of Transition Metal Oxide Catalysts. J. Phys. Chem. B 2002, 106, 6136–6148. [Google Scholar] [CrossRef]
- Yang, S.; Rao, D.; Ye, J.; Yang, S.; Zhang, C.; Gao, C.; Zhou, X.; Yang, H.; Yan, X. Mechanism of transition metal cluster catalysts for hydrogen evolution reaction. Int. J. Hydrogen Energy 2021, 46, 3484–3492. [Google Scholar] [CrossRef]
- Ibragimov, S.; Lyalin, A.; Kumar, S.; Ono, Y.; Taketsugu, T.; Bobrowski, M. Theoretical design of nanocatalysts based on (Fe2O3)n clusters for hydrogen production from ammonia. J. Chem. Phys. 2025, 162, 054305. [Google Scholar] [CrossRef]
- Uzunova, E.; Georgieva, I.; Zahariev, T. Water splitting reaction mechanism on transition metal (Fe–Cu) sulphide and selenide clusters—A DFT study. Materials 2023, 17, 56. [Google Scholar] [CrossRef] [PubMed]
- Erlebach, A.; Kurland, H.D.; Grabow, J.; Müller, F.A.; Sierka, M. Structure evolution of nanoparticulate Fe2O3. Nanoscale 2015, 7, 2960–2969. [Google Scholar] [CrossRef] [PubMed]
- Erlebach, A.; Hühn, C.; Jana, R.; Sierka, M. Structure and magnetic properties of (Fe2O3)n clusters (n = 1–5). Phys. Chem. Chem. Phys. 2014, 16, 26421–26426. [Google Scholar] [CrossRef]
- Ding, X.L.; Xue, W.; Ma, Y.P.; Wang, Z.-C.; He, S.G. Density functional study on cage and noncage (Fe2O3)n clusters. J. Chem. Phys. 2009, 130, 014303. [Google Scholar] [CrossRef]
- Wei, D.; Ma, W.; Wu, X.; Cheng, L. A modified dynamic lattice searching method for structural optimization of metal oxide clusters. Chem. Phys. 2021, 543, 111097. [Google Scholar] [CrossRef]
- Yan, L.; Lu, Y.; Li, X. A density functional theory protocol for the calculation of redox potentials of copper complexes. Phys. Chem. Chem. Phys. 2016, 18, 5529–5536. [Google Scholar] [CrossRef]
- Kim, J.B.; Weichman, M.L.; Neumark, D.M. Low-lying states of FeO and FeO− by slow photoelectron spectroscopy. Mol. Phys. 2015, 113, 2105–2114. [Google Scholar] [CrossRef]
- Hendrickx, M.F.A.; Anam, K.R. A New Proposal for the Ground State of the FeO− Cluster in the Gas Phase and for the Assignment of Its Photoelectron Spectra. J. Phys. Chem. A 2009, 113, 8746–8753. [Google Scholar] [CrossRef] [PubMed]
- Larsson, E.D.; Zobel, J.P.; Veryazov, V. Benchmarking ANO-R basis set for multiconfigurational calculations. Electron. Struct. 2022, 4, 014009. [Google Scholar] [CrossRef]
- Thompson, J.A.; González-Cabaleiro, R.; Vilà-Nadal, L. Reducing Systematic Uncertainty in Computed Redox Potentials for Aqueous Transition-Metal-Substituted Polyoxotungstates. Inorg. Chem. 2023, 62, 12260–12271. [Google Scholar] [CrossRef] [PubMed]
- Shee, J.; Loipersberger, M.; Rettig, A.; Lee, J.; Head-Gordon, M. Regularized Second-Order Møller–Plesset Theory: A More Accurate Alternative to Conventional MP2 for Noncovalent Interactions and Transition Metal Thermochemistry for the Same Computational Cost. J. Phys. Chem. Lett. 2021, 12, 12084–12097. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, K.; Gutsev, G.L.; Weatherford, C.A.; Jena, P. A systematic study of neutral and charged 3d-metal trioxides and tetraoxides. J. Chem. Phys. 2011, 134, 144305. [Google Scholar] [CrossRef] [PubMed]
