Antioxidant Action of Dinitrosyl Iron Complexes in Model Systems Containing Cytochrome c and Organic Hydroperoxides
Abstract
1. Introduction
2. Results
2.1. The Effect of DNICs on Luminol-Dependent Chemiluminescence in Reaction Systems Containing Cytochrome c and Organic Hydroperoxides (Cumene Hydroperoxide and tert-Butyl Hydroperoxide)
2.2. The Effect of DNICs-GS and Free GSH on the Level of Organic Free Radicals in a Reaction System Containing Cytochrome c and tert-Butyl Hydroperoxide
2.3. The Effect of DNICs-GS and GSH on the Formation of Cytochrome c Oligomeric Forms and on 2-deoxy-D-ribose Oxidation
2.4. DNICs Formation with Participation of Cytochrome c and Nitroxyl Anion
3. Discussion
4. Materials and Methods
4.1. Materials and Reagents
4.2. Luminol-Dependent Chemiluminescence
4.3. Electron Paramagnetic Resonance Spectroscopy
4.4. Formation of TBA-Reactive Products During the Oxidation of 2-deoxy-D-ribose
4.5. SDS-Electrophoresis
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cadenas, E.; Poderoso, J.J.; Antunes, F.; Boveris, A. Analysis of the pathways of nitric oxide utilization in mitochondria. Free Rad. Res. 2000, 33, 747–756. [Google Scholar] [CrossRef]
- Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009, 417, 1–13. [Google Scholar] [CrossRef]
- Vladimirov, Y.A.; Demin, E.M.; Proskurnina, E.V.; Osipov, A.N. Lipoperoxide radical production during oxidation of cardiolipin in the complex with cytochrome c. Biochem. Suppl. Ser. A Membr. Cell Biol. 2009, 3, 467–477. [Google Scholar] [CrossRef]
- Kagan, V.E.; Bayir, H.A.; Belikova, N.A.; Kapralov, A.A.; Tyurina, Y.Y.; Tyurin, V.A.; Jiang, J.; Stoyanovsky, D.A.; Wipf, P.; Kochanek, P.M.; et al. Cytochrome c/cardiolipin relations in mitochondria: A kiss of death. Free Radic. Biol. Med. 2009, 46, 1439–1453. [Google Scholar] [CrossRef] [PubMed]
- Vladimirov, Y.A.; Sarisozen, C.; Vladimirov, G.K.; Filipczak, N.; Polimova, A.M.; Torchilin, V.P. The cytotoxic action of cytochrome c/cardiolipin nanocomplex (Cyt-CL) on cancer cells in culture. Pharm. Res. 2017, 34, 1264–1275. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.H. Lipid peroxidation induced by the reaction of cytochrome c with hydrogen peroxide. Bull. Korean Chem. Soc. 2006, 27, 830–834. [Google Scholar] [CrossRef]
- Barr, D.P.; Gunther, M.R.; Deterding, L.J.; Tomer, K.B.; Mason, R.P. ESR spin-trapping of a protein-derived tyrosyl radical from the reaction of cytochrome c with hydrogen peroxide. J. Biol. Chem. 1996, 271, 15498–15503. [Google Scholar] [CrossRef]
- Kennedy, C.H.; Church, D.F.; Winston, G.W.; Pryor, W.A. Tert-butyl hydroperoxide-induced radical in rat liver mitochondria. Free Radic. Biol. Med. 1992, 12, 381–387. [Google Scholar] [CrossRef]
- Mason, R.P.; Barr, D.P. Mechanism of radical production from the reaction of cytochrome c with organic hydroperoxides. An ESR spin trapping investigation. J. Biol. Chem. 1995, 270, 12709–12716. [Google Scholar] [CrossRef]
- Karoui, H.; Chalier, F.; Finet, J.-P.; Tordo, P. DEPMPO: An efficient tool for the coupled ESR-spin trapping of alkylperoxyl radicals in water. Org. Biomol. Chem. R. Soc. Chem. 2011, 9, 2473–2480. [Google Scholar] [CrossRef]
- Genaro-Mattos, T.C.; Queiroz, R.F.; Cunha, D.; Appolinario, P.P.; Mascio, P.D.; Nantes, I.L.; Augusto, O.; Miyamoto, S. Cytochrome c reacts with cholesterol hydroperoxides to produce lipid- and protein-derived radicals. Biochemistry 2015, 54, 2841–2850. [Google Scholar] [CrossRef] [PubMed]
