Sensory Evaluation of Vanillin Obtained by Fungi in the Solid-State Fermentation from Agri-Food Industry By-Products
Abstract
1. Introduction
2. Results
2.1. Solid-State Fermentation and Isolation of Vanillin
2.2. Sensory Value of Vanillin Affected by Various Raw Materials and Biocatalysts
3. Discussion
3.1. Solid-State Fermentation and Isolation of Vanillin
3.2. Sensory Value of Vanillin Affected by Various Raw Materials and Biocatalysts
4. Materials and Methods
4.1. Raw Materials and Chemicals
4.2. Microorganisms
4.3. Preparative Scale of Solid-State Fermentation
4.4. Extraction and Purification
4.5. Analysis Procedure
4.6. Sensory Analysis
4.7. Statystical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Olatunde, A.; Mohammed, A.; Ibrahim, M.A.; Tajuddeen, N.; Shuaibu, M.N. Vanillin: A Food Additive with Multiple Biological Activities. Eur. J. Med. Chem. Rep. 2022, 5, 100055. [Google Scholar] [CrossRef]
- Sharma, A.; Sahu, S.; Sharma, S.; Singh, G.; Arya, S.K. Valorization of Agro-Industrial Wastes into Vanillin: A Sustainable and Bio-Economical Step towards the Indigenous Production of Flavors. Biocatal. Agric. Biotechnol. 2023, 54, 102904. [Google Scholar] [CrossRef]
- Kumar, S.; Ullah, F.; Cao, B.; Jiang, D.; Keerio, H.A.; Wang, S. Sustainable Vanillin Production: Biotechnological Advances, Catalytic Innovations, and Integrated Assessment. Bioresour. Technol. 2025, 436, 133014. [Google Scholar] [CrossRef]
- Huang, W.-B.; Du, C.-Y.; Jiang, J.-A.; Ji, Y.-F. Concurrent Synthesis of Van-illin and Isovanillin. Res. Chem. Intermed. 2013, 39, 2849–2856. [Google Scholar] [CrossRef]
- Liaqat, F.; Xu, L.; Khazi, M.I.; Ali, S.; Rahman, M.U.; Zhu, D. Extraction, Purification, and Applications of Vanillin: A Review of Recent Advances and Challenges. Ind. Crops. Prod. 2023, 204, 117372. [Google Scholar] [CrossRef]
- D’Arrigo, P.; Rossato, L.A.M.; Strini, A.; Serra, S. From Waste to Value: Recent Insights into Producing Vanillin from Lignin. Molecules 2024, 29, 442. [Google Scholar] [CrossRef]
- Saeed, S.; Raza, S.Q.; Zafar, S.S.; Mujahid, H.; Irfan, M.; Mehmood, T. Mi-crobial Conversion of Pomegranate Peels to Biovanillin Using Submerged Fermentation and Process Optimization through Statistical Design. Biomass Convers. Biorefin. 2024, 14, 679–688. [Google Scholar] [CrossRef]
- Rejani, C.T.; Radhakrishnan, S. Microbial Conversion of Vanillin from Ferulic Acid Extracted from Raw Coir Pith. Nat. Prod. Res. 2022, 36, 901–908. [Google Scholar] [CrossRef]
- Zheng, L.; Zheng, P. Production of Vanillin from Waste Residue of Rice Bran Oil by Aspergillus Niger and Pycnoporus Cinnabarinus. Bioresour. Technol. 2007, 98, 1115–1119. [Google Scholar] [CrossRef]
- Lesage-Meessen, L.; Delattre, M.; Haon, M.; Thibault, J.-F.; Ceccaldi, B.C.; Brunerie, P.; Asther, M. A Two-Step Bioconversion Process for Vanillin Production from Ferulic Acid Combining Aspergillus Niger and Pycnopo-rus Cinnabarinus. J. Biotechnol. 1996, 50, 107–113. [Google Scholar] [CrossRef]
- Liu, S.C.; Xin, X.; He, Z.J.; Xie, Z.H.; Xie, Z.X.; Liu, Z.H.; Li, B.Z.; Yuan, Y.J. Biological Conversion of Lignin-Derived Ferulic Acid from Wheat Bran into Vanillin. Int. J. Biol. Macromol. 2024, 281, 136406. [Google Scholar] [CrossRef]
