Potential Antiviral Compounds from Hippeastrum puniceum Bulb Against Yellow Fever Virus: Bioassay-Guided Fractionation and In Silico Pharmacokinetic Analysis
Abstract
1. Introduction
2. Results
2.1. Crude Extract Screening Against Wt-YFV
2.2. Bioassay-Guided Fractionation of H. puniceum Bulb Extract Against Wt-YFV
| Fraction | Peak ID | RT (min) | Area (%) | Parent Ion [M + H]+ (m/z) | MS/MS Fragments (m/z, Relative Abundance -%) | Molecular Formula | Annotation |
|---|---|---|---|---|---|---|---|
| 2 (well B2)-0.51–1.00 min | 1 | 0.7 | 1.17 | 175.1190 | 175.1188 (100.0); 158.0922 (20.0); 130.0975 (9.7); 116.0698 (4.8) | C6H14N4O2 | Arginine a,b |
| 2 | 0.9 | 0.52 | 133.0606 | 133.0607 (100.0); 116.0348 (10.1); 132.1022 (7.8); 130.0505 (5.0) | C4H8N2O3 | Asparagine a,b | |
| 3 | 0.9 | 0.41 | 148.0603 | 148.0603 (33.3); 146.1177 (37.5); 130.0498 (100.0); 99.4688 (1.1) | C5H9NO4 | Glutamic acid b | |
| 4 | 1.0 | 1.10 | 138.0547 | 135.0676 (0.7); 136.0392(0.5); 136.0622 (0.5); 110.0899 (0.1) | C7H7NO2 | Trigonelline a,b | |
| 5 | 1.0 | 1.06 | 150.0911 | 135.0676 (24.3); 134.0600 (9.1); 132.0807 (2.0); 119.0491 (3.2); 117.0 (1.7) | C9H11NO | Cathinone b | |
| 16 (well A3)- 7.51–8.00 min | 6 | 7.6 | 0.01 | 205.0972 | 188.0705 (100.0); 146.0598 (43.1); 132.0807 (10.8); 118.0650 (22.3) | C11H12N2O2 | Tryptophan a,b |
| 7 | 7.7 | 0.01 | 320.1490 | 302.1387 (12.1); 220.0750 (5.7); 147.0438 (34.6); 119.0489 (9.2); | C17H21NO5 | Bulbisine b | |
| 23 (well G4)- 11.01–11.50 min | 8 | 11.1 | 10.94 | 231.1126 | 188.0705 (75.4); 158.0965 (100.0); 143.0723 (96.2); 130.0650 (52.8) | C13H14N2O2 | Tetrahydroharman-3-carboxylic acid b,c |
| 9/10 | 11.4 | 8.10 | 376.1755 | 376.1755 (100.0); 377.1789 (21.0); 165.0912 (16.3); 124.0754 (3.2);139.0543 (0.2) | C20H25NO6 | 3-O-acetyl narcissidine or 2,7-dimethoxyhomolycorine b,c |

2.3. In Silico ADMET Properties
2.4. CC50 and EC50 Values of Annotated Compounds Obtained from the Bioassay-Guided Fractionation of Hippeastrum Puniceum Bulb Extract
3. Discussion
4. Materials and Methods
4.1. Reagents and Solvents
4.2. Cells, Wild-Type YFV, and Interferon Alfa-2a
4.3. Plant Material
4.4. Ethanolic Extract Preparation
4.5. Bioassay-Guided Chromatographic Fractionation
4.6. Cytotoxicity Assay and Wt-YFV Replication Inhibition Assay
4.7. In Silico ADMET Prediction
4.8. Determination of CC50 and EC50 of Annotated Compounds from the Bioassay-Guided Fractionation of Hippeastrum Puniceum Bulb Extract
4.9. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ACN | Acetonitrile |
| ADMET | Absorption, distribution, metabolism, excretion, and toxicity |
| AMES | The name of the test used in mutagenicity assessment |
| ATCC | American Type Culture Collection |
| BBB | Blood–brain barrier |
| BCRJ | Rio de Janeiro Cell Bank |
| Caco2 | Human colorectal adenocarcinoma cells |
| CC50 | 50% Cytotoxic Concentration |
| CL | Clearance capacity |
| CNS | Central nervous system |
| CPE | Cytopathic effect |
| CYP450 | Cytochrome P450 |
| DENV | Dengue Virus |
| DMEM | Dulbecco’s Modified Eagle Medium |
| DMSO | Dimethyl Sulfoxide |
| EC50 | 50% Effective Concentration |
| FBS | Fetal bovine serum |
| GC-MS | Gas chromatography-mass spectrometry |
