Bentonite-Clarified White Wine: Linking Clay Physico-Chemical Properties to Protein Removal Efficiency and Wine Matrix Alterations
Abstract
1. Introduction
2. Results and Discussion
2.1. Bentonite Physico-Chemical Properties
2.2. Protein Removal Efficiency and Bentonite Lees Sedimentation
2.3. Alterations in Elemental Composition
2.4. Alterations in Phenolic Compound Composition
2.5. Alterations in Volatile Compound Composition
2.6. Hierarchical Clustering Analysis of Wine Matrix Alterations
3. Materials and Methods
3.1. Wine Sample
3.2. Bentonite Samples
3.3. Physico-Chemical Analysis of Bentonites
3.3.1. Elemental Composition
3.3.2. Exchangeable Cations and Cation Exchange Capacity
3.3.3. Swelling Capacity
3.3.4. Particle Size
3.3.5. External Specific Surface Area
3.3.6. Internal Specific Surface Area
3.3.7. ζ-Potential
3.4. Batch-Scale Wine Clarification Trials
3.5. Chemical Analysis of Clarified Wines
3.5.1. Elements
3.5.2. Phenolic Compounds
3.5.3. Volatile Compounds
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Waters, E.J.; Alexander, G.; Muhlack, R.; Pocock, K.F.; Colby, C.; O’Neill, B.K.; Høj, P.B.; Jones, P. Preventing protein haze in bottled white wine. Aust. J. Grape Wine Res. 2005, 11, 215–225. [Google Scholar] [CrossRef]
- Marangon, M.; Van Sluyter, S.C.; Robinson, E.M.; Muhlack, R.A.; Holt, H.E.; Haynes, P.A.; Godden, P.W.; Smith, P.A.; Waters, E.J. Degradation of white wine haze proteins by Aspergillopepsin I and II during juice flash pasteurization. Food Chem. 2012, 135, 1157–1165. [Google Scholar] [CrossRef]
- Marangon, M.; Lucchetta, M.; Duan, D.; Stockdale, V.J.; Hart, A.; Rogers, P.J.; Waters, E.J. Protein removal from a chardonnay juice by addition of carrageenan and pectin. Aust. J. Grape Wine Res. 2012, 18, 194–202. [Google Scholar] [CrossRef]
- Vincenzi, S.; Panighel, A.; Gazzola, D.; Flamini, R.; Curioni, A. Study of combined effect of proteins and bentonite fining on the wine aroma loss. J. Agric. Food Chem. 2015, 63, 2314–2320. [Google Scholar] [CrossRef]
- Mierczynska-Vasilev, A.; Boyer, P.; Vasilev, K.; Smith, P.A. A novel technology for the rapid, selective, magnetic removal of pathogenesis-related proteins from wines. Food Chem. 2017, 232, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Sommer, S.; Tondini, F. Sustainable Replacement Strategies for Bentonite in Wine Using Alternative Protein Fining Agents. Sustainability 2021, 13, 1860. [Google Scholar] [CrossRef]
- Sui, Y.; McRae, J.M.; Wollan, D.; Muhlack, R.A.; Godden, P.; Wilkinson, K.L. Use of ultrafiltration and proteolytic enzymes as alternative approaches for protein stabilisation of white wine. Aust. J. Grape Wine Res. 2021, 27, 234–245. [Google Scholar] [CrossRef]
- Silva-Barbieri, D.; Salazar, F.N.; López, F.; Brossard, N.; Escalona, N.; Pérez-Correa, J.R. Advances in White Wine Protein Stabilization Technologies. Molecules 2022, 27, 1251. [Google Scholar] [CrossRef]
- Gallo, A.; Roman, T.; Paolini, M.; Tonidandel, L.; Leonardelli, A.; Celotti, E.; Nardin, T.; Natolino, A.; Cappello, N.; Larcher, R. Influence of flash heating and aspergillopepsin I supplementation on must and wine attributes of aromatic varieties. Food Res. Int. 2024, 186, 114332. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dudourdieu, D. The Chemistry of Wine Stabilization and Treatments. In Handbook of Enology, 2nd ed.; John Wiley & Sons Ltd.: Chichester, West Sussex, UK, 2006; Volume 2, pp. 13–59. [Google Scholar] [CrossRef]
- Catarino, S.; Madeira, M.; Monteiro, F.; Rocha, F.; Curvelo-Garcia, A.S.; Bruno de Sousa, R. Effect of bentonite characteristics on the elemental composition of wine. J. Agric. Food Chem. 2008, 56, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Lambri, M.; Dordoni, R.; Silva, A.; De Faveri, D.M. Odor-Active Compound Adsorption onto Bentonite in a Model White Wine Solution. Chem. Eng. Trans. 2013, 32, 1742–1746. [Google Scholar] [CrossRef]
- Lambri, M.; Colangelo, D.; Dordoni, R.; Torchio, F.; De Faveri, D.M. Innovations in the Use of Bentonite in Oenology: Interactions with Grape and Wine Proteins, Colloids, Polyphenols and Aroma Compounds. In Grape and Wine Biotechnology; Morata, A., Loira, I., Eds.; InTech: Rijeka, Croatia, 2016; pp. 381–400. [Google Scholar] [CrossRef]
