Molecular Rearrangement in Aromatic Amino Acids and Proteins After Reaction with Hydroxyl and Hydroperoxyl Radicals and UV-C Radiation
Abstract
1. Introduction
2. Experimental Results
2.1. Fluorescence of the Initial Products
2.2. Fluorescence of Treated Solutions
2.3. Stern–Volmer Coefficients
3. Discussion
3.1. Initial State of Proteins
3.2. Characteristics of Active Species and Their Ability to Interact with Amino Acids and Proteins
3.2.1. •OH and Radicals
3.2.2. UV Photons of Continuous Radiation 253.7 Nm
3.3. Destruction of Aromatic Amino Acids
3.3.1. Tryptophan
3.3.2. Tyrosine
3.3.3. Phenylalanine
3.4. Destruction of Proteins
3.4.1. Albumin
3.4.2. Albumin-like Mixture of Amino Acids
3.4.3. Protein Blends of Different Compositions
4. Material and Methods, Experimental Section
4.1. Sources of Active Species
4.2. Object of Research
4.3. Sample Processing Procedure
4.4. Processing of Results
4.4.1. Stern–Volmer Coefficient
4.4.2. Case: The Substance Is Consumed
4.4.3. Case: The Substance Is Formed
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RONS | Reactive Oxygen and Nitrogen Species |
BSA | Bovine Serum Albumin |
HSA | Human Serum Albumin |
λex | Excitation Wavelength, nm |
λreg | Emission Wavelength, nm |
ISC | Intersystem Crossing |
NFK | N-formylkynurenine |
References
- Lushak, V.I. Free radical oxidation of proteins and its connection with the functional stare of the organism. Russ. J. Biochem. 2007, 72, 995–1017. [Google Scholar]
- Chandimali, N.; Bak, S.G.; Park, E.H.; Lim, H.J.; Won, Y.S.; Kim, E.K.; Park, S.I.; Lee, S.J. Free radicals and their impact on health and antioxidant defenses: A review. Cell Death Discov. 2025, 11, 1–17. [Google Scholar] [CrossRef]
- Vladimirov, Y.A.; Roshupkin, D.I.; Fesenko, E.E. On the mechanism of action of ultraviolet radiation on proteins. Russ. J. Biophys. 1970, 15, 254–265. [Google Scholar]
- Vladimirov, Y.A.; Potapenko, A.J. Physico-chemical foundation of photobiological processes. Biochemistry 1989. [Google Scholar]
- Vladimirov, Y.A.; Proskurina, E.V. Free radicals and cellular chemiluminescence. Usp. Biol. Him. 2009, 49, 341–388. [Google Scholar]
- Reid, L.O.; Roman, E.A.; Thomas, A.H.; Dantola, M.L. Photooxidation of tryptophan and tyrosine residues in human serum albumin sensitized by pterin: A model for globular protein photodamage in skin. Biochemistry 2016, 55, 4777–4786. [Google Scholar] [CrossRef] [PubMed]
- Ionita, G.; Ionita, P.; Sahini, V.E.; Luca, C. Influence of cyclodextrins on the kinitics of oxidation of amino acids and BSA by hydrazyl radicals. J. Incl. Phenom. 2001, 39, 269–271. [Google Scholar] [CrossRef]
- Sharma, V.K.; Rokita, S.E. Oxidation of Amino Acids, Peptides, and Proteins: Kinetics and Mechanism; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Stadtman, E.R. Protein oxidation and aging. Free Radic. Res. 2006, 40, 1250–1258. [Google Scholar] [CrossRef]
- Stadtman, E.R.; Levine, R.L. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 2003, 25, 207–218. [Google Scholar] [CrossRef]