| hERG | Human ether-go-go gene |
| HIV | Human Immunodeficiency Virus |
| ICTV | International Committee on Taxonomy of Virus |
| IFN-α-2a | Human recombinant interferon alfa-2a |
| LD50 | Lethal Dose for 50%. |
| LOAEL | Lowest observed adverse effect level |
| LogP | Logarithm of the partition coefficient |
| M.O.I | Multiplicity of infection |
| MRTD | Maximum recommended therapeutic dose |
| MTT | (3-(4,5-Dimetil-2-tiazolyl)-2,5-Difeniltetrazólio) |
| MVDA | Multivariate data analysis |
| NPX | Narciclasine-4-O-β-D-xylopyranoside |
| NS | Non-structural |
| OCT2 | Renal organic cation transporter 2 |
| RO5 | Lipinski’s Rule of Five |
| RT | Retention time |
| RVFV | Rift Valley Fever Virus |
| SARS | Severe acute respiratory syndrome |
| SISGEN | National System of Genetic Heritage Management |
| SMILES | Simplified Molecular Input Line Entry System |
| TMEM41B | Transmembrane Protein 41B |
| TRIM56 | Tripartite Motif Containing 56 |
| UHPLC | Ultra-high-performance liquid chromatograph |
| VDss | Volume of distribution at steady state |
| wt-YFV | Wild-type yellow fever virus |
| YF | Yellow fever |
| YFV | Yellow Fever Virus |
| ZIKV | Zika Virus |
| γ-PGA | polymer poly-γ-glutamic acid |
References
- Thomas, C.; Michaud, C.; Gaillet, M.; Carrión-Nessi, F.S.; Forero-Peña, D.A.; Lacerda, M.V.G.; Duchemin, J.-B.; Rodovalho, S.; Vreden, S.; Ramos, R. Yellow Fever Reemergence Risk in the Guiana Shield: A Comprehensive Review of Cases Between 1990 and 2022. Curr. Trop. Med. Rep. 2023, 10, 138–145. [Google Scholar] [CrossRef]
- Stanzani, L.M.d.A.; Motta, M.d.A.; Erbisti, R.S.; Abreu, F.V.S.d.; Nascimento-Pereira, A.C.; Ferreira-de-Brito, A.; Neves, M.S.A.S.; Pereira, G.R.; Pereira, G.R.; Santos, C.B.d.; et al. Back to Where It Was First Described: Vectors of Sylvatic Yellow Fever Transmission in the 2017 Outbreak in Espírito Santo, Brazil. Viruses 2022, 14, 2805. [Google Scholar] [CrossRef]
- Taxon Details | ICTV. Available online: https://ictv.global/taxonomy/taxondetails?taxnode_id=202303121&taxon_name=Orthoflavivirus%20flavi (accessed on 25 June 2024).
- Postler, T.S.; Beer, M.; Blitvich, B.J.; Bukh, J.; de Lamballerie, X.; Drexler, J.F.; Imrie, A.; Kapoor, A.; Karganova, G.G.; Lemey, P.; et al. Renaming of the Genus Flavivirus to Orthoflavivirus and Extension of Binomial Species Names within the Family Flaviviridae. Arch. Virol. 2023, 168, 224. [Google Scholar] [CrossRef]
- Liu, B.M.; Mulkey, S.B.; Campos, J.M.; DeBiasi, R.L. Laboratory Diagnosis of CNS Infections in Children Due to Emerging and Re-Emerging Neurotropic Viruses. Pediatr. Res. 2024, 95, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.P.; Almeida, L.T.; Rezende, I.M.d.; Fradico, J.R.B.; Pereira, L.S.; Ramalho, D.B.; Pascoal Xavier, M.A.; Calzavara Silva, C.E.; Monath, T.P.; LaBeaud, A.D.; et al. Evaluation of Humoral Immune Response after Yellow Fever Infection: An Observational Study on Patients from the 2017–2018 Sylvatic Outbreak in Brazil. Microbiol. Spectr. 2024, 12, e0370323. [Google Scholar] [CrossRef]
- Yellow Fever-Number of Reported Cases. Available online: https://www.who.int/data/gho/data/indicators/indicator-details/GHO/yellow-fever-number-of-reported-cases (accessed on 14 December 2023).
