Thermally Induced Intramolecular Diels–Alder Reaction of Furan-Tethered Methylenecyclopropanes
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Procedure for the Preparation of 2
3.2. General Procedure for Scale-Up Synthesis and Transformation
3.2.1. Scale-Up Synthesis of 2u and 2v
3.2.2. Transformation of the Product
Deprotection of the Boc Group in Compound 2v
Condensation Reaction of Compound 2w
- Condensation with ibuprofen
- Condensation with Nalidixic acid, Indometacin, Naproxen, Febuxostat and Z-Gly-Gly-Gly-OH
3.3. General Procedure for the Preparation of 1
3.3.1. General Procedure for the Synthesis of Compounds 1a–1u, 1x, 1z, 1af–1ai, and 1al
- Compound S1 to Compound S2
- Compound S2 to Compound S3
- Compound S3 to Compound S4
- Compound S4 to Compound S5
- Compound S5 to Compound S6
- Compound S7 to Compound S8
- Compound S6 and S8 to 1a–1u, 1z, 1af–1ai, and 1al
3.3.2. General Procedure for the Synthesis of Compounds 1w and 1v
- Compound S6 to Compound S9
- Compound S9 to Compound S10
- Compound S10 to Compound 1w
- Compound 1w to Compound 1v
3.3.3. General Procedure for the Synthesis of Compound 1y
- Compound S10 to Compound S11
- Compound S12 to Compound S13
- Compound S11 and S13 to Compound 1y
3.3.4. General Procedure for the Synthesis of Compounds 1aa–1ab, and 1ak
- Compound S10 to Compound 1ak
- Compound 1ak to Compound 1aa
- Compound S10 to Compound S14
- Compound S14 to Compound 1ab
3.3.5. General Procedure for the Synthesis of Compound 1ac
- Compound S4 to Compound S15
- Compound S15 to Compound S16
- Compound S16 to Compound 1ac
3.3.6. General Procedure for the Synthesis of Compound 1ad
- Compound S4 to Compound S17
- Compound S17 to Compound S18
- Compound S18 to Compound 1ad
3.3.7. General Procedure for the Synthesis of Compound 1ae
- Compound S4 to Compound S19
- Compound S19 to Compound S20
- Compound S20 to Compound 1ad
3.3.8. General Procedure for the Synthesis of Compound 1aj
- Compound S6 to Compound 1aj
3.3.9. Radical Trapping Experiment
3.4. Computational Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Diels, O.; Alder, K. Synthesen in der hydroaromatischen Reihe. Justus Liebigs Ann. Chem. 1928, 460, 98–122. [Google Scholar] [CrossRef]
- Domingo, L.R.; Saez, J.A. Understanding the mechanism of polar Diels–Alder reactions. Org. Biomol. Chem. 2009, 7, 3576–3583. [Google Scholar] [CrossRef]
- Galkin, K.I.; Ananikov, V.P. Intermolecular Diels-Alder Cycloadditions of Furfural-Based Chemicals from Renewable Resources: A Focus on the Regio- and Diastereoselectivity in the Reaction with Alkenes. Int. J. Mol. Sci. 2021, 22, 11856. [Google Scholar] [CrossRef]
- Dakshinamoorthy, D.; Weinstock, A.K.; Damodaran, K.; Iwig, D.F.; Mathers, R.T. Diglycerol-based polyesters: Melt polymerization with hydrophobic anhydrides. ChemSusChem 2014, 7, 2923–2929. [Google Scholar] [CrossRef]
- Dakshinamoorthy, D.; Lewis, S.P.; Cavazza, M.P.; Hoover, A.M.; Iwig, D.F.; Damodaran, K.; Mathers, R.T. Streamlining the conversion of biomass to polyesters: Bicyclic monomers with continuous flow. Green Chem. 2014, 16, 1774–1783. [Google Scholar] [CrossRef]