- Pattnaik, B.; Sarangi, P.K.; Jena, P.K.; Sahoo, H.P.; Bhatia, L. Production of Phenolic Flavoring Compounds from Sugarcane Bagasse by Lactobacillus Acidophilus MTCC 10307. Arch. Microbiol. 2022, 204, 23. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, P.; Banerjee, G.; Sen, S.K. Cleaner Production of Vanillin through Biotransformation of Ferulic Acid Esters from Agroresidue by Streptomyces Sannanensis. J. Clean. Prod. 2018, 182, 272–279. [Google Scholar] [CrossRef]
- Zhang, Y.; Luan, H.; Qiu, W.; Zhang, X.; Wang, H.; Liu, M.; Song, P. Advances in Vanillin Syn-thesis: Focusing on Microbial Synthesis Pathways and Prospects. World J. Microbiol. Biotechnol. 2025, 41, 111. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, D.; Rameshpathy, M. A Renewable Natural Resource for Feru-lic Acid; An Efficient Precursor in Biotechnological Production of Vanil-lin and Strategies to Enhance the Yield of Bio-Vanillin from Ferulic Acid—Review. Process Biochem. 2025, 149, 181–191. [Google Scholar] [CrossRef]
- Tang, P.L.; Hassan, O. Bioconversion of Ferulic Acid Attained from Pineapple Peels and Pine-apple Crown Leaves into Vanillic Acid and Vanillin by Aspergillus Niger I-1472. BMC Chem. 2020, 14, 7. [Google Scholar] [CrossRef] [PubMed]
- Paul, V.; Agarwal, A.; Dutt Tripathi, A.; Sirohi, R. Valorization of Lignin for the Production of Vanillin by Bacillus Aryabhattai NCIM 5503. Bioresour. Technol. 2023, 385, 129420. [Google Scholar] [CrossRef]
- Subramani, G.; Manian, R. Optimizing Bio-Vanillin Synthesis from Ferulic Acid via Pediococcus Acidilactici: A Systematic Approach to Process Enhancement and Yield Maximization. J. Biotechnol. 2024, 393, 49–60. [Google Scholar] [CrossRef]
- Nirwana, W.O.C.; Hung, I.H.; Shu, C.H. Enhancing the Bioconversion of Ferulic Acid from Alkaline Hydrolysate of Corn Cobs to Vanillin by Amycolatopsis Thermoflava under Nutrient Limitation and Reducing Sug-ar Control. J. Chem. Technol. Biotechnol. 2023, 98, 238–246. [Google Scholar] [CrossRef]
- Di Gioia, D.; Fava, F.; Luziatelli, F.; Ruzzi, M. Vanillin Production from Agro-Industrial Wastes, 2nd ed.; Elsevier, B.V.: Amsterdam, The Netherlands, 2011; Volume 6, ISBN 9780080885049. [Google Scholar]
- Lesage-Meessen, L.; Stentelaire, C.; Lomascolo, A.; Couteau, D.; Asther, M.; Moukha, S.; Record, E.; Sigoillot, J.C.; Asther, M. Fungal Transformation of Ferulic Acid from Sugar Beet Pulp to Natural Vanillin. J. Sci. Food Agric. 1999, 79, 487–490. [Google Scholar] [CrossRef]
- Yazid, N.A.; Barrena, R.; Komilis, D.; Sánchez, A. Solid-State Fermenta-tion as a Novel Paradigm for Organic Waste Valorization: A Review. Sustainability 2017, 9, 224. [Google Scholar] [CrossRef]
- Liguori, R.; Amore, A.; Faraco, V. Waste Valorization by Biotechnological Conversion into Added Value Products. Appl. Microbiol. Biotechnol. 2013, 97, 6129–6147. [Google Scholar] [CrossRef]