- OIV. COEI–1–BENTON, Bentonites. In International Oenological Codex (Oeno 11/2003 Modified Oeno 441-2011); OIV—International Organisation of Vine and Wine: Paris, France, 2011. [Google Scholar]
- Blade, W.H.; Boulton, R. Adsorption of protein by bentonite in a model wine solution. Am. J. Enol. Vitic. 1988, 39, 193–199. [Google Scholar] [CrossRef]
- Van Sluyter, S.C.; McRae, J.M.; Falconer, R.; Smith, P.A.; Bacic, A.; Waters, E.J.; Marangon, M. Wine protein haze: Mechanisms of formation and advances in prevention. J. Agric. Food Chem. 2015, 63, 4020–4030. [Google Scholar] [CrossRef]
- Dordoni, R.; Colangelo, D.; Giribaldi, M.; Giuffrida, M.G.; De Faveri, D.M.; Lambri, M. Effect of bentonite characteristics on wine proteins, polyphenols, and metals under conditions of different pH. Am. J. Enol. Vitic. 2015, 66, 518–530. [Google Scholar] [CrossRef]
- Lambri, M.; Dordoni, R.; Silva, A.; De Faveri, D.M. Effect of bentonite fining on odor-active compounds in two different white wine styles. Am. J. Enol. Vitic. 2010, 61, 225–233. [Google Scholar] [CrossRef]
- He, S.; Hider, R.; Zhao, J.; Tian, B. Effect of Bentonite Fining on Proteins and Phenolic Composition of Chardonnay and Sauvignon Blanc Wines. S. Afr. J. Enol. Vitic. 2020, 41, 113–120. [Google Scholar] [CrossRef]
- Ma, T.Z.; Gong, P.F.; Lu, R.R.; Zhang, B.; Morata, A.; Han, S.Y. Effect of Different Clarification Treatments on the Volatile Composition and Aromatic Attributes of ‘Italian Riesling’ Icewine. Molecules 2020, 25, 2657. [Google Scholar] [CrossRef] [PubMed]
- Pargoletti, E.; Sanarica, L.; Ceruti, M.; Elli, F.; Pisarra, C.; Cappelletti, G. A comprehensive study on the effect of bentonite fining on wine charged model molecules. Food Chem. 2021, 338, 127840. [Google Scholar] [CrossRef] [PubMed]
- Ubeda, C.; Lambert-Royo, M.I.; Gili Cortiella, M.; Del Barrio-Galán, R.; Peña-Neira, Á. Chemical, Physical, and Sensory Effects of the Use of Bentonite at Different Stages of the Production of Traditional Sparkling Wines. Foods 2021, 10, 390. [Google Scholar] [CrossRef] [PubMed]
- Rakonczás, N.; Kállai, Z.; Kovács, B.; Antal, G.; Szabó, S.; Holb, I.J. Comparison and Intercorrelation of Various Bentonite Products for Oenological Properties, Elemental Compositions, Volatile Compounds and Organoleptic Attributes of White Wine. Foods 2023, 12, 355. [Google Scholar] [CrossRef]
- Arenas, I.; Ribeiro, M.; Filipe-Ribeiro, L.; Vilamarim, R.; Costa, E.; Siopa, J.; Cosme, F.; Nunes, F.M. Effect of Pre-Fermentative Maceration and Fining Agents on Protein Stability, Macromolecular, and Phenolic Composition of Albariño White Wines: Comparative Efficiency of Chitosan, k-Carrageenan and Bentonite as Heat Stabilisers. Foods 2021, 10, 608. [Google Scholar] [CrossRef]
- Temerdashev, Z.; Abakumov, A.; Bolshov, M.; Khalafyan, A.; Ageeva, N.; Vasilyev, A.; Ramazanov, A. Instrumental assessment of the formation of the elemental composition of wines with various bentonite clays. Microchem. J. 2022, 175, 107145. [Google Scholar] [CrossRef]
- Mladenova, E.; Bakardzhiyski, I.; Dimitrova, E. Investigation of Elemental Composition in White Wine Treated with Varying Doses of Bentonite. Beverages 2024, 10, 114. [Google Scholar] [CrossRef]
- Salazar, F.N.; Marangon, M.; Labbé, M.; Lira, E.; Rodríguez-Bencomo, J.J.; López, F. Comparative study of sodium bentonite and sodium-activated bentonite fining during white wine fermentation: Its effect on protein content, protein stability, lees volume, and volatile compounds. Eur. Food Res. Technol. 2017, 243, 2043–2054. [Google Scholar] [CrossRef]
- Lukić, I.; Horvat, I.; Radeka, S.; Delač Salopek, D.; Markeš, M.; Ivić, M.; Butorac, A. Wine proteome after partial clarification during fermentation reveals differential efficiency of various bentonite types. J. Food Compos. Anal. 2024, 126, 105889. [Google Scholar] [CrossRef]
- Christidis, G.E.; Chryssikos, G.D.; Derkowski, A.; Dohrmann, R.; Eberl, D.D.; Joussein, E.; Kaufhold, S. Methods for Determination of the Layer Charge of Smectites: A Critical Assessment of Existing Approaches. Clays Clay Miner. 2023, 71, 25–53. [Google Scholar] [CrossRef]