- Liu, F.; Lai, S.; Tong, H.; Lakey, P.S.J.; Shiraiwa, M.; Weller, M.G.; Pöschl, U.; Kampf, C.J. Release of free amino acids upon oxidation of peptides and proteins by hydroxyl radicals. Anal. Bioanal. Chem. 2017, 409, 2411–2420. [Google Scholar] [CrossRef]
- Piskarev, I.M. The formation of ozone-hydroxyl mixture in corona discharge and lifetime of hydroxyl radicals. IEEE Trans. Plasma Sci. 2021, 49, 1363–1373. [Google Scholar] [CrossRef]
- Bruggeman, P.J.; Kushner, M.J.; Locke, B.R.; Gardeniers, J.G.E.; Graham, W.G.; Graves, D.B.; Hofman-Caris, R.C.H.M.; Maric, D.; Reid, J.P.; Ceriani, E.; et al. Plasma-liquid interactions: A review and roadmap. Plasma Sources Sci. Technol. 2016, 25, 053002. [Google Scholar] [CrossRef]
- Piskarev, I.M. Features of the impact of pulsed radiation of hot plasma on water and aqueous solutions. Plasma Chem. Plasma Process. 2021, 41, 1347–1361. [Google Scholar] [CrossRef]
- Kungl, A.J.; Landl, G.; Visser, A.J.; Breitenbach, M.; Kauffmann, H.F. LL-dityrosine: A time-resolved fluorescence investigation. J. Fluoresc. 1992, 2, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Graves, D.B. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J. Phys. D Appl. Phys. 2012, 45, 263001. [Google Scholar] [CrossRef]
- Woods, R.J.; Pikaev, A.K. Applied Radiation Chemistry. Radiation Processing; John Wiley & Sons, Inc.: New York, NY, USA, 1993. [Google Scholar]
- Luo, Y.-R. Handbook of Bond Dissociation Energies in Organic Compounds; CRC Press LLC: Boca Raton, FL, USA; London, UK; New York, NY, USA; Washington, DC, USA, 2003; pp. 1–94. [Google Scholar]
- Steiner, U.E. Fundamentals of photophysics, photochemistry and photobiology. In Photodynamic Therapy from Theory to Applications; Ablel-Kader, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Rohatgi-Mukherjee, K.K. Fundamentals of Photochemistry; New Age International: New Delhi, India, 2013; pp. 1–380. [Google Scholar]
- Pattison, D.I.; Davies, M.J. Action of ultraviolet light on cellular structures. EXS 2006, 96, 131–157. [Google Scholar]
- Baptista, M.S.; Cadet, J.; Greer, A.; Thomas, A.H. Photosensitization reactions of biomolecules: Definition, target and mechanisms. Photochem. Photobiol. 2021, 97, 1456–1483. [Google Scholar] [CrossRef]
- Baptista, M.S.; Cadet, J.; Di Mascio, P.; Ghogare, A.A.; Greer, A.; Hamblin, M.R.; Lorente, C.; Nunez, S.C.; Ribeiro, M.S.; Thomas, A.H.; et al. Type I and II photosensitized oxidation reactions: Guidelines and mechanistic pathways. Photochem. Photobiol. 2017, 93, 912–919. [Google Scholar] [CrossRef]
- Pattison, D.I.; Rahmanto, A.S.; Davies, M.J. Photo-oxidation of proteins. Photochem. Photobiol. Sci. 2012, 11, 38–53. [Google Scholar] [CrossRef]
- Scappini, F.; Capobianco, M.L.; Casadei, F.; Zamboni, R.; Giorgianni, P. Laboratory simulation of UV irradiation from the Sun on amino acids. II Irradiation of phenylalanine and tryptophan. Int. J. Astrobiol. 2007, 6, 281–289. [Google Scholar] [CrossRef]
- Okabe, H. Photochemistry of Small Molecules; Wiley: New York, NY, USA, 1978. [Google Scholar]