- Martínez, O.; Sánchez, A.; Font, X.; Barrena, R. Valorization of Sugarcane Bagasse and Sugar Beet Molasses Using Kluyveromyces Marxianus for Producing Value-Added Aroma Compounds via Solid-State Fermenta-tion. J. Clean. Prod. 2017, 158, 8–17. [Google Scholar] [CrossRef]
- Mehmood, T.; Saeed, S.; Hussain, N.; Waseem, R. Biotransformation of Wheat Straw into Biovanillin by Solid-State Fermentation and Optimiza-tion of Conditions Parameters through Response Surface Methodology. Biomass Convers. Biorefin. 2024, 14, 7569–7578. [Google Scholar] [CrossRef]
- Szczepańska, E.; Pietrzak, W.; Boratyński, F. High-Yield Vanillin Production Through RSM-Optimized Solid-State Fermentation Process from Brewer’s Spent Grains in a Single-Use Bag Bioreactor. Molecules 2025, 30, 3452. [Google Scholar] [CrossRef]
- Nurika, I.; Suhartini, S.; Azizah, N.; Barker, G.C. Extraction of Vanillin Following Bioconversion of Rice Straw and Its Optimization by Response Surface Methodology. Molecules 2020, 25, 6031. [Google Scholar] [CrossRef]
- dos Santos Barbosa, E.; Perrone, D.; do Amaral Vendramini, A.L.; Ferreira Leite, S.G. Vanillin Production by Phanerochaete Chrysosporium Grown on Green Coconut Agroindustrial Husk in Solid State Fermentation. Bioresources 2008, 3, 1042–1050. [Google Scholar] [CrossRef]
- Oiza, N.; Moral-Vico, J.; Sánchez, A.; Oviedo, E.R.; Gea, T. Solid-State Fermentation from Or-ganic Wastes: A New Generation of Bioproducts. Processes 2022, 10, 2675. [Google Scholar] [CrossRef]
- Hölker, U.; Lenz, J. Solid-State Fermentation—Are There Any Biotechnological Advantages? Curr. Opin. Microbiol. 2005, 8, 301–306. [Google Scholar] [CrossRef]
- Glaser, S.J.; Al-Rudainy, B.; Hatti-Kaul, R.; Galbe, M. Wheat Bran Fractionation: Effect of Steam Explosion and Hydrotropic Extraction Conditions on the Recovery of Sugars and Lignin. Ind. Crops Prod. 2023, 195, 116405. [Google Scholar] [CrossRef]
- Nyhan, L.; Sahin, A.W.; Schmitz, H.H.; Siegel, J.B.; Arendt, E.K. Brewers’ Spent Grain: An Un-precedented Opportunity to Develop Sustainable Plant-Based Nutrition Ingredients Address-ing Global Malnutrition Challenges. J. Agric. Food Chem. 2023, 71, 10543–10564. [Google Scholar] [CrossRef]
- Merali, Z.; Collins, S.R.A.; Elliston, A.; Wilson, D.R.; Käsper, A.; Waldron, K.W. Characteriza-tion of Cell Wall Components of Wheat Bran Following Hydrothermal Pretreatment and Frac-tionation. Biotechnol. Biofuels 2015, 8, 23. [Google Scholar] [CrossRef] [PubMed]
- Apprich, S.; Tirpanalan, Ö.; Hell, J.; Reisinger, M.; Böhmdorfer, S.; Siebenhandl-Ehn, S.; No-valin, S.; Kneifel, W. Wheat Bran-Based Biorefinery 2: Valorization of Products. LWT—Food Sci. Technol. 2014, 56, 222–231. [Google Scholar] [CrossRef]
- Birsan, R.I.; Wilde, P.; Waldron, K.W.; Rai, D.K. Recovery of Polyphenols from Brewer’s Spent Grains. Antioxidants 2019, 8, 380. [Google Scholar] [CrossRef] [PubMed]
- Codina-Torrella, I.; Rodero, L.; Almajano, M.P. Brewing By-Products as a Source of Natural Antioxidants for Food Preservation. Antioxidants 2021, 10, 1512. [Google Scholar] [CrossRef]
- Huang, X.; Wang, N.; Ma, Y.; Liu, X.; Guo, H.; Song, L.; Zhao, Q.; Hai, D.; Cheng, Y.; Bai, G.; et al. Flaxseed Polyphenols: Effects of Varieties on Its Composition and Antioxidant Capacity. Food Chem. X 2024, 23, 101597. [Google Scholar] [CrossRef]