- Segad, M.; Jönsson, B.; Åkesson, T.; Cabane, B. Ca/Na Montmorillonite: Structure, Forces and Swelling Properties. Langmuir 2010, 26, 5782–5790. [Google Scholar] [CrossRef] [PubMed]
- Bahranowski, K.; Klimek, A.; Gaweł, A.; Serwicka, E.M. Rehydration Driven Na-Activation of Bentonite—Evolution of the Clay Structure and Composition. Materials 2021, 14, 7622. [Google Scholar] [CrossRef]
- Karakaya, M.Ç.; Karakaya, N.; Bakır, S. Some properties and potential applications of the Na- and Ca-bentonites of ordu (N.E. Turkey). Appl. Clay Sci. 2011, 54, 159–165. [Google Scholar] [CrossRef]
- Macheca, A.D.; Mapossa, A.B.; Cumbane, A.J.; Sulemane, A.E.; Tichapondwa, S.M. Development and Characterization of Na2CO3-Activated Mozambican Bentonite: Prediction of Optimal Activation Conditions Using Statistical Design Modeling. Minerals 2022, 12, 1116. [Google Scholar] [CrossRef]
- Beall, G.W.; Sowersby, D.S.; Roberts, R.D.; Robson, M.H.; Lewis, L.K. Analysis of oligonucleotide DNA binding and sedimentation properties of montmorillonite clay using ultraviolet light spectroscopy. Biomacromolecules 2009, 10, 105–112. [Google Scholar] [CrossRef]
- Kaufhold, S.; Dohrmann, R.; Klinkenberg, M.; Siegesmund, S.; Ufer, K. N2-BET specific surface area of bentonites. J. Colloid Interface Sci. 2010, 349, 275–282. [Google Scholar] [CrossRef]
- Missana, T.; Alonso, U.; Fernández, A.M.; García-Gutiérrez, M. Colloidal properties of different smectite clays: Significance for the bentonite barrier erosion and radionuclide transport in radioactive waste repositories. Appl. Geochem. 2018, 97, 157–166. [Google Scholar] [CrossRef]
- Valter, M.; Plötze, M. Characteristics of variably saturated granular bentonite after long-term storage at near-field relevant temperatures. Clay Miner. 2013, 48, 343–361. [Google Scholar] [CrossRef]
- Rutherford, D.W.; Chiou, C.T.; Eberl, D.D. Effects of exchanged cation on the microporosity of montmorillonite. Clays Clay Miner. 1997, 45, 534–543. [Google Scholar] [CrossRef]
- Suárez, M.; Lorenzo, A.; García-Vicente, A.; Morales, J.; García-Rivas, J.; García-Romero, E. New data on the microporosity of bentonites. Eng. Geol. 2022, 296, 106439. [Google Scholar] [CrossRef]
- Yukselen, Y.; Kaya, A. Suitability of the methylene blue test for surface area, cation exchange capacity and swell potential determination of clayey soils. Eng. Geol. 2008, 102, 38–45. [Google Scholar] [CrossRef]
- Hang, P.T.; Brindley, G.W. Methylene Blue Absorption by Clay Minerals. Determination of Surface Areas and Cation Exchange Capacities (Clay-Organic Studies XVIII). Clays Clay Miner. 1970, 18, 203–212. [Google Scholar] [CrossRef]
- Pardo, L.; Cecilia, J.A.; López-Moreno, C.; Hernández, V.; Pozo, M.; Bentabol, M.J.; Franco, F. Influence of the Structure and Experimental Surfaces Modifications of 2:1 Clay Minerals on the Adsorption Properties of Methylene Blue. Minerals 2018, 8, 359. [Google Scholar] [CrossRef]
- Kahr, G.; Madsen, F.T. Determination of the cation exchange capacity and the surface area of bentonite, illite and kaolinite by methylene blue adsorption. Appl. Clay Sci. 1995, 9, 327–336. [Google Scholar] [CrossRef]
- Lambri, M.; Dordoni, R.; Giribaldi, M.; Violetta, M.R.; Giuffrida, M.G. Heat-unstable protein removal by different bentonite labels in white wines. LWT—Food Sci. Technol. 2012, 46, 460–467. [Google Scholar] [CrossRef]
- Ekinci Şans, B.; Güven, O.; Esenli, F.; Çelik, M.S. Contribution of cations and layer charges in the smectite structure on zeta potential of Ca-bentonites. Appl. Clay Sci. 2017, 143, 415–421. [Google Scholar] [CrossRef]
- Gao, P.; Liu, X.; Guo, Z.; Tournassat, C. Acid–Base Properties of Cis-Vacant Montmorillonite Edge Surfaces: A Combined First-Principles Molecular Dynamics and Surface Complexation Modeling Approach. Environ. Sci. Technol. 2023, 57, 1342–1352. [Google Scholar] [CrossRef]
- Trigueiro, P.; Pedetti, S.; Rigaud, B.; Balme, S.; Janot, J.M.; dos Santos, I.M.G.; Gougeon, R.; Fonseca, M.G.; Georgelin, T.; Jaber, M. Going through the wine fining: Intimate dialogue between organics and clays. Colloids Surf. B Biointerfaces 2018, 166, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Schoonheydt, R.A.; Johnston, C.T. The surface properties of clay minerals. In Layered Mineral Structures and Their Application in Advanced Technologies; Brigatti, M.F., Mottana, A., Eds.; Mineralogical Society of Great Britain and Ireland: London, UK, 2011; Volume 11, pp. 337–373. [Google Scholar] [CrossRef]