- Klitting, R.; Roth, L.; Rey, F.A.; de Lamballerie, X. Molecular Determinants of Yellow Fever Virus Pathogenicity in Syrian Golden Hamsters: One Mutation Away from Virulence. Emerg. Microbes Infect. 2018, 7, 51. [Google Scholar] [CrossRef] [PubMed]
- Phan, M.V.T.; Mendonca Melo, M.; van Nood, E.; Aron, G.; Kreeft-Voermans, J.J.C.; Koopmans, M.P.G.; Reusken, C.; GeurtsvanKessel, C.H.; Cotten, M. Shedding of Yellow Fever Virus From an Imported Case in the Netherlands After Travel to Brazil. Open Forum Infect. Dis. 2020, 7, ofaa020. [Google Scholar] [CrossRef]
- Cancado, B.; Aranda, C.; Mallozi, M.; Weckx, L.; Sole, D. Yellow Fever Vaccine and Egg Allergy. Lancet Infect. Dis. 2019, 19, 812. [Google Scholar] [CrossRef] [PubMed]
- Schneider, W.M.; Hoffmann, H.-H. Flavivirus–Host Interactions: An Expanding Network of Proviral and Antiviral Factors. Curr. Opin. Virol. 2022, 52, 71–77. [Google Scholar] [CrossRef]
- Liu, B.; Li, N.L.; Wang, J.; Shi, P.-Y.; Wang, T.; Miller, M.A.; Li, K. Overlapping and Distinct Molecular Determinants Dictating the Antiviral Activities of TRIM56 against Flaviviruses and Coronavirus. J. Virol. 2014, 88, 13821–13835. [Google Scholar] [CrossRef]
- Simon, L.V.; Hashmi, M.F.; Torp, K.D. Yellow Fever. In StatPearls; National Center for Biotechnology Information: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK470425/ (accessed on 26 July 2024).
- Leal, C.M.; Leitão, S.G.; de Mello, L.L.O.; Rangel, I.d.C.; da Silva, C.V.A.; Miranda, M.D.; Tucci, A.R.; de Assis, C.B.; Sacramento, C.d.Q.; Fintelman-Rodrigues, N.; et al. Bioassay-Guided Fractionation of Siparuna Glycycarpa n-Butanol Extract with Inhibitory Activity against Influenza A(H1N1)Pdm09 Virus by Centrifugal Partition Chromatography (CPC). Molecules 2022, 27, 399. [Google Scholar] [CrossRef]
- Hippeastrum Puniceum (Lam.) Voss—Herbário. Available online: https://www.unirio.br/ccbs/ibio/herbariohuni/hippeastrum-puniceum-lam-voss (accessed on 13 December 2023).
- Jin, Z.; Yao, G. Amaryllidaceae and Sceletium Alkaloids. Nat. Prod. Rep. 2019, 36, 1462–1488. [Google Scholar] [CrossRef] [PubMed]
- Tallini, L.R.; Giordani, R.B.; de Andrade, J.P.; Bastida, J.; Zuanazzi, J.A.S. Structural Diversity and Biological Potential of Alkaloids from the Genus Hippeastrum, Amaryllidaceae: An Update. Rev. Bras. Farmacogn. 2021, 31, 648–657. [Google Scholar] [CrossRef]
- Girard, M.-P.; Merindol, N.; Berthoux, L.; Desgagné-Penix, I. Le Pouvoir Antiviral Des Alcaloïdes de Végétaux Contre Les Virus à ARN. Virologie 2022, 26, 431–450. [Google Scholar] [CrossRef]
- Nair, J.J.; van Staden, J. Antiviral Alkaloid Principles of the Plant Family Amaryllidaceae. Phytomedicine 2023, 108, 154480. [Google Scholar] [CrossRef] [PubMed]
- Hippeastrum Puniceum—Useful Tropical Plants. Available online: https://tropical.theferns.info/viewtropical.php?id=Hippeastrum+puniceum (accessed on 13 December 2023).