- Wink, D.A.; Hanbauer, I.; Laval, F.; Cook, J.A.; Krishna, M.C.; Mitchell, J.B. Nitric oxide protects against the cytotoxic effects of reactive oxygen species. Ann. N. Y. Acad. Sci. 1994, 738, 265–278. [Google Scholar] [CrossRef] [PubMed]
- Miranda, K.M.; Espey, M.G.; Yamada, K.; Krishna, M.; Ludwick, N.; Kim, S.; Jourd’heuil, D.; Grisham, M.B.; Feelisch, M.; Fukuto, J.M.; et al. Unique oxidative mechanisms for the reactive nitrogen oxide species, nitroxyl anion. J. Biol. Chem. 2001, 276, 1720–1727. [Google Scholar] [CrossRef]
- Rubbo, H.; O’Donnell, V. Nitric oxide, peroxynitrite and lipoxygenase in atherogenesis: Mechanistic insights. Toxicology 2005, 208, 305–317. [Google Scholar] [CrossRef]
- Hummel, S.G.; Fischer, A.J.; Martin, S.M.; Schafer, F.Q.; Buettner, G.R. Nitric oxide as a cellular antioxidant: A little goes a long way. Free Radic. Biol. Med. 2006, 40, 501–506. [Google Scholar] [CrossRef]
- Abalenikhina, Y.V.; Kosmachevskaya, O.V.; Topunov, A.F. Peroxynitrite: Toxic agent and signaling molecule. Appl. Biochem. Microbiol. 2020, 56, 611–625. [Google Scholar] [CrossRef]
- Vlasova, I.I.; Tyurin, V.A.; Kapralov, A.A.; Kurnikov, I.V.; Osipov, A.N.; Potapovich, M.V.; Stoyanovsky, D.A.; Kagan, V.E. Nitric oxide inhibits peroxidase activity of cytochrome c· cardiolipin complex and blocks cardiolipin oxidation. J. Biol. Chem. 2006, 281, 14554–14562. [Google Scholar] [CrossRef]
- Sharpe, M.A.; Cooper, C.E. Reactions of nitric oxide with mitochondrial cytochrome c: A novel mechanism for the formation of nitroxyl anion and peroxynitrite. Biochem. J. 1998, 332, 9–19. [Google Scholar] [CrossRef]
- Pereverzev, M.O.; Vygodina, T.V.; Konstantinov, A.A.; Skulachev, V.P. Cytochrome c, an ideal antioxidant. Biochem. Soc. Trans. 2003, 31, 1312–1315. [Google Scholar] [CrossRef]
- Tsai, M.-L.; Tsou, C.-C.; Liaw, W.-F. Dinitrosyl iron complexes (DNICs): From biomimetic synthesis and spectroscopic characterization toward unveiling the biological and catalytic roles of DNICs. Acc. Chem. Res. 2015, 48, 1184–1193. [Google Scholar] [CrossRef] [PubMed]
- Vanin, A.F. Dinitrosyl iron complexes with thiol-containing ligands as a “working form” of endogenous nitric oxide. Nitric Oxide. 2016, 54, 15–29. [Google Scholar] [CrossRef]
- Shumaev, K.B.; Kosmachevskaya, O.V.; Grachev, D.I.; Timoshin, A.A.; Topunov, A.F.; Lankin, V.Z.; Ruuge, E.K. A possible mechanism of the antioxidant action of dinitrosyl iron complexes. Biochem. Suppl. Ser. B Biomed. Chem. 2021, 15, 313–319. [Google Scholar] [CrossRef]
- Amozova, V.I.; Balakina, A.A.; Mishchenko, D.V.; Sanina, N.A. Effect of the dinitrosyl iron complex with N-ethylthiourea on ROS and NO intracellular levels and caspase activity in HeLa tumor cells. Russ. Chem. Bull. 2023, 72, 1066–1074. [Google Scholar] [CrossRef]
- Shumaev, K.B.; Kosmachevskaya, O.V.; Nasybullina, E.I.; Ruuge, E.K.; Kalenikova, E.I.; Topunov, A.F. Histidine-bound dinitrosyl iron complexes: Antioxidant and antiradical properties. Int. J. Mol. Sci. 2023, 24, 17236. [Google Scholar] [CrossRef]
- Kosmachevskaya, O.V.; Nasybullina, E.I.; Pokidova, O.V.; Sanina, N.A.; Topunov, A.F. Effects of nitrosyl iron complexes with thiol, phosphate, and thiosulfate ligands on hemoglobin. Int. J. Mol. Sci. 2024, 25, 7194. [Google Scholar] [CrossRef] [PubMed]
- Shumaev, K.B.; Petrova, N.E.; Zabbarova, I.V.; Vanin, A.F.; Topunov, A.F.; Lankin, V.Z.; Ruuge, E.K. Interaction of oxoferrylmyoglobin and dinitrosyl-iron complexes. Biochemistry 2004, 69, 569–574. [Google Scholar] [CrossRef]