- Shen, S.-S.; Ji, S.-J. Molecular Iodine Catalyzed One-pot Aza-Diels-Alder Reaction under Solvent-free Conditions. Chin. J. Chem. 2008, 26, 935–940. [Google Scholar] [CrossRef]
- Fadel, F.; Titouani, S.L.; Soufiaoui, M.; Ajamay, H.; Mazzah, A. Synthèse de nouveaux dérivés tétrahydroquinoléines et quinoléines via la réaction d’aza-Diels–Alder suivie d’aromatisation. Tetrahedron Lett. 2004, 45, 5905–5908. [Google Scholar] [CrossRef]
- Lording, W.J.; Fallon, T.; Sherburn, M.S.; PaddonRow, M.N. The simplest Diels–Alder reactions are not endo selective. Chem. Sci. 2020, 11, 11915. [Google Scholar] [CrossRef] [PubMed]
- Rana, A.; Mishra, A.; Awasthi, S.K. Recent advancements in the chemistry of Diels Alder reaction for total synthesis of natural products: A comprehensive review (2020–2023). RSC Adv. 2025, 15, 4496–4525. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.-M.; Cai, Q. Progress of Catalytic Asymmetric Diels-Alder Reactions of 2-Pyrones. Chin. J. Org. Chem. 2022, 42, 698–713. [Google Scholar] [CrossRef]
- Yang, B.; Gao, S. Recent advances in the application of Diels-Alder reactions involving o-quinodi methanes, aza-o-quinone methides and o-quinone methides in natural product total synthesis. Chem. Soc. Rev. 2018, 47, 7926–7953. [Google Scholar] [CrossRef]
- Ran, H.; Huang, G. The Diels-Alder Reaction and its Applications in the Total Synthesis of Natural Products. Curr. Org. Synth. 2016, 13, 847–860. [Google Scholar] [CrossRef]
- Nicolaou, K.C.; Snyder, S.A.; Montagnon, T.; Vassilikogiannakis, G. The Diels-Alder reaction in total synthesis. Angew. Chem. Int. Ed. 2002, 41, 1668–1698. [Google Scholar] [CrossRef]
- Weinreb, S.M. Alkaloid total synthesis by intramolecular imino Diels-Alder cyclo additions. Acc. Chem. Res. 1985, 18, 16–21. [Google Scholar] [CrossRef]
- Kouznetsov, V.V. Recent synthetic developments in a powerful imino Diels–Alder reaction (Povarov reaction): Application to the synthesis of N-polyheterocycles and related alkaloids. Tetrahedron 2009, 65, 2721–2750. [Google Scholar] [CrossRef]
- Babu, G.; Perumal, P.T. Convenient synthesis of pyrano [3,2-c] quinolines and indeno [2,1-c] quinolines by imino Diels-Alder reactions. Tetrahedron Lett. 1998, 39, 3225–3228. [Google Scholar] [CrossRef]
- Pérez, J.M.; Alvarado, P.L.; Avendaño, C.; Menéndez, J.C. Hetero Diels–Alder Reactions of 1-Acetylamino- and 1-Dimethylamino-1-azadienes with Benzoquinones. Tetrahedron 2000, 56, 1561–1567. [Google Scholar] [CrossRef]
- Morofuji, T.; Nagai, S.; Kano, N. Thermal release of quinoliniums and simple alkenes from their photocycloadducts by a retro-Diels–Alder reaction. Tetrahedron Lett. 2022, 104, 154011. [Google Scholar] [CrossRef]
- Wiberg, K.B.; Fenoglio, R.A. Heats of Formation of C4H6 Hydrocarbons. J. Am. Chem. Soc. 1968, 90, 3395–3397. [Google Scholar] [CrossRef]