- Mitchell, S.A.; Ahmad, M.H. A Review of Medicinal Plant Research at the University of the West Indies, Jamaica, 1948–2001. West. Indian Med. J. 2006, 55, 243–269. [Google Scholar] [CrossRef]
- Candido, R.S.; Fourny, A.C.d.S.; Gonçalves-Esteves, V.; Lopes, R.C. Hippeastrum Species in Areas of Restinga in the State of Rio de Janeiro, Brazil: Pollen Characters. Acta Bot. Bras. 2013, 27, 661–668. [Google Scholar] [CrossRef]
- Etinagbedia, A.; Emakunu, S.O. Phytochemical Constituents and Bioactivities of Hippeastrum puniceum: A Review. Int. J. Sci. Res. Arch. 2024, 13, 1314–1321. [Google Scholar] [CrossRef]
- Soprani, L.C.; Andrade, J.P.d.; Santos, V.D.d.; Alves-Araújo, A.; Bastida, J.; Silva, C.A.G.; Silveira, D.; Borges, W.D.S.; Jamal, C.M. Chemical Evaluation and Anticholinesterase Activity of Hippeastrum Puniceum (Lam.) Kuntz Bulbs (Amaryllidaceae). Braz. J. Pharm. Sci. 2021, 57, e19154. [Google Scholar] [CrossRef]
- Santana, O.; Reinab, M.; Anaya, A.L.; Hernández, F.; Izquierdo, M.E.; González-Coloma, A. 3-O-Acetyl-Narcissidine, a Bioactive Alkaloid from Hippeastrum Puniceum Lam. (Amaryllidaceae). Z. Naturforsch C J. Biosci. 2008, 63, 639–643. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, E.C. Avaliação da atividade antiviral de extratos brutos e substâncias, obtidos de plantas e de fungos, contra os vírus Dengue, Zika e Chikungunya. Ph.D. Thesis, René Rachou Institute, Postgraduate Program in Health Sciences, Oswaldo Cruz Foundation, Belo Horizonte, Brazil, 2019. Available online: https://arca.fiocruz.br/handle/icict/48363 (accessed on 1 January 2023).
- de Castro Barbosa, E.; Alves, T.M.A.; Kohlhoff, M.; Jangola, S.T.G.; Pires, D.E.V.; Figueiredo, A.C.C.; Alves, É.A.R.; Calzavara-Silva, C.E.; Sobral, M.; Kroon, E.G.; et al. Searching for Plant-Derived Antivirals against Dengue Virus and Zika Virus. Virol. J. 2022, 19, 31. [Google Scholar] [CrossRef]
- Dührkop, K.; Fleischauer, M.; Ludwig, M.; Aksenov, A.A.; Melnik, A.V.; Meusel, M.; Dorrestein, P.C.; Rousu, J.; Böcker, S. SIRIUS 4: A Rapid Tool for Turning Tandem Mass Spectra into Metabolite Structure Information. Nat. Methods 2019, 16, 299–302. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A. Lead- and Drug-like Compounds: The Rule-of-Five Revolution. Drug Discov. Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Santos, V.L.d.A.; Gonsalves, A.d.A.; Araújo, C.R.M. Abordagem didática para o desenvolvimento de moléculas bioativas: Regra dos cinco de lipinski e preparação de heterociclo 1,3,4-oxadiazol em forno de micro-ondas doméstico. Quím. Nova 2018, 41, 110–115. [Google Scholar] [CrossRef]
- Barros, A.G. Avaliação ADMET de substâncias. BIOINFO 2023, 3, 25. [Google Scholar] [CrossRef]
- Mandal, S.K.; Rehman, M.M.-U.; Katyal, A.; Rajvanshi, K.; Kannan, M.; Garg, M.; Murugesan, S.; Deepa, P.R. In Silico Anti-Viral Assessment of Phytoconstituents in a Traditional (Siddha Medicine) Polyherbal Formulation-Targeting Mpro and Pan-Coronavirus Post-Fusion Spike Protein. J. Tradit. Complement. Med. 2024, 14, 55–69. [Google Scholar] [CrossRef] [PubMed]
- Roskoski, R. Rule of Five Violations among the FDA-Approved Small Molecule Protein Kinase Inhibitors. Pharmacol. Res. 2023, 191, 106774. [Google Scholar] [CrossRef]
- Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef]
- Volpato, D.C.; Oliveira, E.A.; Okawa, R.T.; Teixeira, J.J.V. Idade e polifarmácia como fatores de risco para potenciais interações de drogas psicotrópicos via CYP450. Rev. Contexto Saúde 2022, 22, e9543. [Google Scholar] [CrossRef]