- Shumaev, K.B.; Gorudko, I.V.; Kosmachevskaya, O.V.; Grigorieva, D.V.; Panasenko, O.M.; Vanin, A.F.; Topunov, A.F.; Terekhova, M.S.; Sokolov, A.V.; Cherenkevich, S.N.; et al. Protective effect of dinitrosyl iron complexes with glutathione in red blood cell lysis induced by hypochlorous acid. Oxid. Med. Cell. Longev. 2019, 2019, 2798154. [Google Scholar] [CrossRef]
- Shumaev, K.B.; Gubkin, A.A.; Serezhenkov, V.A.; Lobysheva, I.I.; Kosmachevskaya, O.V.; Ruuge, E.K.; Lankin, V.Z.; Topunov, A.F.; Vanin, A.F. Interaction of reactive oxygen and nitrogen species with albumin- and hemoglobin-bound dinitrosyl iron complexes. Nitric Oxide 2008, 18, 37–46. [Google Scholar] [CrossRef]
- Shumaev, K.B.; Kosmachevskaya, O.V.; Timoshin, A.A.; Vanin, A.F.; Topunov, A.F. Dinitrosyl iron complexes bind with hemoglobin as markers of oxidative stress. Methods Enzymol. 2008, 436, 445–461. [Google Scholar] [CrossRef]
- Kosmachevskaya, O.V.; Nasybullina, E.I.; Shumaev, K.B.; Chumikina, L.V.; Arabova, L.I.; Yaglova, N.V.; Obernikhin, S.S.; Topunov, A.F. Dinitrosyl iron complexes with glutathione ligands intercept peroxynitrite and protect hemoglobin from oxidative modification. Appl. Biochem. Microbiol. 2021, 57, 411–420. [Google Scholar] [CrossRef]
- Kosmachevskaya, O.V.; Nasybullina, E.I.; Shumaev, K.B.; Novikova, N.N.; Topunov, A.F. Protective effect of dinitrosyl iron complexes bound with hemoglobin on oxidative modification by peroxynitrite. Int. J. Mol. Sci. 2021, 22, 13649. [Google Scholar] [CrossRef]
- Dungel, P.; Perlinger, M.; Weidinger, A.; Redl, H.; Kozlov, A.V. The cytoprotective effect of nitrite is based on the formation of dinitrosyl iron complexes. Free Radical Biol. Med. 2015, 89, 300–310. [Google Scholar] [CrossRef]
- Shumaev, K.B.; Dudylina, A.L.; Ivanova, M.V.; Pugachenko, I.S.; Ruuge, E.K. Dinitrosyl iron complexes: Formation and antiradical action in heart mitochondria. BioFactors 2018, 44, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.D.; Corey, C.; Hickok, J.; Wang, Y.; Shiva, S. Differential mitochondrial dinitrosyliron complex formation by nitrite and nitric oxide. Redox Biol. 2018, 15, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Vanin, A.F. Physico-chemistry of dinitrosyl iron complexes as a determinant of their biological activity. Int. J. Mol. Sci. 2021, 22, 10356. [Google Scholar] [CrossRef] [PubMed]
- Asanuma, K.; Iijima, K.; Ara, N.; Koike, T.; Yoshitake, J.; Ohara, S.; Shimosegawa, T.; Yoshimura, T. Fe-S cluster proteins are intracellular targets for nitric oxide generated luminally at the gastro-oesophageal junction. Nitric Oxide 2007, 16, 395–402. [Google Scholar] [CrossRef]
- Hickok, J.R.; Sahni, S.; Shen, H.; Arvind, A.; Antoniou, C.; Fung, L.W.M.; Thomas, D.D. Dinitrosyliron complexes are the most abundant nitric oxide derived cellular adduct: Biological parameters of assembly and disappearance. Free Radical Biol. Med. 2011, 51, 1558–1566. [Google Scholar] [CrossRef]
- Pokidova, O.V.; Novikova, V.O.; Kulikov, A.V.; Sanina, N.A. Features of the decomposition of thiosulfate nitrosyl iron complex in the presence of hemoglobin and cytochrome c. Polyhedron 2024, 264, 117225. [Google Scholar] [CrossRef]
- Akhrem, A.A.; Semenkova, G.N.; Cherenkevich, S.N.; Popova, Y.M.; Kiselev, P.A. Chemiluminescence of luminol caused by interaction of cytochrome P-450 and cytochrome C with cumene hydroperoxide: Comparative studies. Biomed. Biochim. Acta 1985, 44, 1591–1597. [Google Scholar]