- Herchi, W.; Arráez-Román, D.; Trabelsi, H.; Bouali, I.; Boukhchina, S.; Kallel, H.; Se-gura-Carretero, A.; Fernández-Gutierrez, A. Phenolic Compounds in Flaxseed: A Review of Their Properties and Analytical Methods. An Overview of the Last Decade. J. Oleo Sci. 2014, 63, 7–14. [Google Scholar]
- Beejmohun, V.; Fliniaux, O.; Grand, É.; Lamblin, F.; Bensaddek, L.; Christen, P.; Kovensky, J.; Fliniaux, M.A.; Mesnard, F. Microwave-Assisted Extraction of the Main Phenolic Compounds in Flaxseed. Phytochem. Anal. 2007, 18, 275–282. [Google Scholar] [CrossRef]
- Patil, P.D.; Yadav, G.D. Comparative Studies of White-Rot Fungal Strains (Trametes Hirsuta MTCC-1171 and Phanerochaete Chrysosporium NCIM-1106) for Effective Degradation and Bioconversion of Ferulic Acid. ACS Omega 2018, 3, 14858–14868. [Google Scholar] [CrossRef]
- Sujatha, M.; Jaya Madhuri, R.; Thagaraju, K. Antimicrobial Potential of Bio Vanillin an Industrial Product from Bacillus subtilis sp., MSJM5. J. Pure Appl. Microbiol. 2022, 16, 1755–1761. [Google Scholar] [CrossRef]
- Yafetto, L. Application of Solid-State Fermentation by Microbial Bio-technology for Bioprocessing of Agro-Industrial Wastes from 1970 to 2020: A Review and Bibliometric Analysis. Heliyon 2022, 8, e09173. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Liaqat, F.; Sun, J.; Khazi, M.I.; Xie, R.; Zhu, D. Advances in the Vanillin Synthesis and Biotransformation: A Review. Renew. Sustain. Energy Rev. 2024, 189, 113905. [Google Scholar] [CrossRef]
- Mehmood, T.; Saleem, F.; Javed, S.; Nawaz, S.; Sultan, A.; Safdar, A.; Ul-lah, A.; Waseem, R.; Saeed, S.; Abbas, M.; et al. Biotransformation of Ag-ricultural By-Products into Biovanillin through Solid-State Fermentation (SSF) and Optimization of Different Parameters Using Response Surface Methodology (RSM). Fermentation 2022, 8, 206. [Google Scholar] [CrossRef]
- Nisar, A.; Saeed, S.; Naseer, R.; Ullah, A.; Junaid, M. Optimized Synthesis of Vanillin by Utiliz-ing Corn Cob through Solid-State Fermentation from Indigenously Isolated Microbial Strain Bacillus Cereus PP068302. Biomass Convers. Biorefin. 2025, 15, 17999–18011. [Google Scholar] [CrossRef]
- Chand, M.; Chopra, R.; Talwar, B.; Homroy, S.; Singh, P.K.; Dhiman, A.; Payyunni, A.W. Unveiling the Potential of Linseed Mucilage, Its Health Benefits, and Applications in Food Packaging. Front. Nutr. 2024, 11, 1334247. [Google Scholar] [CrossRef]
- Lee, C.S.; Chen, Y.C.; Chiang, M.C.; Yeh, C.H.; Ho, Y.C.; Huang, W.H.; Chan, Y.J.; Tsai, M.Y. Evaluating the Sensory Profiles of Taiwan and Madagascar Vanilla Beans: Impacts on Ice Cream Quality and Consumer Preferences. Agronomy 2024, 14, 1838. [Google Scholar] [CrossRef]
- Meilgaard, M.C.; Civille, G.V.; Carr, B.T. Sensory Evaluation Techniques; CRC Press: Boca Raton, FL, USA, 1999; ISBN 0849302765. [Google Scholar]
- ISO 8586-1:1993; Sensory Analysis—General Guidance for the Selection, Training and Monitoring of Assessors—Part 1: Selected Assessors. International Standard Organization: Geneva, Switzerland, 1993.