- Audi, E.A.; Pussi, F.D. Isoenzimas Do CYP450 e Biotransformação de Drogas. Acta Sci. 2000, 22, 599–604. [Google Scholar]
- Wagner, G.J. Content and Vacuole/Extravacuole Distribution of Neutral Sugars, Free Amino Acids, and Anthocyanin in Protoplasts 1. Plant Physiol. 1979, 64, 88–93. [Google Scholar] [CrossRef]
- Wu, G. Amino Acids: Metabolism, Functions, and Nutrition. Amino Acids 2009, 37, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.; Chen, S. Metabolic Signaling Cascades Prompted by Glutaminolysis in Cancer. Cancers 2020, 12, 2624. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.C.; Yu, Y.C.; Sung, Y.; Han, J.M. Glutamine Reliance in Cell Metabolism. Exp. Mol. Med. 2020, 52, 1496–1516. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Lee, S.-H.; Ahn, D.-G.; Cho, H.; Sung, M.-H.; Han, S.H.; Oh, J.-W. The Antiviral Activity of Poly-γ-Glutamic Acid, a Polypeptide Secreted by Bacillus Sp., through Induction of CD14-Dependent Type I Interferon Responses. Biomaterials 2013, 34, 9700–9708. [Google Scholar] [CrossRef]
- Wang, H.; Zheng, X.; Liu, B.; Xia, Y.; Xin, Z.; Deng, B.; He, L.; Deng, J.; Ren, W. Aspartate Metabolism Facilitates IL-1β Production in Inflammatory Macrophages. Front. Immunol. 2021, 12, 753092. [Google Scholar] [CrossRef]
- Vasconcelos, P.F.d.C. Febre amarela. Rev. Soc. Bras. Med. Trop. 2003, 36, 275–293. [Google Scholar] [CrossRef]
- Katoch, D.; Sharma, U. Simultaneous Quantification and Identification of Amaryllidaceae Alkaloids in Narcissus Tazetta by Ultra Performance Liquid Chromatography-Diode Array Detector-Electrospray Ionisation Tandem Mass Spectrometry. J. Pharm. Biomed. Anal. 2019, 175, 112750. [Google Scholar] [CrossRef]
- Faisal, S.; Badshah, S.L.; Kubra, B.; Emwas, A.-H.; Jaremko, M. Alkaloids as Potential Antivirals. A Comprehensive Review. Nat. Prod. Bioprospect 2023, 13, 4. [Google Scholar] [CrossRef]
- Boshra, Y.R.; Fahim, J.R.; Hamed, A.N.E.; Desoukey, S.Y. Phytochemical and Biological Attributes of Narcissus Pseudonarcissus, L. (Amaryllidaceae): A Review. S. Afr. J. Bot. 2022, 146, 437–458. [Google Scholar] [CrossRef]
- Simbala, H.E.I.; Nurkolis, F.; Mayulu, N.; Rotty, L.W.A. Metabolites of Pinang Yaki (Areca Vestiaria) Fruit Extract: A Metabolite Profiling Study. F1000Res. 2022, 10, 1021. [Google Scholar] [CrossRef]
- More, G.K.; Vervoort, J.; Steenkamp, P.A.; Prinsloo, G. Metabolomic Profile of Medicinal Plants with Anti-RVFV Activity. Heliyon 2022, 8, e08936. [Google Scholar] [CrossRef]
- Özçelik, B.; Kartal, M.; Orhan, I. Cytotoxicity, Antiviral and Antimicrobial Activities of Alkaloids, Flavonoids, and Phenolic Acids. Pharm. Biol. 2011, 49, 396–402. [Google Scholar] [CrossRef]
- Bedada, W.; de Andrés, F.; Engidawork, E.; Hussein, J.; LLerena, A.; Aklillu, E. Effects of Khat (Catha Edulis) Use on Catalytic Activities of Major Drug-Metabolizing Cytochrome P450 Enzymes and Implication of Pharmacogenetic Variations. Sci. Rep. 2018, 8, 12726. [Google Scholar] [CrossRef]
- Hung, T.-C.; Lee, W.-Y.; Chen, K.-B.; Chan, Y.-C.; Chen, C.Y.-C. Lead Screening for HIV-1 Integrase (IN) Inhibited by Traditional Chinese Medicine. Biomed. Res. Int. 2014, 2014, 479367. [Google Scholar] [CrossRef]
- López, M.H.M. Potencial de Inibição de Enzimas de Interesse Farmacêutico por Espécies de Amaryllidaceae. M.Sc. Thesis, University of Brasília, Brasília, Brazil, 2018. Available online: http://repositorio.unb.br/handle/10482/33221 (accessed on 13 January 2023).