- Zvereva, G.N. The use of vacuum ultraviolet radiation to generate high reactive radicals. Opt. J. 2012, 79, 45–54. [Google Scholar]
- Piskarev, I.M. Hydrogen peroxide formation in aqueous solutions under UV-C radiation. High Energy Chem. 2018, 52, 212–216. [Google Scholar] [CrossRef]
- Gudkov, S.V.; Karp, O.E.; Garmash, S.A.; Ivanov, V.E.; Chernikov, A.V.; Manokhin, A.A.; Astashev, M.E.; Iaguzhinskiĭ, L.S.; Bruskov, V.I. The formation of active forms of oxygen in water under the influence of visible and infrared radiation in the absorption bands of molecular oxygen. Biophysics 2012, 57, 5–13. [Google Scholar] [CrossRef]
- Piskarev, I.M.; Ivanova, I.P.; Trofimova, S.V.; Burhina, O.E. Oxidizing-reducing processes in albumin solution under the influence of UV radiation and plasma discharge radiation. High Energy Chem. 2015, 49, 76–80. [Google Scholar] [CrossRef]
- Majorek, K.A.; Porebski, P.J.; Dayal, A.; Zimmerman, M.D.; Jablonska, K.; Stewart, A.J.; Chruszcz, M.; Minor, W. Structural and immunologic characterization of bovine, horse and rabbit serum albumins. Mol. Immunol. 2012, 52, 174–182. [Google Scholar] [CrossRef]
- Tayeh, N.; Rungassamy, T.; Albani, J.R. Fluorescence spectral resolution of tryptophan residues in bovine and human serum albumins. J. Pharm. Biomed. Anal. 2009, 50, 107–116. [Google Scholar] [CrossRef]
- Spedalieri, C.; Plaickner, J.; Speiser, E.; Esser, N.; Kneipp, J. Ultraviolet resonance Raman spectra of serum albumins. Appl. Spectrosc. 2023, 77, 1044–1052. [Google Scholar] [CrossRef] [PubMed]
- Malencik, D.A.; Anderson, S.R. Dityrosine as a product of oxidative stress and fluorescent probe. Amino Acids 2004, 25, 233–247. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Gehlen, M.H. The centenary of the Stern-Volmer equation of fluorescence quenching: From the single line plot to the SV quenching map. J. Photochem. Photobiol. C Photochem. Rev. 2020, 42, 1000338. [Google Scholar] [CrossRef]
Characteristic | Source of Active Species | ||
---|---|---|---|
Corona Electric Discharge | Hot Plasma Radiation | Mercury Lamp | |
Sample volume, mL | 50 | 10 | 10 |
Power of dose, J (10 mL)−1 min−1 | 30 ± 3 | 35 ± 3 | 20 ± 2 |
Primary species that carry energy | Electrons E = 10 keV | Photons, pulse radiation λ = 220 nm | Photons, continuous radiation λ = 253.7 nm |
Flow of primary species, min−1 | 1.87 × 1017 | 3.9 × 1019 | 2.5 × 1019 |
Type of secondary active species | Radicals •OH | Radicals | Photons λ = 253.7 nm |
Flow of secondary active species mol (L s)−1 | (2.1 ± 0.3) × 10−6 | (1.2 ± 0.3) × 10−6 | (5.4 ± 0.2) × 10−8 |
Sample | Wavelength, nm | |
---|---|---|
Excitation | Registration | |
Albumin | 275 | 330 |
Tyrosine | 275 | 303 |
Tryptophan | 285 | 355 |
Phenyllanine | 260 | 285 |
Dityrosine | 290, 310 | 410–420 |
Dopamine | 280 | 315 |
L-DOPA | 280 | 320 |
Schiff’s base | 290 | 455 |
Egg white protein | 285 | 335 |
Soy protein | 285 | 340 |
Target | Fluorescent Product | Active Species | Fluorescence (10 mL) J−1 | |
---|---|---|---|---|
Quenching | Ignition | |||