Microorganism | Rep. | BSG 1 | SD 4 | WB 2 | SD 4 | LOC 3 | SD 4 |
---|---|---|---|---|---|---|---|
Aspergillus flavus KKP3556 | I | 402.4 | ±7.9 | 140.3 | ±16.1 | 158.2 | ±11.3 |
II | 387.3 | 160.4 | 180.7 | ||||
III | 399.2 | 172.2 | 172.2 | ||||
Aspergillus sp. AM31 | I | 572.5 | ±231.7 | 203.0 | ±42.6 | 116.5 | ±74.4 |
II | 136.2 | 244.3 | 256.4 | ||||
III | 218.8 | 159.0 | 230.7 | ||||
Fusarium culmorum MUT5855 | I | 279.9 | ±36.3 | 149.8 | ±15.5 | 154.4 | ±25.6 |
II | 285.5 | 160.1 | 170.0 | ||||
III | 220.0 | 180.4 | 120.0 | ||||
Phanerochaete chrysosporium CBS246.84 | I | 782.3 | ±127.3 | 481.5 | ±46.3 | 190.2 | ±30.6 |
II | 529.3 | 390.5 | 150.2 | ||||
III | 630.2 | 420.3 | 210.3 |
Sample | Vanilla-ID | Sweet-Like | Chocolate | Balsamic | Powdery | Caramel-Like | Phenolic | Creamy | Malty | Filamentous Fungi |
---|---|---|---|---|---|---|---|---|---|---|
SYNTH. | 0 c | 0 c | 0 c | 0 c | 1 ac | 1 c | 10 a | 0 c | 0 c | 0 b |
PODS EXT. | 2 b | 1 c | 1 c | 1 c | 4 b | 1 c | 8 a | 1 c | 2 ab | 1 b |
COMM. | 7 a | 4 b | 6 a | 5 b | 6 a | 7 a | 0 c | 4 b | 0 c | 0 b |
CBS_BSG | 6 a | 5 ab | 3 b | 7 a | 4 b | 4 b | 8 a | 6 ab | 3 a | 0 b |
CBS_WB | 3 b | 7 a | 7 a | 2 c | 3 bc | 6 a | 2 b | 8 a | 3 a | 1 b |
CBS_LOC | 0 c | 6 a | 0 c | 6 a | 5 ab | 0 c | 2 b | 3 b | 2 ab | 8 a |
KKP_BSG | 6 a | 4 ab | 1 b | 5 b | 2 c | 5 b | 6 b | 4 a | 7 a | 0 c |
KKP_WB | 6 a | 6 a | 5 a | 4 b | 1 c | 9 a | 2 c | 4 a | 3 c | 2 ab |
KKP_LOC | 3 b | 3 b | 2 b | 7 a | 1 c | 3 bc | 1 c | 1 b | 5 b | 3 a |
MUT_BSG | 1 b | 7 a | 1 c | 1 c | 3 c | 9 a | 1 c | 6 a | 7 a | 7 a |
MUT_WB | 8 a | 8 a | 1 c | 2 b | 5 ab | 8 a | 1 c | 2 b | 2 bc | 0 c |
MUT_LOC | 2 b | 5 b | 3 b | 5 a | 1 c | 4 c | 5 b | 2 b | 4 b | 5 b |
AM_BSG | 3 b | 2 b | 3 b | 1 c | 6 ab | 7 a | 0 c | 6 a | 6 ab | 2 c |
AM_WB | 6 a | 2 b | 3 b | 5 b | 8 a | 2 bc | 1 c | 1 c | 7 a | 6 b |
AM_LOC | 0 c | 1 c | 0 c | 8 a | 5 b | 0 c | 8 a | 1 c | 5 b | 10 a |
Code | Microorganism | Raw Material |
---|---|---|
KKP_BSG | Aspergillus flavus KKP3556 | Brewer’s spent grain |
KKP_WB | Wheat bran | |
KKP_LOC | Linseed oil cake | |
AM_BSG | Aspergillus sp. AM31 | Brewer’s spent grain |
AM_WB | Wheat bran | |
AM LOC | Linseed oil cake | |
MUT_BSG | Fusarium culmorum MUT5855 | Brewer’s spent grain |
MUT_WB | Wheat bran | |
MUT_LOC | Linseed oil cake | |
CBS_BSG | Phanerochaete chrysosporium CBS246.84 | Brewer’s spent grain |
CBS_WB | Wheat bran | |
CBS_LOC | Linseed oil cake |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szczepańska, E.; Łyczko, J.; Olejniczak, T. Sensory Evaluation of Vanillin Obtained by Fungi in the Solid-State Fermentation from Agri-Food Industry By-Products. Molecules 2025, 30, 4109. https://doi.org/10.3390/molecules30204109
Szczepańska E, Łyczko J, Olejniczak T. Sensory Evaluation of Vanillin Obtained by Fungi in the Solid-State Fermentation from Agri-Food Industry By-Products. Molecules. 2025; 30(20):4109. https://doi.org/10.3390/molecules30204109
Chicago/Turabian StyleSzczepańska, Ewa, Jacek Łyczko, and Teresa Olejniczak. 2025. "Sensory Evaluation of Vanillin Obtained by Fungi in the Solid-State Fermentation from Agri-Food Industry By-Products" Molecules 30, no. 20: 4109. https://doi.org/10.3390/molecules30204109
APA StyleSzczepańska, E., Łyczko, J., & Olejniczak, T. (2025). Sensory Evaluation of Vanillin Obtained by Fungi in the Solid-State Fermentation from Agri-Food Industry By-Products. Molecules, 30(20), 4109. https://doi.org/10.3390/molecules30204109