- Masi, M.; Cala, A.; Tabanca, N.; Cimmino, A.; Green, I.R.; Bloomquist, J.R.; Van Otterlo, W.A.L.; Macias, F.A.; Evidente, A. Alkaloids with Activity against the Zika Virus Vector Aedes Aegypti (L.)—Crinsarnine and Sarniensinol, Two New Crinine and Mesembrine Type Alkaloids Isolated from the South African Plant Nerine Sarniensis. Molecules 2016, 21, 1432. [Google Scholar] [CrossRef] [PubMed]
- Herraiz, T.; Galisteo, J. Tetrahydro-β-Carboline Alkaloids Occur in Fruits and Fruit Juices. Activity as Antioxidants and Radical Scavengers. J. Agric. Food Chem. 2003, 51, 7156–7161. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Lao, Z.; Xu, J.; Li, Z.; Long, H.; Li, D.; Lin, L.; Liu, X.; Yu, L.; Liu, W.; et al. Antiviral Activity of Lycorine against Zika Virus in Vivo and in Vitro. Virology 2020, 546, 88–97. [Google Scholar] [CrossRef]
- Hwang, Y.-C.; Chu, J.J.-H.; Yang, P.L.; Chen, W.; Yates, M.V. Rapid Identification of Inhibitors That Interfere with Poliovirus Replication Using a Cell-Based Assay. Antiviral Res. 2008, 77, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Renard-Nozaki, J.; Kim, T.; Imakura, Y.; Kihara, M.; Kobayashi, S. Effect of Alkaloids Isolated from Amaryllidaceae on Herpes Simplex Virus. Res. Virol. 1989, 140, 115–128. [Google Scholar] [CrossRef]
- Li, S.-Y.; Chen, C.; Zhang, H.-Q.; Guo, H.-Y.; Wang, H.; Wang, L.; Zhang, X.; Hua, S.-N.; Yu, J.; Xiao, P.-G.; et al. Identification of Natural Compounds with Antiviral Activities against SARS-Associated Coronavirus. Antiviral Res. 2005, 67, 18–23. [Google Scholar] [CrossRef]
- Zou, G.; Puig-Basagoiti, F.; Zhang, B.; Qing, M.; Chen, L.; Pankiewicz, K.W.; Felczak, K.; Yuan, Z.; Shi, P.-Y. A Single-Amino Acid Substitution in West Nile Virus 2K Peptide between NS4A and NS4B Confers Resistance to Lycorine, a Flavivirus Inhibitor. Virology 2009, 384, 242–252. [Google Scholar] [CrossRef]
- Dulbecco, R.; Vogt, M. Some Problems of Animal Virology as Studied by the Plaque Technique. Cold Spring Harb. Symp. Quant. Biol. 1953, 18, 273–279. [Google Scholar] [CrossRef]
- Horai, H.; Arita, M.; Kanaya, S.; Nihei, Y.; Ikeda, T.; Suwa, K.; Ojima, Y.; Tanaka, K.; Tanaka, S.; Aoshima, K.; et al. MassBank: A Public Repository for Sharing Mass Spectral Data for Life Sciences. J. Mass. Spectrom. 2010, 45, 703–714. [Google Scholar] [CrossRef] [PubMed]
- Zandi, K.; Amblard, F.; Amichai, S.; Bassit, L.; Tao, S.; Jiang, Y.; Zhou, L.; Ollinger Russell, O.; Mengshetti, S.; Schinazi, R.F. Nucleoside Analogs with Antiviral Activity against Yellow Fever Virus. Antimicrob. Agents Chemother. 2019, 63, e00889-19. [Google Scholar] [CrossRef]