- Wei, H.-Z.; Shi, M.; Wei, Y. Visible-light-induced reactions of methylenecyclopropanes (MCPs). Chem. Commun. 2023, 59, 2726. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, L.; Kozhushkov, S.I.; Yufit, D.S. Ruthenium-Catalyzed Hydroarylation of Methylenecyclopropanes through C-H Bond Cleavage: Scope and Mechanism. Chem. Eur. J. 2012, 18, 12068–12077. [Google Scholar] [CrossRef]
- Brandi, A.; Cicchi, S.; Cordero, F.M.; Goti, A. Progress in the Synthesis and Transformations of Alkylidenecyclopropanes and Alkylidenecyclobutanes. Chem. Rev. 2014, 114, 7317–7420. [Google Scholar] [CrossRef]
- Wei, H.-Z.; Li, Q.-Z.; Wei, Y.; Shi, M. Rapid construction of cyclopenta [b] naphthalene frameworks from propargylic alcohol tethered methylenecyclopropanes. Org. Biomol. Chem. 2020, 18, 7396–7400. [Google Scholar] [CrossRef]
- Wei, H.-Z.; Yu, L.-Z.; Shi, M. Construction of Cyclopenta [b] naphthalenol Frameworks by Weinreb Amide-Directed Umpolung Ring Opening of Methylenecyclopropanes. Adv. Synth. Catal. 2022, 364, 3948–3953. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, X.-L.; Xie, X.-M.; Gao, T.-Y.; Qin, J.; Li, J.-J.; Feng, C.; Yu, D.-G. Iron-promoted carbonylation–rearrangement of α-aminoaryl-tethered alkylidenecyclopropanes with CO2: Facile synthesis of quinolinofurans. Chin. Chem. Lett. 2025, 36, 110056. [Google Scholar] [CrossRef]
- Wei, H.-Z.; Yu, L.-Z.; Shi, M. Lewis or Brønsted acid-catalysed reaction of propargylic alcohol-tethered alkylidenecyclopropanes with indoles and pyrroles for the preparation of polycyclic compounds tethered with indole or pyrrole motif. Org. Biomol. Chem. 2020, 18, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-L.; Lin, H.-Z.; Tan, L.-Q.; Peng, J.-B. Palladium- and Brønsted acid-catalyzed enantio-, site- and E/Z-selective addition of alkylidenecyclopropanes with imines. Chem. Sci. 2023, 14, 2348–2352. [Google Scholar] [CrossRef]
- Zhou, J.; Meng, L.; Lin, S.-J.; Cai, B.-H.; Wang, J. Palladium-Catalyzed Enantio- and Regioselective Ring-Opening Hydrophosphinylation of Methylenecyclopropanes. Angew. Chem. Int. Ed. 2023, 62, e202303727. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-L.; Yang, Y.-S.; Zhou, Y.; Duan, Z.-C.; Yu, Z.-X. Strain-Release-Controlled [4 + 2 + 1] Reaction of Cyclopropyl-Capped Diene-ynes/Diene-enes and Carbon Monoxide Catalyzed by Rhodium. J. Am. Chem. Soc. 2023, 145, 5496–5505. [Google Scholar] [CrossRef]
- Ding, C.; Huang, P.-F.; Xiong, B.; Tang, K.-W.; Liu, Y. Visible-Light-Induced Difunctionalization of the C-C Bond of Alkylidenecyclopropanes with Acyl Chlorides. Catalysts 2023, 13, 919. [Google Scholar] [CrossRef]
- Nie, Y.; Cheng, L.; Chen, L.-H.; Li, Z.-X.; Leng, Y.; Wu, J.-L. Synthesis of 2-Benzyl-3,4-dihydronaphthalenes via Oxidative Radical Opening/Cyclization of Methylenecyclopropanes with Potassium Benzyltrifluoroborates. Eur. J. Org. Chem. 2022, e202101406. [Google Scholar] [CrossRef]
- Saha, S.-K.; Mallick, S.; Nath, A.; Sarkar, S.-D. Electrosynthesis of Highly Functionalized Quinolines through Radical Annulation−Polar Addition Cascade. Org. Lett. 2024, 26, 7330–7335. [Google Scholar] [CrossRef]