- Ahamed, I.; Seriani, N.; Gebauer, R.; Kashya, A. Heterostructures of ϵ-Fe2O3 and α-Fe2O3: Insights from density functional theory. RSC Adv. 2020, 10, 27474–27480. [Google Scholar] [CrossRef] [PubMed]
- Gutsev, G.; Bozhenko, K.; Gutsev, L.; Utenyshev, A.; Aldoshin, S. Dependence of Properties and Exchange Coupling Constants on the Charge in the Mn2O n and Fe2O n Series. J. Phys. Chem. A 2018, 122, 5644–5655. [Google Scholar] [CrossRef]
- Reilly, N.M.; Reveles, J.U.; Johnson, G.E.; del Campo, J.M.; Khanna, S.N.; Köster, A.M.; Castleman, A. Experimental and Theoretical Study of the Structure and Reactivity of Fe m O n + (m = 1, 2; n = 1–5) with CO. J. Phys. Chem. C 2007, 111, 19086–19097. [Google Scholar] [CrossRef]
- Wu, H.; Desai, S.R.; Wang, L.S. Observation and Photoelectron Spectroscopic Study of Novel Mono-and Diiron Oxide Molecules: FeO y-(y = 1–4) and Fe2O y-(y = 1–5). J. Am. Chem. Soc. 1996, 118, 5296–5301. [Google Scholar] [CrossRef]
- Johnson, G.E.; Reveles, J.U.; Reilly, N.M.; Tyo, E.C.; Khanna, S.N.; Castleman, A., Jr. Influence of stoichiometry and charge state on the structure and reactivity of cobalt oxide clusters with CO. J. Phys. Chem. A 2008, 112, 11330–11340. [Google Scholar] [CrossRef]
- Boschloo, G.; Hagfeldt, A. Characteristics of the Iodide/Triiodide Redox Mediator in Dye-Sensitized Solar Cells. Accounts Chem. Res. 2009, 42, 1819–1826. [Google Scholar] [CrossRef] [PubMed]
- Faust, B.C.; Hoffmann, M.R.; Bahnemann, D.W. Photocatalytic oxidation of sulfur dioxide in aqueous suspensions of α-iron oxide (Fe2O3). J. Phys. Chem. 1989, 93, 6371–6381. [Google Scholar] [CrossRef]
- Kormann, C.; Bahnemann, D.W.; Hoffmann, M.R. Environmental photochemistry: Is iron oxide (hematite) an active photocatalyst? A comparative study: α-Fe2O3, ZnO, TiO2. J. Photochem. Photobiol. A Chem. 1989, 48, 161–169. [Google Scholar] [CrossRef]
- Marius, C.; Grozescu, I. Fe2O3-Nanoparticles, Physical Properties and Their Photochemical and Photoelectrochemical Applications. Politeh. Univ. 2009, 54, 1–8. [Google Scholar]
- Pauling, L. The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms. J. Am. Chem. Soc. 1932, 54, 3570–3582. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Revision C.01, 2016; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Sherman, D.M. Electronic Structures of Iron Oxides and Silicates. In Advanced Mineralogy: Volume 1 Composition, Structure, and Properties of Mineral Matter: Concepts, Results, and Problems; Marfunin, A.S., Ed.; Springer: Berlin/Heidelberg, Germany, 1994; pp. 327–340. [Google Scholar] [CrossRef]
- Balabanov, N.B.; Peterson, K.A. Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc–Zn. J. Chem. Phys. 2005, 123, 064107. [Google Scholar] [CrossRef]