- Yalçin, A.S.; Sabuncu, N.; Emerk, K. Cumene hydroperoxide-induced chemiluminescence in human erythrocytes: Effect of antioxidants and sulfhydryl compounds. Int. J. Biochem. 1992, 24, 499–502. [Google Scholar] [CrossRef]
- Gorbunov, N.V.; Yalowich, J.C.; Gaddam, A.; Thampatty, P.; Ritov, V.B.; Kisin, E.R.; Elsayed, N.M.; Kagan, V.E. Nitric oxide prevents oxidative damage produced by tert-butyl hydroperoxide in erythroleukemia cells via nitrosylation of heme and non-heme iron. Electron paramagnetic resonance evidence. J. Biol. Chem. 1997, 272, 12328–12341. [Google Scholar] [CrossRef]
- Chamulitrat, W. EPR studies of nitric oxide interactions of alkoxyl and peroxyl radicals in in vitro and ex vivo model systems. Antioxid. Redox Signal. 2001, 3, 177–187. [Google Scholar] [CrossRef]
- Rana, S.; Tamagake, K. A chemiluminescence method for the detection of electrochemically generated H2O2 and ferryl porphyrin. Bioelectrochemistry 2006, 68, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Karoui, H.; Hogg, N.; Fréjaville, C.; Tordo, P.; Kalyanaraman, B. Characterization of sulfur-centered radical intermediates formed during the oxidation of thiols and sulfite by peroxynitrite: ESR-spin trapping and oxygen uptake studies. J. Biol. Chem. 1996, 271, 6000–6009. [Google Scholar] [CrossRef]
- Stolze, K.; Udilova, N.; Nohl, H. Spin trapping of lipid radicals with DEPMPO-derived spin traps: Detection of superoxide, alkyl and alkoxyl radicals in aqueous and lipid phase. Free Radic. Biol. Med. 2000, 29, 1005–1014. [Google Scholar] [CrossRef]
- Schöneich, C. Thiyl radicals and induction of protein degradation. Free Radic. Res. 2016, 50, 143–149. [Google Scholar] [CrossRef]
- Schöneich, C. Thiyl radical reactions in the chemical degradation of pharmaceutical proteins. Molecules 2019, 24, 4357. [Google Scholar] [CrossRef]
- Kim, N.H.; Jeong, M.S.; Choi, S.Y.; Kang, J.H. Oxidative modification of cytochrome c by hydrogen peroxide. Mol. Cells 2006, 22, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Folkes, L.K.; Trujillo, M.; Bartesaghi, S.; Radi, R.; Wardman, P. Kinetics of reduction of tyrosine phenoxyl radicals by glutathione. Arch. Biochem. Biophys. 2011, 506, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Li, C.; Mahtani, H.K.; Du, J.; Patel, A.R.; Lancaster, J.R., Jr. Nitrosothiol formation and protection against Fenton chemistry by nitric oxide-induced dinitrosyliron complex formation from anoxia-initiated cellular chelatable iron increase. J. Biol. Chem. 2014, 289, 19917–19927. [Google Scholar] [CrossRef]
- Murphy, M.E.; Sies, H. Reversible conversion of nitroxyl anion to nitric oxide by superoxide dismutase. Proc. Natl. Acad. Sci. USA 1991, 88, 10860–10864. [Google Scholar] [CrossRef] [PubMed]
- Buyukafsar, K.; Nelli, S.; Martin, W. Formation of nitric oxide from nitroxyl anion: Role of quinones and ferricytochrome c. Br. J. Pharmacol. 2001, 132, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Dedkova, E.N.; Blatter, L.A. Characteristics and function of cardiac mitochondrial nitric oxide synthase. J. Physiol. 2008, 587, 851–872. [Google Scholar] [CrossRef]
- Pugachenko, I.S.; Nasybullina, E.I.; Kosmachevskaya, O.V.; Shumaev, K.B.; Topunov, A.F. The effect of peroxynitrite and tert-butyl hydroperoxide on thiol ligands of dinitrosyl iron complexes. Appl. Biochem. Microbiol. 2023, 59, 561–569. [Google Scholar] [CrossRef]