- Johnston, C.T.; Premachandra, G.S.; Szabo, T.; Lok, J.; Schoonheydt, R.A. Interaction of biological molecules with clay minerals: A combined spectroscopic and sorption study of lysozyme on saponite. Langmuir 2012, 28, 611–619. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Li, C.; Wu, Z.; Xu, X.; Ren, L.; Zhao, H. Adsorption of protein from model wine solution by different bentonites. Chin. J. Chem. Eng. 2007, 15, 632–638. [Google Scholar] [CrossRef]
- Sommer, S.; Sommer, S.J.; Gutierrez, M. Characterization of Different Bentonites and Their Properties as a Protein-Fining Agent in Wine. Beverages 2022, 8, 31. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, J.; Wu, S.; Chen, F.; Yang, Y. Divalent heavy metals and uranyl cations incorporated in calcite change its dissolution process. Sci. Rep. 2020, 10, 16864. [Google Scholar] [CrossRef]
- Bakardzhiyski, I.; Mladenova, E. The migration of elements in wine treated with bentonites. Acta Sci. Pol. Technol. Aliment. 2023, 22, 419–429. [Google Scholar] [CrossRef]
- Jiang, J.Q.; Cooper, C.; Ouki, S. Comparison of modified montmorillonite adsorbents. Part I: Preparation, characterization and phenol removal. Chemosphere 2002, 47, 711–716. [Google Scholar] [CrossRef]
- Shamsuddin, R.M.; Verbeek, C.J.R.; Lay, M.C. Producing protein intercalated bentonite—Equilibrium, kinetics and physical properties of gelatin–bentonite system. Appl. Clay Sci. 2014, 87, 52–60. [Google Scholar] [CrossRef]
- Jaber, M.; Lambert, J.F.; Balme, S. Protein Adsorption on Clay Minerals. In Surface and Interface Chemistry of Clay Minerals; Cases, J.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 255–288. [Google Scholar] [CrossRef]
- Human Metabolome Database (HMDB). Caftaric Acid (HMDB0013680). Available online: https://hmdb.ca/metabolites/HMDB0013680 (accessed on 3 July 2025).
- Beltrán, J.L.; Sanli, N.; Fonrodona, G.; Barrón, D.; Özkan, G.; Barbosa, J. Spectrophotometric, potentiometric and chromatographic pKa values of polyphenolic acids in water and acetonitrile–water media. Anal. Chim. Acta 2003, 484, 253–264. [Google Scholar] [CrossRef]
- Cosme, F.; Aires, A.; Pinto, T.; Oliveira, I.; Vilela, A.; Gonçalves, B. A Comprehensive Review of Bioactive Tannins in Foods and Beverages: Functional Properties, Health Benefits, and Sensory Qualities. Molecules 2025, 30, 800. [Google Scholar] [CrossRef]
- Salazar, F.N.; Achaerandio, I.; Labb, M.A.; Gell, C.; López, F. Comparative Study of Protein Stabilization in White Wine Using Zirconia and Bentonite: Physicochemical and Wine Sensory Analysis. J. Agric. Food Chem. 2006, 54, 9955–9958. [Google Scholar] [CrossRef]
- Vela, E.; Hernández-Orte, P.; Castro, E.; Ferreira, V.; Lopez, R. Effect of Bentonite Fining on Polyfunctional Mercaptans and Other Volatile Compounds in Sauvignon blanc Wines. Am. J. Enol. Vitic. 2017, 68, 30–38. [Google Scholar] [CrossRef]
- Voilley, A.; Lamer, C.; Dubois, P.; Feuillat, M. Influence of macromolecules and treatments on the behavior of aroma compounds in a model wine. J. Agric. Food Chem. 1990, 38, 248–251. [Google Scholar] [CrossRef]
- Wellen, B.A.; Lach, E.A.; Allen, H.C. Surface pKa of octanoic, nonanoic, and decanoic fatty acids at the air–water interface: Applications to atmospheric aerosol chemistry. Phys. Chem. Chem. Phys. 2017, 19, 26551–26558. [Google Scholar] [CrossRef] [PubMed]
- Furuya, E.G.; Chang, H.T.; Miura, Y.; Noll, K.E. A fundamental analysis of the isotherm for the adsorption of phenolic compounds on activated carbon. Sep. Purif. Technol. 1997, 11, 69–78. [Google Scholar] [CrossRef]
- Radovanović Vukajlović, T.; Martelanc, M.; Šala, M.; Simon, V.; Sternad, M. Exploring the role of transition metal ions in the evolution of esters composition of young white wine during ageing. In Proceedings of the OENO Macrowine, Bordeaux, France, 10–13 July 2023; IVES Conference Series. Available online: https://ives-openscience.eu/41366/ (accessed on 12 October 2025).