- Wilson, A.K.; van Mourik, T.; Dunning, T.H. Gaussian basis sets for use in correlated molecular calculations. VI. Sextuple zeta correlation consistent basis sets for boron through neon. J. Mol. Str. Theochem 1996, 388, 339–349. [Google Scholar] [CrossRef]
- Saini, S.; Deb, B.M. A computational study of the interaction of [7]-helicene with alkali cations and benzene. Indian J. Chem. 2007, 46A, 9–15. [Google Scholar]
- Becke, A.D. A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 1993, 98, 1372–1377. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
- Hertwig, R.H.; Koch, W. On the parameterization of the local correlation functional. What is Becke-3-LYP? Chem. Phys. Lett. 1997, 268, 345–351. [Google Scholar] [CrossRef]
- Tirado-Rives, J.; Jorgensen, W.L. Performance of B3LYP Density Functional Methods for a Large Set of Organic Molecules. J. Chem. Theory Comput. 2008, 4, 297–306. [Google Scholar] [CrossRef]
- Pulay, P. Improved SCF convergence acceleration. J. Comp. Chem. 1982, 3, 556–560. [Google Scholar] [CrossRef]
- Fischer, T.H.; Almlof, J. General methods for geometry and wave function optimization. J. Chem. Phys. 1992, 96, 9768–9774. [Google Scholar] [CrossRef]
- Chaban, G.; Schmidt, M.W.; Gordon, M.S. Approximate second order method for orbital optimization of SCF and MCSCF wavefunctions. Theor. Chem. Accounts 1997, 97, 88–95. [Google Scholar] [CrossRef]
- Saunders, V.; Hillier, I. A “Level–Shifting” method for converging closed shell Hartree–Fock wave functions. Int. J. Q. Chem. 2004, 7, 699–705. [Google Scholar] [CrossRef]
- Mulliken, R.S. Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I. J. Chem. Phys. 1955, 23, 1833–1840. [Google Scholar] [CrossRef]
- Hirshfeld, F.L. Bonded-atom fragments for describing molecular charge densities. Theor. Chim. Acta 1977, 44, 129–138. [Google Scholar] [CrossRef]
- Flores Leonar, M.M.; Moreno Esparza, R.; Ugalde-Saldívar, C.; Amador Bedolla, V.M. Further insights in DFT calculations of redox potential for iron complexes: The ferrocenium/ferrocene system. Comp. Theor. Chem. 2017, 1099, 167–173. [Google Scholar] [CrossRef]
- Baik, M.H.; Friesner, R.A. Computing redox potentials in solution: Density Functional Theory as a tool for rational design of redox agents. J. Phys. Chem. A 2002, 106, 7407–7412. [Google Scholar] [CrossRef]
- Shimodaira, Y.; Miura, T.; Kudo, A.; Kobayashi, H. DFT method estimation of standard redox potential of metal ions and metal complexes. J. Chem. Theory Comput. 2007, 3, 789–795. [Google Scholar] [CrossRef]
- Roy, L.E.; Jakubikova, E.; Guthrie, M.G.; Batista, E.R. Calculation of one-electron redox potentials revisited. Is it possible to calculate accurate potentials with density functional methods? J. Phys. Chem. A 2009, 113, 6745–6750. [Google Scholar] [CrossRef]