- de Freitas, C.S.; Higa, L.M.; Sacramento, C.Q.; Ferreira, A.C.; Reis, P.A.; Delvecchio, R.; Monteiro, F.L.; Barbosa-Lima, G.; James Westgarth, H.; Vieira, Y.R.; et al. Yellow Fever Virus Is Susceptible to Sofosbuvir Both in Vitro and in Vivo. PLoS Negl. Trop. Dis. 2019, 13, e0007072. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, Y.; Lu, L.; Zou, P. Zafirlukast, as a Viral Inactivator, Potently Inhibits Infection of Several Flaviviruses, Including Zika Virus, Dengue Virus, and Yellow Fever Virus. Antimicrob. Agents Chemother. 2024, 68, e00168-24. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Pires, D.E.V.; Kaminskas, L.M.; Ascher, D.B. Prediction and Optimization of Pharmacokinetic and Toxicity Properties of the Ligand. Methods Mol. Biol. 2018, 1762, 271–284. [Google Scholar] [CrossRef]

| PARAMETERS | COMPOUNDS | INDICATORS | |||||
|---|---|---|---|---|---|---|---|
| Trigonelline | Cathinone | Bulbisine | Tetrahydroharman-3-carboxylic Acid | 3-O-acetyl-narcissidine | 2,7-dimethoxy-homolycorine | ||
| MOL_WEIGHT | 137,138 | 149,193 | 319,357 | 230,267 | 375,421 | 375,421 | |
| LOGP | −1.1254 | 1.2165 | 0.7652 | 1.8278 | 1.2328 | 1.9941 | Lipinski’s RO5: <5 ideally between 1–4 |
| ROTATABLE_BONDS | 1 | 2 | 1 | 1 | 4 | 4 | |
| ACCEPTORS | 2 | 2 | 6 | 2 | 7 | 7 | |
| DONORS | 0 | 1 | 2 | 3 | 1 | 0 | |
| SURFACE_AREA | 58,547 | 66,028 | 134,111 | 98,647 | 158,003 | 158,323 | |
| Water solubility | −1.931 | −0.795 | −1.859 | −2.435 | −2.948 | −3.146 | The predicted water solubility of a compound is given as the logarithm of the molar concentration (log mol/L). |
| Caco2 permeability | 1.124 | 1.237 | −0.138 | 0.832 | 0.705 | 1.472 | High Caco2 permeability would translate into predicted values >0.90 |
| Intestinal absorption (human) | 96.44 | 76.876 | 70.972 | 94.534 | 64.054 | 97.738 | Poorly absorbed: <30% |
| Skin Permeability | −2.736 | −2.278 | −3.236 | −2.735 | −3.175 | −2.887 | Low skin permeability if it has a logKp > −2.5. |
| P-glycoprotein substrate | Yes | No | Yes | Yes | Yes | No | Yes or No |
| P-glycoprotein I inhibitor | No | No | No | No | No | No | Yes or No |
| P-glycoprotein II inhibitor | No | No | No | No | No | No | Yes or No |
| VDss (human) | −0.758 | 0.465 | 0.401 | −0.237 | 0.481 | 0.402 | Low if below 0.71 L/kg (log VDss < −0.15) and high if above 2.81 L/kg (log VDss > 0.45). |
| Fraction unbound (human) | 0.857 | 0.469 | 0.436 | 0.481 | 0.413 | 0.411 | For a given compound, the predicted fraction that would be unbound in plasma will be calculated. |
| BBB permeability | −0.234 | −0.133 | −0.716 | 0.225 | −0.538 | −0.396 | Readily cross BBB > 0.3; Poorly distributed in brain < −1 |
| CNS permeability | −2.739 | −1.768 | −3.429 | −3.254 | −3.243 | −2.969 | Can penetrate, Log PS > −2 Cannot penetrate, Log PS < −3 |
| CYP2D6 substrate | No | No | No | Yes | No | No | Yes or No |
| CYP3A4 substrate | No | No | Yes | No | Yes | Yes | Yes or No |
| CYP1A2 inhibitor | No | Yes | No | No | No | No | Yes or No |
| CYP2C19 inhibitor | No | No | No | No | No | No | Yes or No |
| CYP2C9 inhibitor | No | No | No | No | No | No | Yes or No |
| CYP2D6 inhibitor | No | No | No | No | No | No | Yes or No |