- Marangon, M.; Van Sluyter, S.C.; Haynes, P.A.; Waters, E.J. Grape and Wine Proteins: Their Fractionation by Hydrophobic Interaction Chromatography and Identification by Chromatographic and Proteomic Analysis. J. Agric. Food Chem. 2009, 57, 4415–4425. [Google Scholar] [CrossRef]
- Van Sluyter, S.C.; Marangon, M.; Stranks, S.D.; Neilson, K.A.; Hayasaka, Y.; Haynes, P.A.; Menz, R.I.; Waters, E.J. Two-step purification of pathogenesis-related proteins from grape juice and crystallization of thaumatin-like proteins. J. Agric. Food Chem. 2009, 57, 11376–11382. [Google Scholar] [CrossRef]
- Lukić, I.; Horvat, I. Moment of Bentonite Addition, Co-Addition of Tannins, and Bentonite Type Affect the Differential Affinity of Pathogenesis-Related Grape Proteins towards Bentonite during Fermentation. Foods 2020, 9, 1534. [Google Scholar] [CrossRef] [PubMed]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Pocock, K.F.; Salazar, F.N.; Waters, E.J. The effect of bentonite fining at different stages of white winemaking on protein stability. Aust. J. Grape Wine Res. 2011, 17, 280–284. [Google Scholar] [CrossRef]
- Horvat, I.; Radeka, S.; Plavša, T.; Lukić, I. Bentonite fining during fermentation reduces the dosage required and exhibits significant side-effects on phenols, free and bound aromas, and sensory quality of white wine. Food Chem. 2019, 285, 305–315. [Google Scholar] [CrossRef]
- Bubola, M.; Lukić, I.; Radeka, S.; Sivilotti, P.; Grozić, K.; Vanzo, A.; Bavčar, D.; Lisjak, K. Enhancement of Istrian Malvasia wine aroma and hydroxycinnamate composition by hand and mechanical leaf removal. J. Sci. Food Agric. 2019, 99, 904–914. [Google Scholar] [CrossRef] [PubMed]


| Property | Bentonite | |||||||
|---|---|---|---|---|---|---|---|---|
| B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 | |
| Elemental Composition (Wt/%) | ||||||||
| Si | 73.7 a | 59.7 d | 70.3 b | 73.0 a | 60.0 d | 67.8 c | 60.8 d | 61.1 d |
| Al | 13.4 f | 23.1 a | 15.9 e | 13.9 f | 23.0 a | 17.3 d | 21.5 b | 19.9 c |
| Fe | 3.08 d | 5.11 bc | 4.37 c | 2.55 d | 5.06 c | 4.72 c | 6.07 b | 8.43 a |
| Na | 1.88 d | 3.39 a | 2.80 c | 3.47 a | 3.42 a | 2.81 c | 3.09 b | 0.89 e |
| Ca | 2.94 b | 2.30 c | 2.37 c | 2.25 c | 3.16 b | 2.45 c | 2.39 c | 3.87 a |
| Na/Ca | 0.64 c | 1.52 a | 1.18 b | 1.57 a | 1.09 b | 1.15 b | 1.29 ab | 0.23 d |
| Mg | 2.65 d | 2.65 d | 1.84 e | 3.17 b | 2.77 cd | 3.10 bc | 3.08 bc | 3.85 a |
| K | 2.37 b | 2.89 ab | 2.44 ab | 1.68 c | 2.60 ab | 1.60 c | 3.01 a | 1.71 c |
| NH4Cl Extract Composition (meq/100 g) | ||||||||
| Si | 0.37 d | 0.63 d | 3.75 a | 2.54 b | 0.54 d | 1.74 c | 0.57 d | 0.69 d |
| Al | 0.14 ab | 0.15 ab | 0.03 c | 0.05 c | 0.15 ab | 0.05 c | 0.12 b | 0.20 a |
| Na | 29.7 e | 49.0 cd | 42.5 d | 47.7 cd | 71.2 a | 64.0 ab | 56.4 bc | 14.0 f |
| Ca | 14.9 b | 11.3 c | 11.4 c | 14.5 b | 12.0 c | 11.7 c | 12.3 c | 18.6 a |
| Na/Ca | 2.00 e | 4.33 bc | 3.75 cd | 3.27 d | 5.96 a | 5.44 a | 4.57 b | 0.75 f |
| Mg | 5.80 d | 7.30 bc | 7.88 b | 6.22 cd | 7.44 bc | 10.61 a | 7.94 b | 8.12 b |
| K | 4.58 abc | 5.71 a | 2.99 de | 4.71 ab | 3.47 cde | 3.86 bcd | 3.83 bcd | 2.60 e |
| Mn | 0.39 a | 0.00 d | 0.01 d | 0.21 b | 0.01 d | 0.00 d | 0.00 d | 0.07 c |
| Cation Exchange Capacity (meq/100 g) | ||||||||
| CEC | 55.4 de | 73.3 bc | 64.7 cd | 73.4 bc | 94.1 a | 90.1 a | 80.5 ab | 43.4 e |
| Swelling Capacity (mL/g) | ||||||||
| Swelling Capacity | 5.17 d | 8.33 b | 5.67 d | 8.67 b | 11.0 a | 7.00 c | 7.00 c | 3.83 e |