- Tao, L.-Y.; Wei, Y.; Shi, M. Thermally-Induced Intramolecular [4+2] Cycloaddition of Allylamino- or Allyloxy-Tethered Alkylidenecyclopropanes. Chem. Asian J. 2021, 16, 2463–2468. [Google Scholar] [CrossRef] [PubMed]
- Kappe, C.-O.; Murphree, S.-S.; Padwa, A. Synthetic Applications of Furan Diels-Alder Chemistry. Tetrahedron 1997, 55, 14179–14233. [Google Scholar] [CrossRef]
- Domingo, L.-R.; Picher, M.-T.; Aurell, M.-J. A DFT Characterization of the Mechanism for the Cycloaddition Reaction between 2-Methylfuran and Acetylenedicarboxylic Acid. J. Phys. Chem. A 1999, 103, 11425–11430. [Google Scholar] [CrossRef]
- Domingo, L.-R.; Pérez, P.; Ortega, D.-E. Why Do Five-Membered Heterocyclic Compounds Sometimes Not Participate in Polar Diels–Alder Reactions? J. Org. Chem. 2013, 78, 2462–2471. [Google Scholar] [CrossRef] [PubMed]
- Domingo, L.-R.; Pérez, P. Intramolecular Versus Intermolecular Diels–Alder Reactions: Insights from Molecular Electron Density Theory. Molecules 2025, 30, 2052. [Google Scholar] [CrossRef]
- Liu, Z.-Y.; Zhang, M.; Wang, X.-C. Hydrosilylation-Promoted Furan Diels−Alder Cycloadditions with Stereoselectivity Controlled by the Silyl Group. J. Am. Chem. Soc. 2020, 142, 581–588. [Google Scholar] [CrossRef]
- Legault, C.-Y.; Université de Sherbrooke. CYLview2.0. 2020. Available online: http://www.cylview.org (accessed on 30 September 2025).
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Chai, J.D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef]
- McLean, A.D.; Chandler, G.S. Contracted Gaussian-basis sets for molecular calculations. 1. 2nd row atoms, Z=11-18. J. Chem. Phys. 1980, 72, 5639–5648. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef] [PubMed]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef] [PubMed]
Entry a | Solvent | Time | Temperature | Yield (%) b |
---|---|---|---|---|
1 | CHCl3 | 12 h | 40 °C | 38 |
2 | CHCl3 | 24 h | 40 °C | 65 |
3 | CHCl3 | 48 h | 40 °C | 79 |
4 | CHCl3 | 96 h | 40 °C | >95 |
5 | CHCl3 | 12 h | 40 °C | 88 |
6 | CHCl3 | 16 h | 60 °C | >95 |
7 | CHCl3 | 12 h | 80 °C | >95 |
8 | CHCl3 | 3 h | 80 °C | >95/98 c |
9 | PhMe | 3 h | 80 °C | 87 |
10 | THF | 3 h | 80 °C | 92 |
11 | MeCN | 3 h | 80 °C | 94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Q.-Y.; Gu, X.-T.; Wei, Y.; Shi, M. Thermally Induced Intramolecular Diels–Alder Reaction of Furan-Tethered Methylenecyclopropanes. Molecules 2025, 30, 4105. https://doi.org/10.3390/molecules30204105
Huang Q-Y, Gu X-T, Wei Y, Shi M. Thermally Induced Intramolecular Diels–Alder Reaction of Furan-Tethered Methylenecyclopropanes. Molecules. 2025; 30(20):4105. https://doi.org/10.3390/molecules30204105
Chicago/Turabian StyleHuang, Qi-Yun, Xin-Tao Gu, Yin Wei, and Min Shi. 2025. "Thermally Induced Intramolecular Diels–Alder Reaction of Furan-Tethered Methylenecyclopropanes" Molecules 30, no. 20: 4105. https://doi.org/10.3390/molecules30204105
APA StyleHuang, Q.-Y., Gu, X.-T., Wei, Y., & Shi, M. (2025). Thermally Induced Intramolecular Diels–Alder Reaction of Furan-Tethered Methylenecyclopropanes. Molecules, 30(20), 4105. https://doi.org/10.3390/molecules30204105