Tryptophan | Tryptophan | •OH | 24 × 10−3 | - |
Eex = 285 nm | HO2• | 0.7 × 10−3 | - | |
Ereg = 355 nm | UV, 253.7 nm | 4.5 × 10−3 | - | |
Tyrosine | Tyrosine | •OH | 4.5 × 10−3 | - |
Eex = 275 nm | HO2• | 0.3 × 10−3 | - | |
Ereg = 303 nm | UV, 253.7 nm | 1.4 × 10−3 | - | |
Dityrosine | •OH | - | 13 × 10−3 | |
Eex = 290 nm | HO2• | - | <1 × 10−6 | |
Ereg = 420 nm | UV, 253.7 nm | - | 7.8 × 10−3 | |
Phenylalanine | Phenylalanine | •OH | 1.1 × 10−3 | - |
Eex = 260 nm | HO2• | 1.4 × 10−3 | - | |
Ereg = 285 nm | UV, 253.7 nm | 1.3 × 10−3 | - | |
Tyrosine | •OH | - | 0.7 × 10−3 | |
Eex = 275 nm | HO2• | - | <1 × 10−6 | |
Ereg = 303 nm | UV, 253.7 nm | - | 9.5 × 10−3 | |
Dityrosine | •OH | - | 0.75 × 10−3 | |
Eex = 310 nm | HO2• | - | <1 × 10−6 | |
Ereg = 420 nm | UV, 253.7 nm | - | 9.7 × 10−3 |
Target | Fluorescent Product | Active Species | Fluorescence, (10 mL) J−1 | |
---|---|---|---|---|
Quenching | Ignition | |||
Bovine serum albumin | Albumin | •OH | 1.1 × 10−3 | - |
Eex = 275 nm | HO2• | 1.6 × 10−3 | - | |
Ereg = 335 nm | UV, 253.7 nm | 26 × 10−3 | - | |
Dityrosine | •OH | - | <1 × 10−6 | |
Eex = 310 nm | HO2• | - | <1 × 10−6 | |
Ereg = 420 nm | UV, 253.7 nm | - | 30 × 10−3 | |
Albumin-like mixture of aromatic amino acids | Tyrosine | •OH | 1.4 × 10−3 | - |
Eex = 275 nm | HO2• | 1.2 × 10−3 | - | |
Ereg = 305 nm | UV, 253.7 nm | 2.2 × 10−3 | - | |
Dityrosine | •OH | - | 3.1 × 10−3 | |
Eex = 310 nm | HO2• | - | <1 × 10−6 | |
Ereg=420 nm | UV, 253.7 nm | - | 15 × 10−3 | |
Protein blend egg white (animal protein) | Protein Eex = 285 nm Ereg = 335 nm | •OH | 1 × 10−3 | - |
UV, 253.7 nm | 5.1 × 10−3 | - | ||
Dityrosine | UV, 253.7 nm | - | 3.7 × 10−3 | |
Eex = 310 nm | ||||
Ereg = 420 nm | ||||
Schiff’s base | UV, 253.7 nm | - | 3.7 × 10−3 | |
Eex = 330 nm | ||||
Ereg = 435 nm | ||||
Soy bean isolate protein blend (plant protein) | Protein Eex = 285 nm Ereg = 340 nm | •OH | 3.6 × 10−3 | - |
UV, 253.7 nm | 5.7 × 10−3 | - | ||
Schiff’s base | UV, 253.7 nm | - | 2.3 × 10−3 | |
Eex = 330 nm | ||||
Ereg = 435 nm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanova, I.; Piskarev, I. Molecular Rearrangement in Aromatic Amino Acids and Proteins After Reaction with Hydroxyl and Hydroperoxyl Radicals and UV-C Radiation. Molecules 2025, 30, 4046. https://doi.org/10.3390/molecules30204046
Ivanova I, Piskarev I. Molecular Rearrangement in Aromatic Amino Acids and Proteins After Reaction with Hydroxyl and Hydroperoxyl Radicals and UV-C Radiation. Molecules. 2025; 30(20):4046. https://doi.org/10.3390/molecules30204046
Chicago/Turabian StyleIvanova, Irina, and Igor Piskarev. 2025. "Molecular Rearrangement in Aromatic Amino Acids and Proteins After Reaction with Hydroxyl and Hydroperoxyl Radicals and UV-C Radiation" Molecules 30, no. 20: 4046. https://doi.org/10.3390/molecules30204046
APA StyleIvanova, I., & Piskarev, I. (2025). Molecular Rearrangement in Aromatic Amino Acids and Proteins After Reaction with Hydroxyl and Hydroperoxyl Radicals and UV-C Radiation. Molecules, 30(20), 4046. https://doi.org/10.3390/molecules30204046