| Particle Size 1 (μm) | ||||||||
| D10 | 0.45 b | 0.38 f | 0.45 b | 0.40 d | 0.37 f | 0.42 c | 0.39 e | 1.89 a |
| D50 | 0.59 b | 0.52 e | 0.60 b | 0.55 d | 0.52 e | 0.57 c | 0.54 d | 2.76 a |
| D90 | 1.08 b | 0.84 f | 0.98 c | 0.91 d | 0.84 f | 0.93 d | 0.87 e | 5.06 a |
| Specific Surface Area | ||||||||
| E-SSA 2 (m2/g) | 59.2 b | 57.0 c | 57.1 c | 36.7 f | 23.6 g | 55.4 d | 50.0 e | 66.9 a |
| I-SSA 3 (g/100 g) | 21.0 f | 43.8 a | 29.1 e | 35.7 bc | 42.0 a | 31.8 d | 37.8 b | 34.5 c |
| Surface Charge (mV) | ||||||||
| ζ-Potential | −36.4 a | −32.5 a | −35.7 a | −51.1 b | −47.9 b | −48.9 b | −42.4 ab | −33.3 a |
| Bentonite Performance | ||||||||
| Dose (g/hL) | 380 b | 180 f | 300 c | 160 h | 200 e | 170 g | 220 d | 650 a |
| Sediment (%) | 14.5 d | 18.6 b | 13.1 f | 29.3 a | 14.2 e | 17.1 c | 14.2 e | 1.50 g |
| Element | γ 1 | Bentonite/Change in Concentration | |||||||
|---|---|---|---|---|---|---|---|---|---|
| B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 | ||
| K | 390 ab | −1.54 ab | +4.53 a | +1.88 ab | +0.51 ab | +2.05 ab | −1.37 ab | +0.43 ab | −5.47 b |
| P | 144 ab | +0.93 ab | −3.02 ab | −6.73 b | −3.02 ab | −1.86 ab | −7.42 b | +3.25 a | −3.02 ab |
| S | 125 ab | −2.92 ab | −5.04 ab | −8.22 b | −6.63 b | −3.18 ab | −7.96 b | +2.12 a | −1.06 ab |
| Mg | 117 cd | −5.11 d | −2.27 cd | −0.57 cd | −0.85 cd | +3.98 abc | +1.99 bcd | +10.2 ab | +11.1 a |
| Ca | 71.2 c | +41.3 b | +2.34 bc | +6.69 bc | +6.69 bc | +16.0 bc | +29.6 bc | +25.1 bc | +83.5 a |
| Na | 9.03 f | +211 c | +202 cd | +301 a | +213 c | +254 b | +174 de | +270 b | +165 e |
| Al | 3.67 d | +27.2 b | +27.9 b | +22.1 bc | +16.0 bcd | +12.8 bcd | +4.27 cd | +54.5 a | +12.9 bcd |
| Fe | 3.10 ab | +6.14 ab | +4.20 ab | −0.11 ab | +1.18 ab | +15.2 a | −4.31 b | +12.5 a | +15.6 a |
| Mn | 1.23 c | +75.7 a | +0.54 c | +1.08 c | +19.2 b | +4.32 c | −0.54 c | +8.38 bc | +80.5 a |
| Zn | 0.72 ab | +6.48 a | −0.93 ab | −22.7 c | −15.3 bc | −14.8 bc | −24.5 c | −11.1 abc | −11.1 abc |
| Co | 0.05 ab | −7.14 ab | +14.3 a | −7.14 ab | 0.00 ab | −14.3 b | 0.00 ab | −7.14 ab | +14.3 a |
| Phenols | γ 1 | Bentonite/Change in Concentration (%) | |||||||
|---|---|---|---|---|---|---|---|---|---|
| B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 | ||
| Hydroxybenzoic acids | |||||||||
| Gallic acid | 1.39 ab | +1.01 ab | +1.85 ab | +0.70 ab | −3.69 b | +3.39 ab | −1.71 ab | −4.35 b | +6.15 a |
| Protocatechuic acid | 0.72 bc | +9.42 a | +2.36 abc | +1.90 bc | +3.85 ab | −2.37 bc | −2.30 bc | −3.86 c | −1.05 bc |
| p-Hydroxybenzoic acid | 0.43 bc | +9.24 a | +2.41 b | +3.00 b | −1.90 bc | −0.77 bc | −4.88 c | −5.68 c | −4.04 c |
| 2.5-Dihydroxybenzoic acid | 0.66 abc | +4.12 a | +0.97 ab | −2.59 bcd | −4.55 bcd | −2.28 bcd | −7.61 d | −5.27 cd | −6.22 d |
| Hydroxycinnamic acids | |||||||||
| cis-Caftaric acid | 0.19 bcd | −25.4 e | −3.33 cd | −16.4 de | +18.6 ab | +19.6 ab | +16.1 abc | +16.7 abc | +21.6 a |
| trans-Caftaric acid | 3.32 c | +9.03 a | +7.86 a | +8.77 a | +4.82 ab | +6.94 ab | +2.79 bc | +4.53 abc | +6.94 ab |
| cis-Coutaric acid | 0.97 bc | +5.05 a | +5.13 a | +5.29 a | +1.82 abc | +2.65 abc | −0.65 c | +0.55 bc | +3.66 ab |
| trans-Coutaric acid | 0.14 c | +18.9 ab | +16.7 ab | +21.6 a | +17.5 ab | +13.7 b | +14.5 b | +18.4 ab | +21.6 a |
| cis-Fertaric acid | 0.23 bcd | +8.17 a | +4.88 abc | +5.17 ab | +3.01 abcd | −0.15 cd | −1.21 d | +0.95 bcd | −0.84 d |