| CYP3A4 inhibitor | No | No | No | No | No | No | Yes or No |
| Total Clearance | 0.378 | 0.811 | 1.137 | 0.694 | 0.902 | 0.636 | - |
| Renal OCT2 substrate | No | No | No | No | No | No | Yes or No |
| AMES toxicity | No | No | No | No | No | No | Yes or No |
| Max. tolerated dose (human) | 0.743 | 0.779 | 0.025 | 0.323 | −0.558 | −0.099 | High is greater than 0.477 |
| hERG I inhibitor | No | No | No | No | No | No | Yes or No |
| hERG II inhibitor | No | No | No | No | No | No | Yes or No |
| Oral Rat Acute Toxicity (LD50) | 1.878 | 2.131 | 3.124 | 2.412 | 3.109 | 2.739 | The LD50 is the amount of a compound given all at once that causes the death of 50% of a group of test animals. |
| Oral Rat Chronic Toxicity (LOAEL) | 0.454 | 1.542 | 2.614 | 1.115 | 1.610 | 2.689 | The LOAEL results need to be interpreted relative to the bioactive concentration and treatment lengths required. |
| Hepatotoxicity | No | No | Yes | No | Yes | Yes | Yes or No |
| Skin Sensitisation | No | No | No | No | No | No | Yes or No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores-Souza, E.; Caldeira, A.S.P.; Pacca-Mazaro, C.C.; de Souza, T.V.M.; Acácio, T.M.; Barbosa, E.d.C.; Tavares, N.C.; Calzavara-Silva, C.E.; Zani, C.L.; Pires, D.E.V.; et al. Potential Antiviral Compounds from Hippeastrum puniceum Bulb Against Yellow Fever Virus: Bioassay-Guided Fractionation and In Silico Pharmacokinetic Analysis. Molecules 2025, 30, 4149. https://doi.org/10.3390/molecules30214149
Flores-Souza E, Caldeira ASP, Pacca-Mazaro CC, de Souza TVM, Acácio TM, Barbosa EdC, Tavares NC, Calzavara-Silva CE, Zani CL, Pires DEV, et al. Potential Antiviral Compounds from Hippeastrum puniceum Bulb Against Yellow Fever Virus: Bioassay-Guided Fractionation and In Silico Pharmacokinetic Analysis. Molecules. 2025; 30(21):4149. https://doi.org/10.3390/molecules30214149
Chicago/Turabian StyleFlores-Souza, Eliza, Alisson Samuel Portes Caldeira, Carolina Colombelli Pacca-Mazaro, Tamiris Vanessa Miguel de Souza, Thaís Magalhães Acácio, Emerson de Castro Barbosa, Naiara Clemente Tavares, Carlos Eduardo Calzavara-Silva, Carlos Leomar Zani, Douglas Eduardo Valente Pires, and et al. 2025. "Potential Antiviral Compounds from Hippeastrum puniceum Bulb Against Yellow Fever Virus: Bioassay-Guided Fractionation and In Silico Pharmacokinetic Analysis" Molecules 30, no. 21: 4149. https://doi.org/10.3390/molecules30214149
APA StyleFlores-Souza, E., Caldeira, A. S. P., Pacca-Mazaro, C. C., de Souza, T. V. M., Acácio, T. M., Barbosa, E. d. C., Tavares, N. C., Calzavara-Silva, C. E., Zani, C. L., Pires, D. E. V., Alves, T. M. d. A., & de Oliveira, J. G. (2025). Potential Antiviral Compounds from Hippeastrum puniceum Bulb Against Yellow Fever Virus: Bioassay-Guided Fractionation and In Silico Pharmacokinetic Analysis. Molecules, 30(21), 4149. https://doi.org/10.3390/molecules30214149