- Steele, H.M.; Guillaumont, D.; Moisy, P. Density Functional Theory calculations of the redox potentials of Actinide(VI)/Actinide(V) couple in water. J. Phys. Chem. A 2013, 117, 4500–4505. [Google Scholar] [CrossRef]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005, 105, 2999–3094. [Google Scholar] [CrossRef] [PubMed]
- Barca, G.M.J.; Bertoni, C.; Carrington, L.; Datta, D.; De Silva, N.; Deustua, J.E.; Fedorov, D.G.; Gour, J.R.; Gunina, A.O.; Guidez, E.; et al. Recent developments in the general atomic and molecular electronic structure system. J. Chem. Phys. 2020, 152, 154102. [Google Scholar] [CrossRef] [PubMed]












| FeO/FeO− | |||||||
|---|---|---|---|---|---|---|---|
| vEA | aEA | vEA | aEA | ||||
| UMP2 | RMP2 | UMP2 | RMP2 | UB3LYP | RB3LYP | UB3LYP | RB3LYP |
| 1.35 | 1.44 | 1.52 | 1.54 | 0.84 | 0.89 | 1.17 | 1.22 |
| vIP | aIP | vEA | aEA | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| MP2 | B3LYP | MP2 | B3LYP | MP2 | B3LYP | MP2 | B3LYP | |||
| Fe2O3 | Expt. mcalc. | Expt. mcalc. | ||||||||
| linear | 11.18 | 9.74 | 10.26 | 9.46 | 1 8.5 [47] | 2.37 | 2.69 | 2.56 | 2.76 | 1 2.39, 3 2.86 [48] 1 2.6, 3 3.06 [49] |
| kite | 10.25 | 9.31 | 9.30 | 9.03 | 2.92 | 2.12 | 3.24 | 2.77 | ||
| spindle | 9.32 | 8.52 | 9.16 | 8.21 | 2.18 | 1.21 | 2.49 | 2.36 | ||
| Co2O3 | ||||||||||
| linear | 12.42 | 10.19 | 11.11 | 9.89 | 6 9.05 [50] | 2.44 | 2.76 | 2.53 | 2.79 | 6 2.75 [50] |
| kite | 11.17 | 10.37 | 9.86 | 9.37 | 1.03 | 2.23 | 1.69 | 2.94 | ||
| spindle | 9.92 | 9.12 | 9.25 | 8.69 | 2.54 | 1.35 | 2.71 | 2.47 | ||
| MP2 | B3LYP | MP2 | B3LYP | MP2 | B3LYP | MP2 | B3LYP | |
| Fe2O3 | ||||||||
| linear (ant.) | 5.90 | 5.77 | 1.46 | 1.33 | 3.50 | 3.61 | −0.94 | −0.83 |
| kite | 5.42 | 4.54 | 0.98 | 0.10 | 3.66 | 4.07 | −0.78 | −0.37 |
| spindle (ant.) | 5.42 | 4.77 | 0.98 | 0.33 | 3.69 | 3.72 | −0.75 | −0.72 |
| Co2O3 | ||||||||
| linear (ant.) | 7.26 | 6.57 | 2.82 | 2.13 | 4.43 | 3.81 | −0.01 | −0.63 |
| kite | 6.14 | 6.14 | 1.70 | 1.70 | 2.28 | 4.26 | −2.16 | −0.18 |
| spindle | 5.12 | 5.12 | 0.68 | 0.68 | 5.19 | 4.12 | 0.75 | −0.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibragimov, S.; Komando, L.; Bobrowski, M. Isomers of Iron(III) Oxides and Cobalt(III) Oxides and Their Redox Properties: Quantum-Chemical Insights. Molecules 2025, 30, 4158. https://doi.org/10.3390/molecules30214158
Ibragimov S, Komando L, Bobrowski M. Isomers of Iron(III) Oxides and Cobalt(III) Oxides and Their Redox Properties: Quantum-Chemical Insights. Molecules. 2025; 30(21):4158. https://doi.org/10.3390/molecules30214158
Chicago/Turabian StyleIbragimov, Sapajan, Leonard Komando, and Maciej Bobrowski. 2025. "Isomers of Iron(III) Oxides and Cobalt(III) Oxides and Their Redox Properties: Quantum-Chemical Insights" Molecules 30, no. 21: 4158. https://doi.org/10.3390/molecules30214158
APA StyleIbragimov, S., Komando, L., & Bobrowski, M. (2025). Isomers of Iron(III) Oxides and Cobalt(III) Oxides and Their Redox Properties: Quantum-Chemical Insights. Molecules, 30(21), 4158. https://doi.org/10.3390/molecules30214158