| trans-Fertaric acid | 1.91 c | +5.31 a | +5.77 a | +5.99 a | +2.34 abc | +3.73 abc | +0.19 bc | +1.02 bc | +4.20 ab |
| Caffeic acid | 5.74 ab | −4.12 bc | +0.49 ab | −5.97 c | +3.88 a | +3.67 a | +0.14 ab | +1.30 a | +3.04 a |
| p-Coumaric acid | 1.48 abc | −3.25 bc | +0.93 ab | −4.65 c | +3.75 a | +3.88 a | +0.20 ab | +1.19 ab | +3.36 a |
| Ferulic acid | 1.12 abc | −0.38 abc | +1.95 a | −2.33 bc | +1.28 ab | +0.97 abc | −2.42 c | −1.28 abc | −0.19 abc |
| Flavan-3-ols | |||||||||
| Epicatechin | 0.96 ab | +3.41 a | −3.90 ab | −2.98 ab | −3.75 ab | −7.58 ab | −3.27 ab | −0.29 ab | −13.4 b |
| Procyanidin B1 | 1.82 ab | −25.8 c | +2.98 ab | −8.74 bc | +20.6 a | +20.4 a | +16.3 a | +19.7 a | +19.8 a |
| Procyanidin B2 | 0.78 de | −6.71 e | +2.12 cde | +3.50 bcde | +14.5 ab | +16.0 a | +15.0 ab | +12.7 abc | +7.91 abcd |
| Stilbenes | |||||||||
| cis-Piceid | 0.04 | +2.46 | +3.96 | −2.79 | −1.63 | +0.05 | −1.32 | −0.01 | +1.92 |
| trans-Piceid | 0.07 a | −20.0 cd | −16.0 bcd | −21.1 d | −5.76 ab | −10.8 bc | −12.7 bcd | −13.5 bcd | −12.4 bcd |
| Miscellaneous | |||||||||
| Taxifolin | 0.21 abc | −24.7 d | −2.66 bc | −17.3 cd | +17.0 a | +15.9 ab | +12.6 ab | +13.3 ab | +17.1 a |
| Catechin + tyrosol | 21.3 bc | +1.35 ab | +3.65 a | +0.31 abc | +1.47 ab | +1.39 ab | −2.23 c | −1.11 bc | +0.81 abc |
| Total phenols | 239 a | −11.0 bc | −7.04 b | −9.63 bc | −8.09 bc | −13.0 c | −10.5 bc | −10.4 bc | −12.2 bc |
| Volatile Compound | γ 1 | Bentonite/Change in Concentration (%) | |||||||
|---|---|---|---|---|---|---|---|---|---|
| B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 | ||
| Monoterpenoids | |||||||||
| Linalool | 0.027 | +0.90 | +5.54 | +3.05 | +3.72 | +1.94 | +2.51 | +1.18 | +1.67 |
| Geraniol | 0.004 ab | +0.29 ab | −8.85 ab | +3.04 a | −9.08 ab | −3.51 ab | −2.93 ab | −15.47 b | −4.15 ab |
| 6-Methyl-5-hepten-2-ol | 0.044 bc | +13.0 ab | +14.8 ab | +18.9 a | +16.0 ab | −5.10 c | +8.11 abc | +15.9 ab | +5.62 abc |
| C13-Norisoprenoids | |||||||||
| β-Damascenone | 0.002 a | −15.3 bc | −15.9 bc | −12.9 bc | −13.0 bc | −14.8 bc | −10.7 b | −16.6 bc | −18.1 c |
| Alcohols | |||||||||
| 1-Hexanol | 1.11 | −0.12 | +2.27 | −0.30 | +2.11 | −0.77 | +2.49 | +7.04 | −2.30 |
| trans-3-Hexen-1-ol | 0.093 | +0.29 | +2.97 | −1.65 | +3.90 | −3.68 | +3.47 | −1.19 | −0.52 |
| cis-3-Hexen-1-ol | 0.054 bc | +7.39 abc | +2.31 abc | +18.6 a | +8.33 abc | +5.56 abc | +7.38 abc | +16.5 ab | −8.40 c |
| 2-Phenylethanol | 32.2 ab | −1.33 ab | −14.2 d | +3.41 a | −8.81 bcd | −4.23 abc | −8.29 bcd | −13.1 cd | −8.51 bcd |
| Fatty Acids | |||||||||
| Hexanoic acid | 4.42 a | −0.85 a | −24.8 b | −5.08 a | −21.1 b | −25.2 b | −25.3 b | +6.70 a | −22.5 b |
| Octanoic acid | 4.27 bc | +4.05 b | −2.47 bc | +15.5 a | −4.62 bc | +0.14 bc | −1.32 bc | +6.56 ab | −9.04 c |
| Ethyl Esters | |||||||||
| Ethyl propanoate | 0.030 | −1.63 | +0.95 | +2.58 | +4.19 | +1.62 | +7.55 | +2.29 | +0.44 |
| Ethyl isobutyrate | 0.018 a | −11.82 c | −8.72 abc | −10.81 bc | −8.71 abc | −5.97 abc | −2.48 ab | −0.81 a | −8.58 abc |
| Ethyl butyrate | 0.25 ab | −12.6 b | −6.38 ab | −6.67 ab | −1.16 ab | −3.17 ab | +2.21 a | −2.42 ab | −6.99 ab |
| Ethyl 2-methylbutyrate | 0.011 a | −20.9 c | −13.3 bc | −17.0 bc | −11.0 bc | −11.9 bc | −10.2 ab | −10.6 bc | −18.8 bc |
| Ethyl 3-methylbutyrate | 0.015 a | −12.3 ab | −26.7 b | −18.1 ab | −20.7 ab | −26.7 b | −1.21 a | −0.15 a | −23.8 ab |