- O’Donnell, V.B.; Freeman, B.A. Interactions between nitric oxide and lipid oxidation pathways implications for vascular disease. Circ. Res. 2001, 88, 12–21. [Google Scholar] [CrossRef]
- Hartung, J. Organic radical reactions associated with nitrogen monoxide. Chem. Rev. 2009, 109, 4500–4517. [Google Scholar] [CrossRef]
- Herold, S.; Rehmann, F.-J.K. Kinetics of the reactions of nitrogen monoxide and nitrite with ferryl hemoglobin. Free Rad. Biol. Med. 2002, 34, 531–545. [Google Scholar] [CrossRef] [PubMed]
- Gorbunov, N.V.; Tyurina, Y.Y.; Salama, G.; Day, B.W.; Claycamp, H.G.; Argyros, G.; Elsayed, N.M.; Kagan, V.E. Nitric oxide protects cardiomyocytes against tert-butyl hydroperoxide-induced formation of alkoxyl and peroxyl radicals and peroxidation of phosphatidylserine. Biochem. Biophys. Res. Commun. 1998, 244, 647–651. [Google Scholar] [CrossRef]
- Toledo, J.C.; Bosworth, C.A.; Hennon, S.W.; Mahtani, H.A.; Bergonia, H.A.; Lancaster, J.R., Jr. Nitric oxide-induced conversion of cellular chelatable iron into macromolecule-bound paramagnetic dinitrosyl iron complexes. J. Biol. Chem. 2008, 283, 28926–28933. [Google Scholar] [CrossRef]
- Lopez, B.E.; Shinyashiki, M.T.; Han, H.; Fukuto, J.M. Antioxidant actions of nitroxyl (HNO). Free Radic. Biol. Med. 2007, 42, 482–491. [Google Scholar] [CrossRef]
- Kosmachevskaya, O.V.; Nasybullina, E.I.; Pugachenko, I.S.; Novikova, N.N.; Topunov, A.F. Antiglycation and antioxidant effect of nitroxyl towards hemoglobin. Antioxidants 2022, 11, 2007. [Google Scholar] [CrossRef] [PubMed]
- Schonhoff, C.M.; Gaston, B.; Mannick, J.B. Nitrosylation of cytochrome c during apoptosis. J. Biol. Chem. 2003, 278, 18265–18270. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Heredia, J.M.; Diaz-Moreno, I.; Nieto, P.M.; Orzaez, M.; Kocanis, S.; Teixeira, M.; Perez-Paya, E.; Diaz-Quintana, A.; De la Rosa, M.A. Nitration of tyrosine 74 prevents human cytochrome c to play a key role in apoptosis signaling by blocking caspase-9 activation. Biochim. Biophys. Acta Bioenerg. 2010, 1797, 981–993. [Google Scholar] [CrossRef] [PubMed]
- Izmailov, D.Y.; Proskurnina, E.V.; Shishkanov, S.A.; Vladimirova, G.A.; Vladimirov, Y.A. The effect of antioxidants on the formation of free radicals and primary products of the peroxidase reaction. Biophysics 2017, 62, 557–564. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosmachevskaya, O.V.; Nasybullina, E.I.; Shumaev, K.B.; Topunov, A.F. Antioxidant Action of Dinitrosyl Iron Complexes in Model Systems Containing Cytochrome c and Organic Hydroperoxides. Molecules 2025, 30, 4110. https://doi.org/10.3390/molecules30204110
Kosmachevskaya OV, Nasybullina EI, Shumaev KB, Topunov AF. Antioxidant Action of Dinitrosyl Iron Complexes in Model Systems Containing Cytochrome c and Organic Hydroperoxides. Molecules. 2025; 30(20):4110. https://doi.org/10.3390/molecules30204110
Chicago/Turabian StyleKosmachevskaya, Olga V., Elvira I. Nasybullina, Konstantin B. Shumaev, and Alexey F. Topunov. 2025. "Antioxidant Action of Dinitrosyl Iron Complexes in Model Systems Containing Cytochrome c and Organic Hydroperoxides" Molecules 30, no. 20: 4110. https://doi.org/10.3390/molecules30204110
APA StyleKosmachevskaya, O. V., Nasybullina, E. I., Shumaev, K. B., & Topunov, A. F. (2025). Antioxidant Action of Dinitrosyl Iron Complexes in Model Systems Containing Cytochrome c and Organic Hydroperoxides. Molecules, 30(20), 4110. https://doi.org/10.3390/molecules30204110