| Ethyl hexanoate | 0.70 a | −21.1 d | −13.0 bcd | −16.5 cd | −7.94 abc | −16.5 cd | −6.77 ab | −15.7 bcd | −14.4 bcd |
| Ethyl octanoate | 1.70 a | −12.7 b | −4.46 ab | −10.8 b | −8.96 ab | −8.69 ab | −9.65 ab | −10.3 ab | −10.7 b |
| Ethyl nonanoate | 0.022 a | −21.6 bc | −29.1 c | −18.2 b | −19.3 b | −22.8 bc | −19.2 b | −22.7 bc | −16.2 b |
| Ethyl 2-furoate | 0.002 a | −4.67 ab | −16.6 c | +0.21 a | −10.8 bc | −8.00 abc | −9.92 abc | −10.3 bc | −11.3 bc |
| Ethyl decanoate | 1.84 a | −41.7 de | −14.8 b | −37.0 cde | −25.1 bc | −32.6 cd | −14.5 b | −48.3 e | −36.3 cde |
| Acetate Esters | |||||||||
| Methyl acetate | 0.015 bc | −8.78 c | −5.54 c | −10.4 c | −8.83 c | −4.88 bc | +26.5 a | −3.54 bc | +8.63 b |
| Propyl acetate | 0.018 ab | −5.66 bc | −18.9 d | −7.39 bc | −11.9 cd | −5.74 bc | −14.5 cd | +5.83 a | +9.83 a |
| Isobutyl acetate | 0.046 a | −8.61 bc | −9.48 bc | −9.74 c | −7.21 abc | −2.19 abc | −1.05 ab | −4.65 abc | −9.41 bc |
| Butyl acetate | 0.016 a | −37.9 bc | −36.9 bc | −36.3 bc | −30.5 bc | −36.7 bc | −42.0 c | −28.9 b | −39.8 bc |
| Isoamyl acetate | 2.12 a | −12.2 b | −9.18 ab | −7.22 ab | −12.4 b | −10.6 ab | −6.82 ab | −5.25 ab | −11.3 ab |
| Hexyl acetate | 0.036 a | −23.4 c | −10.5 abc | −11.0 abc | −10.2 abc | −9.75 abc | −1.95 a | −22.8 bc | −4.88 ab |
| cis-3-Hexen-1-yl acetate | 0.029 a | −18.6 c | −16.9 bc | −6.53 ab | −17.5 c | −11.3 bc | −6.81 ab | −14.0 bc | −8.34 abc |
| trans-3-Hexen-1-yl acet. | 0.016 a | −14.3 ab | −14.9 b | −0.16 a | −12.2 ab | −5.93 ab | −3.54 ab | −9.04 ab | −3.51 ab |
| 2-Phenethyl acetate | 0.12 ab | −2.56 abc | −10.5 bcd | +3.30 a | −13.2 cd | −7.97 bcd | −13.2 cd | −15.2 d | −9.28 bcd |
| Other Esters | |||||||||
| Methyl decanoate | 0.002 a | −45.1 ef | −21.8 b | −34.4 cde | −29.8 bcd | −32.5 bcd | −22.0 bc | −40.6 def | −48.2 f |
| Diethyl succinate | 2.72 ab | −0.18 ab | −11.5 c | +10.1 a | −2.50 bc | −2.84 bc | −4.64 bc | −6.84 bc | −38.2 d |
| Isoamyl decanoate | 0.026 ab | +11.0 ab | −6.04 ab | +15.9 a | −6.56 ab | +0.17 ab | +0.75 ab | −13.2 b | −2.43 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lukić, I.; Horvat, I.; Delač Salopek, D.; Begović, T.; Djerdj, I.; Šarić, S.; Špada, V.; Bilić, J.; Palčić, I.; Užila, Z.; et al. Bentonite-Clarified White Wine: Linking Clay Physico-Chemical Properties to Protein Removal Efficiency and Wine Matrix Alterations. Molecules 2025, 30, 4117. https://doi.org/10.3390/molecules30204117
Lukić I, Horvat I, Delač Salopek D, Begović T, Djerdj I, Šarić S, Špada V, Bilić J, Palčić I, Užila Z, et al. Bentonite-Clarified White Wine: Linking Clay Physico-Chemical Properties to Protein Removal Efficiency and Wine Matrix Alterations. Molecules. 2025; 30(20):4117. https://doi.org/10.3390/molecules30204117
Chicago/Turabian StyleLukić, Igor, Ivana Horvat, Doris Delač Salopek, Tajana Begović, Igor Djerdj, Stjepan Šarić, Vedrana Špada, Josipa Bilić, Igor Palčić, Zoran Užila, and et al. 2025. "Bentonite-Clarified White Wine: Linking Clay Physico-Chemical Properties to Protein Removal Efficiency and Wine Matrix Alterations" Molecules 30, no. 20: 4117. https://doi.org/10.3390/molecules30204117
APA StyleLukić, I., Horvat, I., Delač Salopek, D., Begović, T., Djerdj, I., Šarić, S., Špada, V., Bilić, J., Palčić, I., Užila, Z., & Goreta Ban, S. (2025). Bentonite-Clarified White Wine: Linking Clay Physico-Chemical Properties to Protein Removal Efficiency and Wine Matrix Alterations. Molecules, 30(20), 4117. https://doi.org/10.3390/molecules30204117

